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Cauchy Problem for Einstein’s equations

Ricµν −
1
2

Rgµν = Tµν := DµϕDνϕ− 1
2

gµνDϕ · Dϕ,

□gϕ = 0

Some results I will describe hold when ϕ ≡ 0
Data on Σ1 = TD are tensors (g̊, k̊ , ϕ̊0, ϕ̊1) verifying
the Gauss and Codazzi constraints
Our data will be Sobolev-close to Kasner data
Choquet-Bruhat and Geroch: data verifying
constraints launch a unique maximal globally
hyperbolic development (M,g, ϕ)
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Goal

Goal: Understand the formation of stable spacelike
singularities in (M,g, ϕ).

Math problem: For which open sets of data does
RiemαβγδRiemαβγδ blow up on a spacelike hypersurface?

“Dynamic stability of the Big Bang”
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Some sources of inspiration

Hawking–Penrose “singularity” theorems.
Explicit solutions, especially FLRW and Kasner.
Heuristics from the physics literature.
Numerical work on singularities.
Rigorous results in symmetry and analytic class.
Dafermos–Luk.
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“Generalized” Kasner solutions

gKAS = −dt ⊗ dt +
D∑

I=1

t2qI dx I ⊗ dx I , ϕKAS = B ln t

The qI ∈ (−1,1] and B ≥ 0 verify the Kasner constraints:

D∑
I=1

qI = 1,
D∑

I=1

(qI)
2 = 1 − B2

RiemαβγδRiemαβγδ = Ct−4

where C > 0 (unless one qI equals 1 and the rest vanish)

“Big Bang” singularity at t = 0
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Hawking’s incompleteness theorem

Theorem (Hawking)
Assume

(M,g, ϕ) is the maximal globally hyperbolic
development of data (g̊, k̊ , ϕ̊0, ϕ̊1) on Σ1 ≃ TD

trk̊ < −C < 0
Then no past-directed timelike geodesic emanating from
Σ1 is longer than C ′ < ∞.

• Hawking’s theorem applies to perturbations of Kasner:
trk̊KAS = −1.
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Why?

Glaring question:
Why are the timelike geodesics incomplete?
For Kasner, incompleteness ↔ Big Bang, but what
about perturbations?



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Why?

Glaring question:
Why are the timelike geodesics incomplete?
For Kasner, incompleteness ↔ Big Bang, but what
about perturbations?



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Potential sources of incompleteness

Curvature blowup/crushing singularities à la Kasner
Cauchy horizon formation à la Kerr black hole
interiors
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Near-Kasner incompleteness
New result with Rodnianski and Fournodavlos: Kasner Big
Bang is dynamically stable assuming a sub-criticality
condition:

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1

• ∃ sub-critical vacuum Kasner solutions ⇐⇒ D ≥ 10
(Demaret–Henneaux–Spindel)

Dafermos–Luk: the Kerr Cauchy horizon formation is
dynamically stable

Key takeways:
In GR, distinct kinds of incompleteness occurs in
different solution regimes
In principle, other stable pathologies could
dynamically develop in other (not-yet-understood)
regimes



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Near-Kasner incompleteness
New result with Rodnianski and Fournodavlos: Kasner Big
Bang is dynamically stable assuming a sub-criticality
condition:

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1

• ∃ sub-critical vacuum Kasner solutions ⇐⇒ D ≥ 10
(Demaret–Henneaux–Spindel)

Dafermos–Luk: the Kerr Cauchy horizon formation is
dynamically stable

Key takeways:
In GR, distinct kinds of incompleteness occurs in
different solution regimes
In principle, other stable pathologies could
dynamically develop in other (not-yet-understood)
regimes



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Near-Kasner incompleteness
New result with Rodnianski and Fournodavlos: Kasner Big
Bang is dynamically stable assuming a sub-criticality
condition:

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1

• ∃ sub-critical vacuum Kasner solutions ⇐⇒ D ≥ 10
(Demaret–Henneaux–Spindel)

Dafermos–Luk: the Kerr Cauchy horizon formation is
dynamically stable

Key takeways:
In GR, distinct kinds of incompleteness occurs in
different solution regimes
In principle, other stable pathologies could
dynamically develop in other (not-yet-understood)
regimes



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Near-Kasner incompleteness
New result with Rodnianski and Fournodavlos: Kasner Big
Bang is dynamically stable assuming a sub-criticality
condition:

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1

• ∃ sub-critical vacuum Kasner solutions ⇐⇒ D ≥ 10
(Demaret–Henneaux–Spindel)

Dafermos–Luk: the Kerr Cauchy horizon formation is
dynamically stable

Key takeways:
In GR, distinct kinds of incompleteness occurs in
different solution regimes
In principle, other stable pathologies could
dynamically develop in other (not-yet-understood)
regimes



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Near-Kasner incompleteness
New result with Rodnianski and Fournodavlos: Kasner Big
Bang is dynamically stable assuming a sub-criticality
condition:

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1

• ∃ sub-critical vacuum Kasner solutions ⇐⇒ D ≥ 10
(Demaret–Henneaux–Spindel)

Dafermos–Luk: the Kerr Cauchy horizon formation is
dynamically stable

Key takeways:
In GR, distinct kinds of incompleteness occurs in
different solution regimes
In principle, other stable pathologies could
dynamically develop in other (not-yet-understood)
regimes



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Inspiration from physics
Belinskǐi–Khalatnikov–Lifshitz considered tensorfields:

gBKL = −dt ⊗ dt +
D∑

I=1

t2qI(x)dx I ⊗ dx I , ϕBKL = B(x) ln t ,

D∑
I=1

qI(x) = 1,
D∑

I=1

(qI(x))2 = 1 − (B(x))2

Note: (gBKL, ϕBKL) are typically not solutions.

• 3D vacuum Kasner: Sub-criticality condition fails.
• Part of BKL saga: In 3D vacuum, near spacelike
singularities, “most solutions” “should” oscillate violently in
time;
• gBKL metrics are typically at best “short-time
approximations” (Kasner epochs)

Fournodavlos–Luk: ∃ large family of non-oscillatory,
Sobolev-class 3D Einstein-vacuum solutions that are
asymptotic to gBKL-type metrics; 3 functional degrees
of freedom (compared to 4 for the Cauchy problem)
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“Monotonic” regimes

Works by BK, Barrow, Demaret–Henneaux–Spindel,
Andersson–Rendall,
Damour–Henneaux–Rendall–Weaver suggest that a
D−dimensional Kasner Big Bang might be dynamically
stable under the sub-criticality condition:

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1

Significance: Heuristics suggest that time
derivative terms will dominate; “Asymptotically
Velocity Term Dominated”
With symmetry, stability might hold for “even more
q’s”
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The singularity industry: A sampler

Numerical works: e.g. Berger, Garfinkle, Isenberg,
Lim, Moncrief, Weaver, · · ·
Symmetry: e.g. Alexakis–Fournodavlos,
Chruściel–Isenberg–Moncrief, Ellis,
Isenberg–Kichenassamy, Isenberg–Moncrief,
Liebscher, Ringström, Wainwright, · · ·
Linear: e.g. Alho–Franzen–Fournodavlos, Ringström
Construction of singular solutions: e.g. Ames,
Andersson, Anguige, Beyer, Choquet-Bruhat,
Damour, Demaret, Fournodavlos, Henneaux,
Isenberg, LeFloch, Luk, Kichenassamy, Rendall,
Spindel, Ståhl, Todd, Weaver, · · ·
Oscillatory investigations: e.g. BKL, Damour, van
Elst, Heinzle, Hsu, Lecian, Liebscher, Misner, Nicolai,
Uggla, Reiterer, Ringström, Tchapnda, Trubowitz, · · ·
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Main theorem
Theorem (JS, G. Fournodavlos, and I. Rodnianski)
If the sub-criticality condition

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1

holds, then near its Big Bang,
gKAS := −dt ⊗ dt +

∑D
I=1 t2qI dx I ⊗ dx I , ϕKAS = B ln t is a

dynamically stable solution to the Einstein-scalar field
system under Sobolev-class perturbations of the data on
{t = 1}.

Relative to CMC time t (i.e., trk |Σt = −t−1): |k | ∼ t−1,
RiemαβγδRiemαβγδ ∼ t−4,

√
|detg| ∼ t

Lapse n := |g(Dt ,Dt)|−1/2 solves an elliptic PDE;
synchronizes the singularity. 0 shift.

Moreover, when D = 3 and B = 0, under polarized
U(1)-symmetric perturbations (i.e., g13 = g23 ≡ 0 and no
x3-dependence), all Kasner Big Bangs are dynamically
stable.

Effectively covers the entire (asymmetric) regime
where BK-type heuristics suggest stable blowup.
Previously with Rodnianski, we had treated i) D = 3
with q1 = q2 = q3 = 1/3. i.e. stability for FLRW; and
ii) D ≥ 38 with maxI=1,··· ,D |qI| < 1/6 and ϕ ≡ 0
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Crushing singularities

The singularities in our main results are crushing:∫
Spacetime

|Christoffel |2 dvol︸︷︷︸
O(t)dtdx

= | ln(0)| = ∞

due to blowup of |k |2 ∼ t−2, k := 2nd F.F. of {t = const}

This shows that in the chosen gauge, the solution cannot
be continued weakly.
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1 + 3 splitting with CMC

0 shift decomposition: g = −n2dt ⊗ dt + gabdxa ⊗ dxb

e0 := n−1∂t = unit normal to Σt

kij := −g(D∂i e0, ∂j) = −1
2e0gij

CMC slices: ka
a = −t−1 =⇒ Elliptic PDE for n

Key new ingredient:

Fermi-Walker-propagated Σt -tangent orthonormal spatial
frame {eI}I=1,··· ,D; with eI = ec

I ∂c:

e0ei
I = kICei

C
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Proof philosophy

Recast Einstein’s equations as an elliptic-hyperbolic PDE
system for scalar frame-component functions

The unknowns are:
The lapse n
Spatial connection coefficients γIJB := g(∇eI eJ ,eB)

kIJ := kcdec
I ed

J

The coordinate components {ei
I}I,i=1,··· ,D, where

eI = ec
I ∂c

e0ϕ and eIϕ if scalar field is present
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Einstein-vacuum equations in our gauge
Evolution equations

∂tkIJ = −n
t

kIJ − eIeJn + neCγIJC − neIγCJC

+ γIJCeCn − nγDICγCJD − nγDDCγIJC ,

∂tγIJB = neBkIJ − neJkBI

− nkICγBJC + nkICγJBC + nkICγCJB

− nkCJγBIC + nkBCγJIC

+ (eBn)kIJ − (eJn)kBI

Elliptic lapse PDE

eCeC(n − 1)− t−2(n − 1) = γCCDeD(n − 1) + 2neCγDDC

− n {γCDEγEDC + γCCDγEED}

Constraint equations

kCDkCD − t−2 = 2eCγDDC − γCDEγEDC − γCCDγEED,

eCkCI = γCCDkID + γCIDkCD
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Three crucial features of the gauge

Elliptic PDE ∆gn = · · · synchronizes singularity

Singularity strength via structure coefficients:
SIJB := g([eI ,eJ ],eB) = γIJB − γJIB

Diagonal structure:
∂tSIJB + 1

t (qI + qJ − qB)︸ ︷︷ ︸
<1

SIJB = PDE Error Terms

=⇒ max
I,J,B

|SIJB| ≲ t−q, q := ϵ+max
I,J,B

(qI + qJ − qB).

Integrability: t−q is integrable in time near t = 0.

Regularity
PDE e0ei

I = kICei
C suggests eI is as regular as kIJ

However: special structure of Einstein’s equations
=⇒ γIJB := g(∇eI eJ ,eB) is as regular as kIJ .
=⇒ Gain of one derivative for eI
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Analysis outline
The hard part is showing that the solution exists all the way
to t = 0. The key is to prove: |tkIJ(t , x)| is bounded.

σ > 0 small, q := max
I,J,B

(qI + qJ − qB) + σ < 1

Low-norm bootstrap assumptions (slightly worse than
Kasner): ∥ei

I∥L∞(Σt ) ≤ t−q, ∥γ∥L∞(Σt ) ≤ ϵt−q

High-norm bootstrap assumptions: ∥ei
I∥ḢN(Σt )

≤ t−(A+q),
∥k∥ḢN(Σt )

≤ ϵt−(A+1), ∥γ∥ḢN(Σt )
≤ ϵt−(A+1)

N and A are parameters, with A large and N chosen
large relative to A
ϵ chosen small relative to N and A
Interpolation: ∥eIγ∥L∞(Σt ) ≲ ϵt−(2q+δ), where
δ = δ(N,A) → 0 as N → ∞ with A fixed
∂t(tkIJ) = teIγ+ tγ · γ+ · · · ≲ ϵt1−(2q+2δ)

Thus, integrability of t1−(2q+2δ) (for large N) implies that
for t ∈ (0,1]: |tkIJ(t , x)− kIJ(1, x)| ≲ ϵ
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∥k∥ḢN(Σt )

≤ ϵt−(A+1), ∥γ∥ḢN(Σt )
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for t ∈ (0,1]: |tkIJ(t , x)− kIJ(1, x)| ≲ ϵ
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≤ ϵt−(A+1)

N and A are parameters, with A large and N chosen
large relative to A
ϵ chosen small relative to N and A
Interpolation: ∥eIγ∥L∞(Σt ) ≲ ϵt−(2q+δ), where
δ = δ(N,A) → 0 as N → ∞ with A fixed
∂t(tkIJ) = teIγ+ tγ · γ+ · · · ≲ ϵt1−(2q+2δ)

Thus, integrability of t1−(2q+2δ) (for large N) implies that
for t ∈ (0,1]: |tkIJ(t , x)− kIJ(1, x)| ≲ ϵ



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Analysis outline
The hard part is showing that the solution exists all the way
to t = 0. The key is to prove: |tkIJ(t , x)| is bounded.

σ > 0 small, q := max
I,J,B

(qI + qJ − qB) + σ < 1

Low-norm bootstrap assumptions (slightly worse than
Kasner): ∥ei

I∥L∞(Σt ) ≤ t−q, ∥γ∥L∞(Σt ) ≤ ϵt−q

High-norm bootstrap assumptions: ∥ei
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Asymptotic limits

Similar argument =⇒ ∃ κ
(∞)
IJ (x) such that∣∣∣tkIJ(t , x)− κ

(∞)
IJ (x)

∣∣∣ → 0 as t ↓ 0.

Eigenvalues of the symmetric matrix (κIJ(x))I,J=1,··· ,D

are functions {q(∞)
I (x)}I=1,··· ,D on TD.

The {q(∞)
I (x)}I=1,··· ,D are the “asymptotic Kasner

exponents” of the perturbed solution.
The set of “limiting end states” is infinite-dimensional.
Our proof does not suggest that t-rescaled versions
of the component functions ei

I(t , x) should have finite,
non-trivial limits as t ↓ 0.
i.e., tkIJ := tkcdec

I ed
J converges, but tkij might not.
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Top-order energy estimates
We prove that for t ∈ (0,1], we have:

∥tA+1k∥2
ḢN(Σt )

+ ∥tA+1γ∥2
ḢN(Σt )

≤ Data

+ {C⋆ − A}
∫ 1

t
s−1

{
∥sA+1γ∥2

ḢN(Σs)
+ ∥sA+1k∥2

ḢN(Σs)

}
ds

+ · · · ,

where
C⋆ can be large but is independent of N and A
· · · denotes time-integrable error terms
In my earlier work with Rodnianski, we had C⋆ = O(ϵ);
“approximate monotonicity”

For A > C⋆, the integral has a friction sign
Hence, can show ∥tA+1k∥2

ḢN(Σt )
+ ∥tA+1γ∥2

ḢN(Σt )
≤ Data

Large A =⇒ very singular top-order energy estimates
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ḢN(Σs)
+ ∥sA+1k∥2
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ḢN(Σt )

+ ∥tA+1γ∥2
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ḢN(Σs)
+ ∥sA+1k∥2
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Problems to think about

What happens in the presence of “timelike” matter
(e.g. fluid)?
What can be proved outside of the “monotonic”
regime?



Cauchy problem Goals Kasner Incompleteness Oscillatory vs Monotonic Results The Gauge Proof Hints Future

Problems to think about

What happens in the presence of “timelike” matter
(e.g. fluid)?
What can be proved outside of the “monotonic”
regime?


	Cauchy problem
	Goals
	Kasner
	Incompleteness
	Oscillatory vs Monotonic
	Results
	The Gauge
	Proof Hints
	Future

