Cosmological Singularities in GR: The Complete Sub-Critical Regime

Jared Speck

Vanderbilt University
April 27, 2021

Cauchy Problem for Einstein's equations

$$
\begin{aligned}
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu} & =\mathbf{T}_{\mu \nu}:=\mathbf{D}_{\mu} \phi \mathbf{D}_{\nu} \phi-\frac{1}{2} \mathbf{g}_{\mu \nu} \mathbf{D} \phi \cdot \mathbf{D} \phi \\
\square_{\mathbf{g}} \phi & =0
\end{aligned}
$$

Cauchy Problem for Einstein's equations

$$
\begin{aligned}
\boldsymbol{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu} & =\mathbf{T}_{\mu \nu}:=\mathbf{D}_{\mu} \phi \mathbf{D}_{\nu} \phi-\frac{1}{2} \mathbf{g}_{\mu \nu} \mathbf{D} \phi \cdot \mathbf{D} \phi \\
\square_{\mathbf{g}} \phi & =0
\end{aligned}
$$

- Some results I will describe hold when $\phi \equiv 0$

Cauchy Problem for Einstein's equations

$$
\begin{aligned}
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu} & =\mathbf{T}_{\mu \nu}:=\mathbf{D}_{\mu} \phi \mathbf{D}_{\nu} \phi-\frac{1}{2} \mathbf{g}_{\mu \nu} \mathbf{D} \phi \cdot \mathbf{D} \phi \\
\square_{\mathbf{g}} \phi & =0
\end{aligned}
$$

- Some results I will describe hold when $\phi \equiv 0$
- Data on $\Sigma_{1}=\mathbb{T}^{D}$ are tensors $\left(\stackrel{\circ}{g}, \stackrel{\circ}{k}, \grave{\phi}_{0}, \grave{\phi}_{1}\right)$ verifying the Gauss and Codazzi constraints

Cauchy Problem for Einstein's equations

$$
\begin{aligned}
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu} & =\mathbf{T}_{\mu \nu}:=\mathbf{D}_{\mu} \phi \mathbf{D}_{\nu} \phi-\frac{1}{2} \mathbf{g}_{\mu \nu} \mathbf{D} \phi \cdot \mathbf{D} \phi \\
\square_{\mathbf{g}} \phi & =0
\end{aligned}
$$

- Some results I will describe hold when $\phi \equiv 0$
- Data on $\Sigma_{1}=\mathbb{T}^{D}$ are tensors $\left(\stackrel{\circ}{g}, \stackrel{\circ}{k}, \dot{\phi}_{0}, \grave{\phi}_{1}\right)$ verifying the Gauss and Codazzi constraints
- Our data will be Sobolev-close to Kasner data

Cauchy Problem for Einstein's equations

$$
\begin{aligned}
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu} & =\mathbf{T}_{\mu \nu}:=\mathbf{D}_{\mu} \phi \mathbf{D}_{\nu} \phi-\frac{1}{2} \mathbf{g}_{\mu \nu} \mathbf{D} \phi \cdot \mathbf{D} \phi \\
\square_{\mathbf{g}} \phi & =0
\end{aligned}
$$

- Some results I will describe hold when $\phi \equiv 0$
- Data on $\Sigma_{1}=\mathbb{T}^{D}$ are tensors $\left(\stackrel{\circ}{g}, \stackrel{\circ}{k}, \grave{\phi}_{0}, \grave{\phi}_{1}\right)$ verifying the Gauss and Codazzi constraints
- Our data will be Sobolev-close to Kasner data
- Choquet-Bruhat and Geroch: data verifying constraints launch a unique maximal globally hyperbolic development $(\boldsymbol{\mathcal { M }}, \mathbf{g}, \phi)$

Goal

Goal: Understand the formation of stable spacelike singularities in ($\boldsymbol{\mathcal { M }}, \mathbf{g}, \phi)$.

Goal

Goal: Understand the formation of stable spacelike singularities in $(\boldsymbol{\mathcal { M }}, \mathbf{g}, \phi)$.

Math problem: For which open sets of data does Riem $_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta}$ blow up on a spacelike hypersurface?

Goal

Goal: Understand the formation of stable spacelike singularities in ($\boldsymbol{\mathcal { M }}, \mathbf{g}, \phi)$.

Math problem: For which open sets of data does Riem $_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta}$ blow up on a spacelike hypersurface?
"Dynamic stability of the Big Bang"

Some sources of inspiration

- Hawking-Penrose "singularity" theorems.
- Explicit solutions, especially FLRW and Kasner.
- Heuristics from the physics literature.
- Numerical work on singularities.
- Rigorous results in symmetry and analytic class.
- Dafermos-Luk.

"Generalized" Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}} d x^{\prime} \otimes d x^{\prime}, \quad \phi_{K A S}=B \ln t
$$

"Generalized" Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}} d x^{\prime} \otimes d x^{\prime}, \quad \phi_{K A S}=B \ln t
$$

The $q_{l} \in(-1,1]$ and $B \geq 0$ verify the Kasner constraints:

$$
\sum_{l=1}^{D} q_{l}=1, \quad \sum_{l=1}^{D}\left(q_{l}\right)^{2}=1-B^{2}
$$

"Generalized" Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}} d x^{\prime} \otimes d x^{\prime}, \quad \phi_{K A S}=B \ln t
$$

The $q_{l} \in(-1,1]$ and $B \geq 0$ verify the Kasner constraints:

$$
\sum_{l=1}^{D} q_{l}=1, \quad \sum_{l=1}^{D}\left(q_{l}\right)^{2}=1-B^{2}
$$

Riem $_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta}=$ Ct $^{-4}$
where $C>0$ (unless one q_{l} equals 1 and the rest vanish)

"Generalized" Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}} d x^{\prime} \otimes d x^{\prime}, \quad \phi_{K A S}=B \ln t
$$

The $q_{l} \in(-1,1]$ and $B \geq 0$ verify the Kasner constraints:

$$
\sum_{l=1}^{D} q_{l}=1, \quad \sum_{l=1}^{D}\left(q_{l}\right)^{2}=1-B^{2}
$$

Riem $_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta}=$ Ct $^{-4}$
where $C>0$ (unless one q_{l} equals 1 and the rest vanish) "Big Bang" singularity at $t=0$

Hawking's incompleteness theorem

Theorem (Hawking)

Assume

- $(\boldsymbol{\mathcal { M }}, \mathbf{g}, \phi)$ is the maximal globally hyperbolic development of data $\left(\stackrel{\circ}{g}, \stackrel{\circ}{k}, \dot{\phi}_{0}, \dot{\phi}_{1}\right)$ on $\Sigma_{1} \simeq \mathbb{T}^{D}$
- $\operatorname{tr} \stackrel{\circ}{k}<-C<0$

Hawking's incompleteness theorem

Theorem (Hawking)

Assume

- $(\boldsymbol{\mathcal { M }}, \mathbf{g}, \phi)$ is the maximal globally hyperbolic development of data $\left(\stackrel{\circ}{g}, \stackrel{\circ}{k}, \dot{\phi}_{0}, \dot{\phi}_{1}\right)$ on $\Sigma_{1} \simeq \mathbb{T}^{D}$
- tr $\mathfrak{k}<-C<0$

Then no past-directed timelike geodesic emanating from Σ_{1} is longer than $C^{\prime}<\infty$.

Hawking's incompleteness theorem

Theorem (Hawking)

Assume

- $(\boldsymbol{\mathcal { M }}, \mathbf{g}, \phi)$ is the maximal globally hyperbolic development of data $\left(\stackrel{\circ}{g}, \stackrel{\circ}{k}, \dot{\phi}_{0}, \dot{\phi}_{1}\right)$ on $\Sigma_{1} \simeq \mathbb{T}^{D}$
- tr $\stackrel{\circ}{<}<-C<0$

Then no past-directed timelike geodesic emanating from Σ_{1} is longer than $C^{\prime}<\infty$.

- Hawking's theorem applies to perturbations of Kasner: $\operatorname{tr}^{\grave{K}_{K A S}}=-1$.

Why?

Glaring question:

- Why are the timelike geodesics incomplete?

Why?

Glaring question:

- Why are the timelike geodesics incomplete?
- For Kasner, incompleteness \leftrightarrow Big Bang, but what about perturbations?

Potential sources of incompleteness

- Curvature blowup/crushing singularities à la Kasner

Potential sources of incompleteness

- Curvature blowup/crushing singularities à la Kasner
- Cauchy horizon formation à la Kerr black hole interiors

Near-Kasner incompleteness

New result with Rodnianski and Fournodavlos: Kasner Big Bang is dynamically stable assuming a sub-criticality condition:

$$
\max _{\substack{I, J, B=1, \ldots, D \\ l<J}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

Near-Kasner incompleteness

New result with Rodnianski and Fournodavlos: Kasner Big Bang is dynamically stable assuming a sub-criticality condition:

$$
\max _{\substack{I, J, B=1, \ldots, D \\ l<J}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

- \exists sub-critical vacuum Kasner solutions $\Longleftrightarrow D \geq 10$ (Demaret-Henneaux-Spindel)

Near-Kasner incompleteness

New result with Rodnianski and Fournodavlos: Kasner Big Bang is dynamically stable assuming a sub-criticality condition:

$$
\max _{\substack{I, J, B=1, \cdots, D \\ l<J}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

- \exists sub-critical vacuum Kasner solutions $\Longleftrightarrow D \geq 10$ (Demaret-Henneaux-Spindel)

Dafermos-Luk: the Kerr Cauchy horizon formation is dynamically stable

Near-Kasner incompleteness

New result with Rodnianski and Fournodavlos: Kasner Big Bang is dynamically stable assuming a sub-criticality condition:

$$
\max _{\substack{I, J, B=1, \ldots, D \\ l<J}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

- \exists sub-critical vacuum Kasner solutions $\Longleftrightarrow D \geq 10$ (Demaret-Henneaux-Spindel)

Dafermos-Luk: the Kerr Cauchy horizon formation is dynamically stable

Key takeways:

- In GR, distinct kinds of incompleteness occurs in different solution regimes

Near-Kasner incompleteness

New result with Rodnianski and Fournodavlos: Kasner Big Bang is dynamically stable assuming a sub-criticality condition:

$$
\max _{\substack{I, J, B=1, \cdots, D \\ I<J}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

- \exists sub-critical vacuum Kasner solutions $\Longleftrightarrow D \geq 10$ (Demaret-Henneaux-Spindel)

Dafermos-Luk: the Kerr Cauchy horizon formation is dynamically stable

Key takeways:

- In GR, distinct kinds of incompleteness occurs in different solution regimes
- In principle, other stable pathologies could dynamically develop in other (not-yet-understood) regimes

Inspiration from physics

Belinskií-Khalatnikov-Lifshitz considered tensorfields:

$$
\begin{array}{r}
\mathbf{g}_{B K L}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}(x)} d x^{\prime} \otimes d x^{\prime}, \phi_{B K L}=B(x) \ln t, \\
\sum_{l=1}^{D} q_{l}(x)=1, \quad \sum_{l=1}^{D}\left(q_{l}(x)\right)^{2}=1-(B(x))^{2}
\end{array}
$$

- 3D vacuum Kasner: Sub-criticality condition fails.

Inspiration from physics

Belinskií-Khalatnikov-Lifshitz considered tensorfields:

$$
\begin{array}{r}
\mathbf{g}_{B K L}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}(x)} d x^{\prime} \otimes d x^{\prime}, \phi_{B K L}=B(x) \ln t, \\
\sum_{l=1}^{D} q_{l}(x)=1, \quad \sum_{l=1}^{D}\left(q_{l}(x)\right)^{2}=1-(B(x))^{2}
\end{array}
$$

Note: $\left(\mathbf{g}_{B K L}, \phi_{B K L}\right)$ are typically not solutions.

-3D vacuum Kasner: Sub-criticality condition fals.

Inspiration from physics

Belinskií-Khalatnikov-Lifshitz considered tensorfields:

$$
\begin{array}{r}
\mathbf{g}_{B K L}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}(x)} d x^{\prime} \otimes d x^{\prime}, \phi_{B K L}=B(x) \ln t \\
\sum_{l=1}^{D} q_{l}(x)=1, \quad \sum_{l=1}^{D}\left(q_{l}(x)\right)^{2}=1-(B(x))^{2}
\end{array}
$$

Note: $\left(\mathbf{g}_{B K L}, \phi_{B K L}\right)$ are typically not solutions.

- 3D vacuum Kasner: Sub-criticality condition fails.

Inspiration from physics

Belinskií-Khalatnikov-Lifshitz considered tensorfields:

$$
\begin{array}{r}
\mathbf{g}_{B K L}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}(x)} d x^{\prime} \otimes d x^{\prime}, \phi_{B K L}=B(x) \ln t, \\
\sum_{l=1}^{D} q_{l}(x)=1, \quad \sum_{l=1}^{D}\left(q_{l}(x)\right)^{2}=1-(B(x))^{2}
\end{array}
$$

Note: $\left(\mathbf{g}_{B K L}, \phi_{B K L}\right)$ are typically not solutions.

- 3D vacuum Kasner: Sub-criticality condition fails.
- Part of BKL saga: In 3D vacuum, near spacelike singularities, "most solutions" "should" oscillate violently in time;

Inspiration from physics

Belinskií-Khalatnikov-Lifshitz considered tensorfields:

$$
\begin{array}{r}
\mathbf{g}_{B K L}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}(x)} d x^{\prime} \otimes d x^{\prime}, \phi_{B K L}=B(x) \ln t, \\
\sum_{l=1}^{D} q_{l}(x)=1, \quad \sum_{l=1}^{D}\left(q_{l}(x)\right)^{2}=1-(B(x))^{2}
\end{array}
$$

Note: $\left(\mathbf{g}_{B K L}, \phi_{B K L}\right)$ are typically not solutions.

- 3D vacuum Kasner: Sub-criticality condition fails.
- Part of BKL saga: In 3D vacuum, near spacelike singularities, "most solutions" "should" oscillate violently in time;
- $\mathbf{g}_{B K L}$ metrics are typically at best "short-time approximations" (Kasner epochs)

Inspiration from physics

Belinskií-Khalatnikov-Lifshitz considered tensorfields:

$$
\begin{array}{r}
\mathbf{g}_{B K L}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}(x)} d x^{\prime} \otimes d x^{\prime}, \phi_{B K L}=B(x) \ln t, \\
\sum_{l=1}^{D} q_{l}(x)=1, \quad \sum_{l=1}^{D}\left(q_{l}(x)\right)^{2}=1-(B(x))^{2}
\end{array}
$$

Note: $\left(\mathbf{g}_{B K L}, \phi_{B K L}\right)$ are typically not solutions.

- 3D vacuum Kasner: Sub-criticality condition fails.
- Part of BKL saga: In 3D vacuum, near spacelike singularities, "most solutions" "should" oscillate violently in time;
- $\mathbf{g}_{B K L}$ metrics are typically at best "short-time approximations" (Kasner epochs)
- Fournodavlos-Luk: \exists large family of non-oscillatory, Sobolev-class 3D Einstein-vacuum solutions that are asymptotic to $\mathbf{g}_{B K L}$-type metrics;

Inspiration from physics

Belinskií-Khalatnikov-Lifshitz considered tensorfields:

$$
\begin{array}{r}
\mathbf{g}_{B K L}=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}(x)} d x^{\prime} \otimes d x^{\prime}, \phi_{B K L}=B(x) \ln t, \\
\sum_{l=1}^{D} q_{l}(x)=1, \quad \sum_{l=1}^{D}\left(q_{l}(x)\right)^{2}=1-(B(x))^{2}
\end{array}
$$

Note: $\left(\mathbf{g}_{B K L}, \phi_{B K L}\right)$ are typically not solutions.

- 3D vacuum Kasner: Sub-criticality condition fails.
- Part of BKL saga: In 3D vacuum, near spacelike singularities, "most solutions" "should" oscillate violently in time;
- $\mathbf{g}_{B K L}$ metrics are typically at best "short-time approximations" (Kasner epochs)
- Fournodavlos-Luk: \exists large family of non-oscillatory, Sobolev-class 3D Einstein-vacuum solutions that are asymptotic to $\mathbf{g}_{B K L}$-type metrics; 3 functional degrees of freedom (compared to 4 for the Cauchy problem)

"Monotonic" regimes

Works by BK, Barrow, Demaret-Henneaux-Spindel, Andersson-Rendall,
Damour-Henneaux-Rendall-Weaver suggest that a D-dimensional Kasner Big Bang might be dynamically stable under the sub-criticality condition:

$$
\max _{\substack{I, J, B=1, \cdots, D \\ I<J}}\left\{q_{I}+q_{J}-q_{B}\right\}<1
$$

"Monotonic" regimes

Works by BK, Barrow, Demaret-Henneaux-Spindel, Andersson-Rendall,
Damour-Henneaux-Rendall-Weaver suggest that a D-dimensional Kasner Big Bang might be dynamically stable under the sub-criticality condition:

$$
\max _{\substack{l, J, B=1, \cdots, D \\ l<J}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

- Significance: Heuristics suggest that time derivative terms will dominate; "Asymptotically Velocity Term Dominated"

"Monotonic" regimes

Works by BK, Barrow, Demaret-Henneaux-Spindel, Andersson-Rendall,
Damour-Henneaux-Rendall-Weaver suggest that a D-dimensional Kasner Big Bang might be dynamically stable under the sub-criticality condition:

$$
\max _{\substack{l, J, B=1, \cdots, D \\ l<J}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

- Significance: Heuristics suggest that time derivative terms will dominate; "Asymptotically Velocity Term Dominated"
- With symmetry, stability might hold for "even more q's"

The singularity industry: A sampler

- Numerical works: e.g. Berger, Garfinkle, Isenberg, Lim, Moncrief, Weaver, ...
- Symmetry: e.g. Alexakis-Fournodavlos, Chruściel-Isenberg-Moncrief, Ellis, Isenberg-Kichenassamy, Isenberg-Moncrief, Liebscher, Ringström, Wainwright, . .
- Linear: e.g. Alho-Franzen-Fournodavlos, Ringström
- Construction of singular solutions: e.g. Ames, Andersson, Anguige, Beyer, Choquet-Bruhat, Damour, Demaret, Fournodavlos, Henneaux, Isenberg, LeFloch, Luk, Kichenassamy, Rendall, Spindel, Ståhl, Todd, Weaver, ...
- Oscillatory investigations: e.g. BKL, Damour, van Elst, Heinzle, Hsu, Lecian, Liebscher, Misner, Nicolai, Uggla, Reiterer, Ringström, Tchapnda, Trubowitz,

Main theorem

Theorem (JS, G. Fournodavlos, and I. Rodnianski)
If the sub-criticality condition

$$
\max _{\substack{1, J, B=1, \cdots, D}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

holds, then near its Big Bang,
$\mathbf{g}_{K A S}:=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{1}} d x^{\prime} \otimes d x^{\prime}, \phi_{K A S}=B \ln t$ is a dynamically stable solution to the Einstein-scalar field system under Sobolev-class perturbations of the data on $\{t=1\}$.

Main theorem

Theorem (JS, G. Fournodavlos, and I. Rodnianski)
If the sub-criticality condition

$$
\max _{\substack{1, J, B=1, \cdots, D}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

holds, then near its Big Bang,
$\mathbf{g}_{K A S}:=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{1}} d x^{\prime} \otimes d x^{\prime}, \phi_{K A S}=B \ln t$ is a dynamically stable solution to the Einstein-scalar field system under Sobolev-class perturbations of the data on $\{t=1\}$.

- Relative to CMC time t (i.e., $\left.\operatorname{tr} k\right|_{\Sigma_{t}}=-t^{-1}$):

Main theorem

Theorem (JS, G. Fournodavlos, and I. Rodnianski)
If the sub-criticality condition

$$
\max _{\substack{1, J, B=1, \cdots, D}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

holds, then near its Big Bang,
$\mathbf{g}_{K A S}:=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}} d x^{\prime} \otimes d x^{\prime}, \phi_{K A S}=B \ln t$ is a dynamically stable solution to the Einstein-scalar field system under Sobolev-class perturbations of the data on $\{t=1\}$.

- Relative to CMC time t (i.e., $\left.\operatorname{tr} k\right|_{\Sigma_{t}}=-t^{-1}$): $|k| \sim t^{-1}$, Riem $_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta} \sim t^{-4}, \sqrt{|\operatorname{det} \mathbf{g}|} \sim t$

Main theorem

Theorem (JS, G. Fournodavlos, and I. Rodnianski)

If the sub-criticality condition

$$
\max _{\substack{1, J, B=1, \cdots, D}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

holds, then near its Big Bang,
$\mathbf{g}_{K A S}:=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}} d x^{\prime} \otimes d x^{\prime}, \phi_{K A S}=B \ln t$ is a dynamically stable solution to the Einstein-scalar field system under Sobolev-class perturbations of the data on $\{t=1\}$.

- Relative to CMC time t (i.e., $\left.\operatorname{tr} k\right|_{\Sigma_{t}}=-t^{-1}$): $|k| \sim t^{-1}$, Riem ${ }_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta} \sim t^{-4}, \sqrt{|\operatorname{det} \mathbf{g}|} \sim t$
- Lapse $n:=|\mathbf{g}(\mathbf{D} t, \mathbf{D} t)|^{-1 / 2}$ solves an elliptic PDE; synchronizes the singularity. 0 shift.

Main theorem

Theorem (JS, G. Fournodavlos, and I. Rodnianski)

If the sub-criticality condition

$$
\max _{\substack{1, J, B=1, \cdots, D}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

holds, then near its Big Bang,
$\mathbf{g}_{K A S}:=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{I}} d x^{\prime} \otimes d x^{\prime}, \phi_{K A S}=B \ln t$ is a dynamically stable solution to the Einstein-scalar field system under Sobolev-class perturbations of the data on $\{t=1\}$.

- Relative to CMC time t (i.e., $\left.\operatorname{tr} k\right|_{\Sigma_{t}}=-t^{-1}$): $|k| \sim t^{-1}$, Riem ${ }_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta} \sim t^{-4}, \sqrt{|\operatorname{det} \mathbf{g}|} \sim t$
- Lapse $n:=|\mathbf{g}(\mathbf{D} t, \mathbf{D} t)|^{-1 / 2}$ solves an elliptic PDE; synchronizes the singularity. 0 shift.

Moreover, when $D=3$ and $B=0$, under polarized $U(1)$-symmetric perturbations (i.e., $g_{13}=g_{23} \equiv 0$ and no x^{3}-dependence), all Kasner Big Bangs are dynamically stable.

Main theorem

Theorem (JS, G. Fournodavlos, and I. Rodnianski)

If the sub-criticality condition

$$
\max _{\substack{1, J, B=1, \cdots, D}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

holds, then near its Big Bang,
$\mathbf{g}_{K A S}:=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{l}} d x^{\prime} \otimes d x^{\prime}, \phi_{K A S}=B \ln t$ is a dynamically stable solution to the Einstein-scalar field system under Sobolev-class perturbations of the data on $\{t=1\}$.

- Relative to CMC time t (i.e., $\left.\operatorname{tr} k\right|_{\Sigma_{t}}=-t^{-1}$): $|k| \sim t^{-1}$, Riem ${ }_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta} \sim t^{-4}, \sqrt{|\operatorname{det} \boldsymbol{g}|} \sim t$
- Lapse $n:=|\mathbf{g}(\mathbf{D} t, \mathbf{D} t)|^{-1 / 2}$ solves an elliptic PDE; synchronizes the singularity. 0 shift.

Moreover, when $D=3$ and $B=0$, under polarized $U(1)$-symmetric perturbations (i.e., $g_{13}=g_{23} \equiv 0$ and no x^{3}-dependence), all Kasner Big Bangs are dynamically stable.

- Effectively covers the entire (asymmetric) regime where BK-type heuristics suggest stable blowup.

Main theorem

Theorem (JS, G. Fournodavlos, and I. Rodnianski)

If the sub-criticality condition

$$
\max _{\substack{1, J, B=1, \cdots, D}}\left\{q_{l}+q_{J}-q_{B}\right\}<1
$$

holds, then near its Big Bang,
$\mathbf{g}_{K A S}:=-d t \otimes d t+\sum_{l=1}^{D} t^{2 q_{1}} d x^{\prime} \otimes d x^{\prime}, \phi_{K A S}=B \ln t$ is a dynamically stable solution to the Einstein-scalar field system under Sobolev-class perturbations of the data on $\{t=1\}$.

- Relative to CMC time t (i.e., $\left.\operatorname{tr} k\right|_{\Sigma_{t}}=-t^{-1}$): $|k| \sim t^{-1}$, Riem $_{\alpha \beta \gamma \delta}$ Riem $^{\alpha \beta \gamma \delta} \sim t^{-4}, \sqrt{|\operatorname{det} \boldsymbol{g}|} \sim t$
- Lapse $n:=|\mathbf{g}(\mathbf{D} t, \mathbf{D} t)|^{-1 / 2}$ solves an elliptic PDE; synchronizes the singularity. 0 shift.

Moreover, when $D=3$ and $B=0$, under polarized $U(1)$-symmetric perturbations (i.e., $g_{13}=g_{23} \equiv 0$ and no x^{3}-dependence), all Kasner Big Bangs are dynamically stable.

- Effectively covers the entire (asymmetric) regime where BK-type heuristics suggest stable blowup.
- Previously with Rodnianski, we had treated i) $D=3$ with $q_{1}=q_{2}=q_{3}=1 / 3$. i.e. stability for FLRW; and ii) $D \geq 38$ with $\max _{I=1, \cdots, D}\left|q_{l}\right|<1 / 6$ and $\phi \equiv 0$

Crushing singularities

The singularities in our main results are crushing:

$$
\int_{\text {Spacetime }} \mid \text { Christoffe } /\left.\right|^{2} \underbrace{d \mathrm{vol}}_{O(t) d t d x}=|\ln (0)|=\infty
$$

due to blowup of $|k|^{2} \sim t^{-2}, k:=2^{\text {nd }}$ F.F. of $\{t=$ const $\}$

Crushing singularities

The singularities in our main results are crushing:

$$
\int_{\text {Spacetime }} \mid \text { Christoffel }\left.\right|^{2} \underbrace{d \mathrm{vol}}_{O(t) d t d x}=|\ln (0)|=\infty
$$

due to blowup of $|k|^{2} \sim t^{-2}, k:=2^{\text {nd }}$ F.F. of $\{t=$ const $\}$
This shows that in the chosen gauge, the solution cannot be continued weakly.

$1+3$ splitting with CMC

- 0 shift decomposition: $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$

$1+3$ splitting with CMC

- 0 shift decomposition: $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$
- $e_{0}:=n^{-1} \partial_{t}=$ unit normal to Σ_{t}

$1+3$ splitting with CMC

- 0 shift decomposition: $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$
- $e_{0}:=n^{-1} \partial_{t}=$ unit normal to Σ_{t}
- $k_{i j}:=-\mathbf{g}\left(\mathbf{D}_{\partial_{i}} e_{0}, \partial_{j}\right)=-\frac{1}{2} e_{0} g_{i j}$

$1+3$ splitting with CMC

- 0 shift decomposition: $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$
- $e_{0}:=n^{-1} \partial_{t}=$ unit normal to Σ_{t}
- $k_{i j}:=-\mathbf{g}\left(\mathbf{D}_{\partial_{i}} e_{0}, \partial_{j}\right)=-\frac{1}{2} e_{0} g_{i j}$
- CMC slices: $k_{a}^{a}=-t^{-1}$

$1+3$ splitting with CMC

- 0 shift decomposition: $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$
- $e_{0}:=n^{-1} \partial_{t}=$ unit normal to Σ_{t}
- $k_{i j}:=-\mathbf{g}\left(\mathbf{D}_{\partial_{i}} e_{0}, \partial_{j}\right)=-\frac{1}{2} e_{0} g_{i j}$
- CMC slices: $k_{a}^{a}=-t^{-1} \Longrightarrow$ Elliptic PDE for n

$1+3$ splitting with CMC

- 0 shift decomposition: $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$
- $e_{0}:=n^{-1} \partial_{t}=$ unit normal to Σ_{t}
- $k_{i j}:=-\mathbf{g}\left(\mathbf{D}_{\partial_{i}} e_{0}, \partial_{j}\right)=-\frac{1}{2} e_{0} g_{i j}$
- CMC slices: $k_{a}^{a}=-t^{-1} \Longrightarrow$ Elliptic PDE for n

Key new ingredient:
Fermi-Walker-propagated Σ_{t}-tangent orthonormal spatial frame $\left\{e_{l}\right\}_{l=1, \ldots, D} ;$ with $e_{l}=e_{l}^{c} \partial_{c}$:

$$
e_{0} e_{l}^{i}=k_{I C} e_{C}^{i}
$$

Proof philosophy

Recast Einstein's equations as an elliptic-hyperbolic PDE system for scalar frame-component functions

Proof philosophy

Recast Einstein's equations as an elliptic-hyperbolic PDE system for scalar frame-component functions

The unknowns are:

- The lapse n
- Spatial connection coefficients $\gamma_{I J B}:=g\left(\nabla_{e_{l}} e_{J}, e_{B}\right)$
- $k_{l J}:=k_{c d} e_{l}^{c} e_{J}^{d}$
- The coordinate components $\left\{e_{\mid}^{i}\right\}_{l, i=1, \ldots, D}$, where $e_{l}=e_{l}^{c} \partial_{c}$

Proof philosophy

Recast Einstein's equations as an elliptic-hyperbolic PDE system for scalar frame-component functions

The unknowns are:

- The lapse n
- Spatial connection coefficients $\gamma_{I J B}:=g\left(\nabla_{e_{l}} e_{J}, e_{B}\right)$
- $k_{l J}:=k_{c d} e_{l}^{c} e_{J}^{d}$
- The coordinate components $\left\{e_{\mid}^{i}\right\}_{l, i=1, \ldots, D}$, where $e_{l}=e_{l}^{c} \partial_{c}$
- $e_{0} \phi$ and $e_{l} \phi$ if scalar field is present

Einstein-vacuum equations in our gauge

Evolution equations

$$
\begin{aligned}
\partial_{t} k_{I J}= & -\frac{n}{t} k_{I J}-e_{I} e_{J} n+n e_{C} \gamma_{I J C}-n e_{/} \gamma_{C J C} \\
& +\gamma_{I J C} e_{C} n-n \gamma_{D I C} \gamma_{C J D}-r_{\gamma_{D D C}} \gamma_{I J C} \\
\partial_{t} \gamma_{I J B}= & n e_{B} k_{I J}-n e_{J} k_{B I} \\
& -n k_{I C} \gamma_{B J C}+n k_{I C} \gamma_{J B C}+n k_{I C} \gamma_{C J B} \\
& -n k_{C J} \gamma_{B I C}+n k_{B C} \gamma_{J I C} \\
& +\left(e_{B} n\right) k_{I J}-\left(e_{J} n\right) k_{B I}
\end{aligned}
$$

Elliptic lapse PDE

$$
\begin{aligned}
& e_{C} e_{C}(n-1)-t^{-2}(n-1)= \gamma_{C C D} e_{D}(n-1)+2 n e_{C} \gamma_{D D C} \\
&-n\left\{\gamma_{C D E} \gamma_{E D C}+\gamma_{C C D} \gamma_{E E D}\right\} \\
& \hline
\end{aligned}
$$

Constraint equations

$$
\begin{aligned}
k_{C D} k_{C D}-t^{-2} & =2 e_{C} \gamma_{D D C}-\gamma_{C D E} \gamma_{E D C}-\gamma_{C C D} \gamma_{E E D}, \\
e_{C} k_{C I} & =\gamma_{C C D} k_{I D}+\gamma_{C I D} k_{C D}
\end{aligned}
$$

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity
Singularity strength via structure coefficients:

- $S_{I J B}:=\mathbf{g}\left(\left[e_{I}, e_{J}\right], e_{B}\right)=\gamma_{I J B}-\gamma_{J I B}$

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity
Singularity strength via structure coefficients:

- $S_{I J B}:=\mathbf{g}\left(\left[e_{l}, e_{J}\right], e_{B}\right)=\gamma_{I J B}-\gamma_{J I B}$
- Diagonal structure:

$$
\partial_{t} S_{I J B}+\frac{1}{t} \underbrace{\left(q_{l}+q_{J}-q_{B}\right)}_{<1} S_{I J B}=\text { PDE Error Terms }
$$

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity
Singularity strength via structure coefficients:

- $S_{I J B}:=\mathbf{g}\left(\left[e_{I}, e_{J}\right], e_{B}\right)=\gamma_{I J B}-\gamma_{J I B}$
- Diagonal structure:
$\partial_{t} S_{I J B}+\frac{1}{t} \underbrace{\left(q_{I}+q_{J}-q_{B}\right)}_{<1} S_{I J B}=$ PDE Error Terms
$\bullet \Longrightarrow \max _{l, J, B}\left|S_{I J B}\right| \lesssim t^{-q}, q:=\epsilon+\max _{I, J, B}\left(q_{l}+q_{J}-q_{B}\right)$.

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity
Singularity strength via structure coefficients:

- $S_{I J B}:=\mathbf{g}\left(\left[e_{l}, e_{J}\right], e_{B}\right)=\gamma_{I J B}-\gamma_{J I B}$
- Diagonal structure:
$\partial_{t} S_{I J B}+\frac{1}{t} \underbrace{\left(q_{I}+q_{J}-q_{B}\right)}_{<1} S_{I J B}=$ PDE Error Terms
- $\Longrightarrow \max _{l, J, B}\left|S_{I J B}\right| \lesssim t^{-q}, q:=\epsilon+\max _{I, J, B}\left(q_{I}+q_{J}-q_{B}\right)$.
- Integrability: t^{-a} is integrable in time near $t=0$.

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity
Singularity strength via structure coefficients:

- $S_{I J B}:=\mathbf{g}\left(\left[e_{I}, e_{J}\right], e_{B}\right)=\gamma_{I J B}-\gamma_{J I B}$
- Diagonal structure:
$\partial_{t} S_{I J B}+\frac{1}{t} \underbrace{\left(q_{l}+q_{J}-q_{B}\right)}_{<1} S_{I J B}=$ PDE Error Terms
- $\Longrightarrow \max _{1, J, B}\left|S_{J J B}\right| \lesssim t^{-q}, q:=\epsilon+\max _{I, J, B}\left(q_{l}+q_{J}-q_{B}\right)$.
- Integrability: t^{-q} is integrable in time near $t=0$.

Regularity

- PDE $e_{0} e_{l}^{i}=k_{l C} e_{C}^{i}$ suggests e_{l} is as regular as $k_{l J}$

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity
Singularity strength via structure coefficients:

- $S_{\text {IJB }}:=\mathbf{g}\left(\left[e_{I}, e_{J}\right], e_{B}\right)=\gamma_{\text {IJB }}-\gamma_{\text {JIB }}$
- Diagonal structure:
$\partial_{t} S_{I J B}+\frac{1}{t} \underbrace{\left(q_{l}+q_{J}-q_{B}\right)}_{<1} S_{I J B}=$ PDE Error Terms
- $\Longrightarrow \max _{l, J, B}\left|S_{J J B}\right| \lesssim t^{-q}, q:=\epsilon+\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)$.
- Integrability: t^{-q} is integrable in time near $t=0$.

Regularity

- PDE $e_{0} e_{l}^{i}=k_{I C} e_{C}^{i}$ suggests e_{l} is as regular as $k_{I J}$
- However: special structure of Einstein's equations $\Longrightarrow \gamma_{I J B}:=g\left(\nabla_{e^{\prime}} e_{J}, e_{B}\right)$ is as regular as $k_{J J}$.

Three crucial features of the gauge

Elliptic PDE $\Delta_{g} n=\cdots$ synchronizes singularity
Singularity strength via structure coefficients:

- $S_{\text {IJB }}:=\mathbf{g}\left(\left[e_{I}, e_{J}\right], e_{B}\right)=\gamma_{\text {IJB }}-\gamma_{\text {JIB }}$
- Diagonal structure:
$\partial_{t} S_{I J B}+\frac{1}{t} \underbrace{\left(q_{l}+q_{J}-q_{B}\right)}_{<1} S_{I J B}=$ PDE Error Terms
- $\Longrightarrow \max _{l, J, B}\left|S_{J J B}\right| \lesssim t^{-q}, q:=\epsilon+\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)$.
- Integrability: t^{-q} is integrable in time near $t=0$.

Regularity

- PDE $e_{0} e_{l}^{i}=k_{I C} e_{C}^{i}$ suggests e_{l} is as regular as $k_{I J}$
- However: special structure of Einstein's equations $\Longrightarrow \gamma_{I J B}:=g\left(\nabla_{e^{\prime}} e_{J}, e_{B}\right)$ is as regular as $k_{J J}$. \Longrightarrow Gain of one derivative for $e_{\text {, }}$

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{J J}(t, x)\right|$ is bounded.

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{/ J}(t, x)\right|$ is bounded.

- $\sigma>0$ small, $q:=\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)+\sigma<1$

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{J J}(t, x)\right|$ is bounded.

- $\sigma>0$ small, $q:=\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)+\sigma<1$
- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|e_{l}^{i}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-q},\|\gamma\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq \epsilon t^{-q}$

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{/ J}(t, x)\right|$ is bounded.

- $\sigma>0$ small, $q:=\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)+\sigma<1$
- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|e_{l}^{i}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-q},\|\gamma\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq \epsilon t^{-q}$
- High-norm bootstrap assumptions: $\left\|e_{\|}^{i}\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq t^{-(A+q)}$, $\|K\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)},\|\gamma\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)}$

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{J J}(t, x)\right|$ is bounded.

- $\sigma>0$ small, $q:=\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)+\sigma<1$
- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|e_{l}^{i}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-q},\|\gamma\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq \epsilon t^{-q}$
- High-norm bootstrap assumptions: $\left\|e_{\|}^{i}\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq t^{-(A+q)}$, $\|K\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)},\|\gamma\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{/ J}(t, x)\right|$ is bounded.

- $\sigma>0$ small, $q:=\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)+\sigma<1$
- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|e_{l}^{i}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-q},\|\gamma\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq \epsilon t^{-q}$
- High-norm bootstrap assumptions: $\left\|e_{\|}^{i}\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq t^{-(A+q)}$, $\|k\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)},\|\gamma\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A
- Interpolation: $\left\|e_{/} \gamma\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \lesssim \epsilon t^{-(2 q+\delta)}$, where $\delta=\delta(N, A) \rightarrow 0$ as $N \rightarrow \infty$ with A fixed

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{/ J}(t, x)\right|$ is bounded.

- $\sigma>0$ small, $q:=\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)+\sigma<1$
- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|e_{l}^{i}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-q},\|\gamma\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq \epsilon t^{-q}$
- High-norm bootstrap assumptions: $\left\|e_{\|}^{i}\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq t^{-(A+q)}$, $\|K\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)},\|\gamma\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A
- Interpolation: $\left\|e_{/} \gamma\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \lesssim \epsilon t^{-(2 q+\delta)}$, where $\delta=\delta(N, A) \rightarrow 0$ as $N \rightarrow \infty$ with A fixed
- $\partial_{t}\left(t k_{/ J}\right)=t e \gamma+t \gamma \cdot \gamma+\cdots \lesssim \epsilon t^{1-(2 q+2 \delta)}$

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{/ J}(t, x)\right|$ is bounded.

- $\sigma>0$ small, $q:=\max _{l, J, B}\left(q_{l}+q_{J}-q_{B}\right)+\sigma<1$
- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|e_{l}^{i}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-q},\|\gamma\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq \epsilon t^{-q}$
- High-norm bootstrap assumptions: $\left\|e_{\|}^{i}\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq t^{-(A+q)}$, $\|k\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)},\|\gamma\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-(A+1)}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A
- Interpolation: $\left\|e_{\gamma} \gamma\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \lesssim \epsilon t^{-(2 q+\delta)}$, where $\delta=\delta(N, A) \rightarrow 0$ as $N \rightarrow \infty$ with A fixed
- $\partial_{t}\left(t k_{/ J}\right)=t e_{\gamma}+t \gamma \cdot \gamma+\cdots \lesssim \epsilon t^{1-(2 q+2 \delta)}$
- Thus, integrability of $t^{1-(2 q+2 \delta)}$ (for large N) implies that for $t \in(0,1]:\left|t k_{I J}(t, x)-k_{I J}(1, x)\right| \lesssim \epsilon$

Asymptotic limits

- Similar argument $\Longrightarrow \exists \kappa_{I J}^{(\infty)}(x)$ such that

$$
\left|t k_{\nu J}(t, x)-\kappa_{l \nu}^{(\infty)}(x)\right| \rightarrow 0 \text { as } t \downarrow 0 .
$$

Asymptotic limits

- Similar argument $\Longrightarrow \exists \kappa_{l J}^{(\infty)}(x)$ such that $\left|t k_{l J}(t, x)-\kappa_{l J}^{(\infty)}(x)\right| \rightarrow 0$ as $t \downarrow 0$.
- Eigenvalues of the symmetric matrix $\left(\kappa_{I J}(x)\right)_{l, J=1, \cdots, D}$ are functions $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \cdots, D}$ on \mathbb{T}^{D}.

Asymptotic limits

- Similar argument $\Longrightarrow \exists \kappa_{/ J}^{(\infty)}(x)$ such that $\left|t k_{l J}(t, x)-\kappa_{/ J}^{(\infty)}(x)\right| \rightarrow 0$ as $t \downarrow 0$.
- Eigenvalues of the symmetric matrix $\left(\kappa_{I J}(x)\right)_{I, J=1, \cdots, D}$ are functions $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \cdots, D}$ on \mathbb{T}^{D}.
- The $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \ldots, D}$ are the "asymptotic Kasner exponents" of the perturbed solution.

Asymptotic limits

- Similar argument $\Longrightarrow \exists \kappa_{/ J}^{(\infty)}(x)$ such that
$\left|t k_{/ J}(t, x)-\kappa_{/ J}^{(\infty)}(x)\right| \rightarrow 0$ as $t \downarrow 0$.
- Eigenvalues of the symmetric matrix $\left(\kappa_{I J}(x)\right)_{l, J=1, \cdots, D}$ are functions $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \ldots, D}$ on \mathbb{T}^{D}.
- The $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \ldots, D}$ are the "asymptotic Kasner exponents" of the perturbed solution.
- The set of "limiting end states" is infinite-dimensional.

Asymptotic limits

- Similar argument $\Longrightarrow \exists \kappa_{l J}^{(\infty)}(x)$ such that

$$
\left|t k_{l J}(t, x)-\kappa_{l J}^{(\infty)}(x)\right| \rightarrow 0 \text { as } t \downarrow 0
$$

- Eigenvalues of the symmetric matrix $\left(\kappa_{I J}(x)\right)_{I, J=1, \cdots, D}$ are functions $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \cdots, D}$ on \mathbb{T}^{D}.
- The $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \ldots, D}$ are the "asymptotic Kasner exponents" of the perturbed solution.
- The set of "limiting end states" is infinite-dimensional.
- Our proof does not suggest that t-rescaled versions of the component functions $e_{l}^{i}(t, x)$ should have finite, non-trivial limits as $t \downarrow 0$.

Asymptotic limits

- Similar argument $\Longrightarrow \exists \kappa_{l J}^{(\infty)}(x)$ such that

$$
\left|t k_{/ J}(t, x)-\kappa_{/ J}^{(\infty)}(x)\right| \rightarrow 0 \text { as } t \downarrow 0 .
$$

- Eigenvalues of the symmetric matrix $\left(\kappa_{I J}(x)\right)_{l, J=1, \cdots, D}$ are functions $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \cdots, D}$ on \mathbb{T}^{D}.
- The $\left\{q_{l}^{(\infty)}(x)\right\}_{l=1, \ldots, D}$ are the "asymptotic Kasner exponents" of the perturbed solution.
- The set of "limiting end states" is infinite-dimensional.
- Our proof does not suggest that t-rescaled versions of the component functions $e_{l}^{i}(t, x)$ should have finite, non-trivial limits as $t \downarrow 0$.
- i.e., $t k_{l J}:=t k_{c d} e_{l}^{c} e_{J}^{d}$ converges, but $t k_{i j}$ might not.

Top-order energy estimates

We prove that for $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots,
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes time-integrable error terms

Top-order energy estimates

We prove that for $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A+1} \gamma\right\|_{i^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data }
\end{aligned}
$$

$+\left\{C_{\star}-A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} \gamma\right\|_{j^{N}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s$
$+\cdots$,
where

- C_{\star} can be large but is independent of N and A
- ... denotes time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"

Top-order energy estimates

We prove that for $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"
For $A>C_{\star}$, the integral has a friction sign

Top-order energy estimates

We prove that for $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"
For $A>C_{\star}$, the integral has a friction sign
- Hence, can show $\left\|t^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \leq$ Data

Top-order energy estimates

We prove that for $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A+1} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"
For $A>C_{\star}$, the integral has a friction sign
- Hence, can show $\left\|t^{A+1} k\right\|_{\dot{i}^{N}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A+1} \gamma\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \leq$ Data
- Large $A \Longrightarrow$ very singular top-order energy estimates

Problems to think about

- What happens in the presence of "timelike" matter (e.g. fluid)?

Problems to think about

- What happens in the presence of "timelike" matter (e.g. fluid)?
- What can be proved outside of the "monotonic" regime?

