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Context

Recent results for non-relativistic compressible Euler:
Low-regularity local well-posedness
(Disconzi–Luo–Mazzone–Speck, Wang).
Shock formation with vorticity (Luk–Speck); different
approach by Buckmaster–Shkoller–Vicol.

Proofs rely on new formulations exhibiting remarkable null
and regularity properties (with Luk).
Main Message: The relativistic Euler equations enjoy a
similar remarkable formulation (with Disconzi).

The non-relativistic results should carry over.
New formulation =⇒ can exploit geometric
vectorfield method.

Long-term goal: Understand global structure of piecewise
smooth solutions with shocks
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Model problem for relativistic fluids

The following model problem is very rich:

□g(Ψ)Ψ = 0

g a Lorentzian metric with “standard” coordinate
components gαβ(Ψ) that are smooth functions of Ψ

□gΨ := 1√
|det g|

∂α

{√
|detg|(g−1)αβ∂βΨ

}
Expression □g(Ψ)Ψ typically lacks good null structure
in standard coordinates.
Shocks can form: |∂Ψ| → ∞, |Ψ| < ∞
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Interesting results for model problem

Stable shock formation
• Christodoulou: small data for irrotational
compressible fluids
• Speck: small data for wave equations
• Miao–Yu and Speck–Holzegel–Luk–Wong: new
solution regimes
Local well-posedness below H(5/2)+

• Klainerman–Rodnianski: H2+ϵ for Einstein-vacuum
in wave coordinates
•Smith–Tataru: H2+ϵ for general quasilinear wave
equations
• Wang: geometric physical space proof of
Smith–Tataru result
Unifying theme: nonlinear geometric optics via
eikonal functions; (g−1)αβ∂αU∂βU = 0
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Big Idea:

For some applications (especially ones involving eikonal
functions), one can treat the relativistic Euler equations as
perturbations of the model problem □g(Ψ)Ψ = 0
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Schematic depiction of the “wave part”

The “wave part” Ψ of relativistic Euler satisfies:

□g(Ψ)Ψ = 4-curl (vorticity) + div (∇ entropy)
+ g−null forms

Big idea: show that 4-curl (vorticity), div (∇ entropy), and
g−null forms are perturbative; precise nonlinear structure
of these terms matters

g−null forms such as (g−1)αβ∂αΨ∂βΨ are known to
be harmless error terms in study of shock formation.
Need to overcome derivative loss by showing that
4-curl (vorticity), div (∇ entropy) have sufficient
regularity.

� This can be achieved via div-curl-transport
systems that enjoy good null structure.
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Christodoulou’s sharp picture of relativistic
Euler shock formation (irrotational case)

B
singular

B

∂−B

C
regular

Figure: The maximal development



Intro Model problem Motivating pictures New formulation Nonlinear geometric optics Looking forward

Boundary of the Maximal Development and
Shock Hypersurface

Figure: Boundary of the maximal development and the shock
hypersurface
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Interaction of shock hypersurfaces and
Cauchy horizons

Figure: The interaction of shock hypersurfaces and Cauchy
horizons
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Relativistic Euler flow in Minkowski space

Aα(Ψ⃗)∂αΨ⃗ = 0

Ψ⃗ = (h,u0,u1,u2,u3, s)
h = lnH with H = enthalpy; u =four-velocity;
s =entropy
The system is quasilinear hyperbolic
ηαβuαuβ = −1, η = Minkowski metric
Equation of state p = p(ϱ, s) closes the system
(p =pressure, ϱ =energy density)
We assume c = sound speed :=

√
∂p
∂ϱ

> 0
Two propagation phenomena: sound waves and
transporting of vorticity/entropy
Neither the phenomena nor their coupling are visible
s is crucial for the theory of solutions with shocks
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Geometric tensors associated to the flow

The four-velocity transports vorticity and entropy.

Definition (The four-velocity vectorfield)

uα∂α

The acoustical metric is tied to sound wave propagation.

Definition (The acoustical metric and its inverse)

gαβ(Ψ⃗) := c−2ηαβ + (c−2 − 1)uαuβ,

(g−1)αβ(Ψ⃗) = c2(η−1)αβ + (c2 − 1)uαuβ

u is g-timelike and thus transverse to acoustically null
hypersurfaces:

g(u,u) = −1



Intro Model problem Motivating pictures New formulation Nonlinear geometric optics Looking forward

Geometric tensors associated to the flow

The four-velocity transports vorticity and entropy.

Definition (The four-velocity vectorfield)

uα∂α

The acoustical metric is tied to sound wave propagation.

Definition (The acoustical metric and its inverse)

gαβ(Ψ⃗) := c−2ηαβ + (c−2 − 1)uαuβ,

(g−1)αβ(Ψ⃗) = c2(η−1)αβ + (c2 − 1)uαuβ

u is g-timelike and thus transverse to acoustically null
hypersurfaces:

g(u,u) = −1



Intro Model problem Motivating pictures New formulation Nonlinear geometric optics Looking forward

Geometric tensors associated to the flow

The four-velocity transports vorticity and entropy.

Definition (The four-velocity vectorfield)

uα∂α

The acoustical metric is tied to sound wave propagation.

Definition (The acoustical metric and its inverse)

gαβ(Ψ⃗) := c−2ηαβ + (c−2 − 1)uαuβ,

(g−1)αβ(Ψ⃗) = c2(η−1)αβ + (c2 − 1)uαuβ

u is g-timelike and thus transverse to acoustically null
hypersurfaces:

g(u,u) = −1



Intro Model problem Motivating pictures New formulation Nonlinear geometric optics Looking forward

Additional fluid variables

Definition (The u-orthogonal vorticity of a one-form)

vortα(V ) := −ϵαβγδuβ∂γVδ

Definition (Vorticity vectorfield)

ϖα := vortα(Hu) = −ϵαβγδuβ∂γ(Huδ)

Definition (Entropy gradient one-form)

Sα := ∂αs
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Modified fluid variables

Exhibit improved regularity
Solve PDEs with good quasilinear null structure with
respect to g

Definition (Modified fluid variables)

Cα := vortα(ϖ) + c−2ϵαβγδuβ(∂γh)ϖδ

+ (θ − θ;h)Sα(∂κuκ) + (θ − θ;h)uα(Sκ∂κh)

+ (θ;h − θ)Sκ((η−1)αλ∂λuκ),

D :=
1
n
(∂κSκ) +

1
n
(Sκ∂κh)− 1

n
c−2(Sκ∂κh)

Temperature θ(h, s) and number density n(h, s)
determined by equation of state
θ;h := ∂

∂hθ
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Null forms relative to g

Definition (Null forms relative to g)

Q(g)(∂ϕ, ∂ϕ̃) := (g−1)αβ∂αϕ∂βϕ̃,

Q(αβ)(∂ϕ, ∂ϕ̃) := ∂αϕ∂βϕ̃− ∂αϕ̃∂βϕ
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Purpose of new formulation

The new formulation allows for the application of
geometric techniques from mathematical GR and
nonlinear wave equations.
Big new issue compared to waves:

The interaction of wave and transport phenomena,
especially from the perspective of regularity and
decay.
“multiple characteristic speeds”
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A new formulation of relativistic Euler

Theorem (JS with M. Disconzi)

For Ψ ∈ Ψ⃗ := (h,u0,u1,u2,u3, s), Q := combinations of null
forms, regular solutions satisfy, up to lower-order terms:

□g(Ψ⃗)Ψ = C +D + Q(∂∂∂Ψ⃗, ∂∂∂Ψ⃗),

uκ∂κϖ
α = ∂∂∂Ψ⃗,

uκ∂κSα = ∂∂∂Ψ⃗

Formally, C,D ∼ ∂∂∂∂∂∂Ψ⃗, but they are actually better from
various points of view. In fact, ∂∂∂ϖ,∂∂∂S are better:

∂αϖ
α = ϖ · ∂∂∂Ψ⃗,

uκ∂κCα = Q(∂∂∂ϖ,∂∂∂Ψ⃗) + Q(∂∂∂S, ∂∂∂Ψ⃗)

+ ∂∂∂Ψ⃗ · C + ∂∂∂Ψ⃗ · D + Q(∂∂∂Ψ⃗, ∂∂∂Ψ⃗)

uκ∂κD = Q(∂∂∂S, ∂∂∂Ψ⃗) + Q(∂∂∂Ψ⃗, ∂∂∂Ψ⃗),

vortα(S) = 0
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A new formulation of relativistic Euler

Theorem (JS with M. Disconzi)
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L2 regularity via div-curl-transport

In non-relativistic flow, the div-curl part is along Σt .
In contrast, the relativistic equations ∂αϖ

α = RHS
and uκ∂κCα = RHS are spacetime div-curl-transport
systems for ∂∂∂ϖ.
In practice, one needs L2 regularity for ∂∂∂ϖ along Σt .
To achieve this, one also considers the PDEs
uκ∂κϖ

α = RHS and uαϖ
α = 0 (and thus

uα∂∂∂ϖ
α = −(∂∂∂uα)ϖ

α).
The latter two equations allow one to independently
control “timelike parts” of ∂∂∂ϖ.
Then the “timelike part” of ∂∂∂ϖ can be “excised” from
the spacetime div-curl-transport systems to derive a
spatial div-curl-transport system along Σt .
Can be done while preserving the null structure.
Similar remarks hold for S.
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Some potential applications
The new formulation opens the door for several key
applications with vorticity and entropy, some of which have
been achieved in the non-relativistic case:

Stable shock formation without symmetry (à la
Christodoulou and my work with Luk in the
non-relativistic case). Null structure is crucial.
Thesis work in progress by Sifan Wu: low regularity
sound waves (à la my work with Disconzi, Luo,
Mazzone and Wang’s work in the non-relativistic
case). Null structure not needed.
Small-time extension of the solution past the first
shock (Christodoulou solved the Shock Development
Problem in the irrotational case). Null structure is
crucial.
Long-time dynamics of solutions with shocks. This is
completely open away from symmetry. Null structure
is crucial.
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Nonlinear geometric optics

Potential applications would require nonlinear
geometric optics.
New formulation allows for sharp implementation of
nonlinear geometric optics.
Implemented via an acoustic eikonal function U:

(g−1)αβ(Ψ⃗)∂αU∂βU = 0, ∂tU > 0.

Level sets CU of U are g-null hypersurfaces.
Play a critical role in many delicate local and global
results for wave equations.
The regularity theory of U is difficult, tensorial,
influenced by the Euler solution, especially the
vorticity and entropy.
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Acoustic null frame

An acoustic null frame {L,L,e1,e2}:

eA

L L

CU

Figure: Null (with respect to g) frame
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A crucial geometric quantity

St ,U := intersection of level sets of t and U, equipped
with g-orthonormal frame {eA}A=1,2

L := rescaled version of −DU; it is g-null (often
normalized by L = ∂

∂t )
The null mean curvature plays a key role in the analysis
and regularity theory of U:

Definition (Null mean curvature of St ,U)

With D the connection of g, we define:

trχ :=
∑

A=1,2

g(DeAL,eA)

trχ = 2/r along standard Euclidean spheres in
Minkowski light cones
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Renormalized Raychaudhuri equation

To control trχ, one starts with the Renormalized
Raychaudhuri equation, where ΓΓΓ ∼ (g−1)2∂∂∂g ∼ ∂∂∂Ψ⃗ :=
contracted rectangular Christoffel symbol:

L(trχ+ΓΓΓL) = (1/2)LαLβ□ggαβ(Ψ⃗) + ∂∂∂Ψ⃗ · ∂∂∂Ψ⃗ + · · ·

Thanks to new formulation of relativistic Euler, up to O(1)
factors:

L(trχ+ΓΓΓL) = C +D + ∂∂∂Ψ⃗ · ∂∂∂Ψ⃗ + · · ·

The main contribution of the vorticity and entropy to the
evolution of trχ is through the special combinations C and
D, which enjoy improved regularity properties compared
to ∂∂∂ϖ and ∂∂∂S
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Directions to consider

Einstein–Euler
Shock development problem (locally solving past the
shock)
Long-time behavior of solutions with shocks (at least
in a perturbative regime)
Long-time behavior of vorticity
Similar results for more complicated multiple speed
systems: elasticity, crystal optics, nonlinear
electromagnetism,..., which take the form:

hαβ
AB(∂Φ)∂α∂βΦ

B = 0

Would require the development of new geometry.
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