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1 Compressible fluids & shocks

In 1757, Euler formulated a now-famous set of evolu-
tion PDEs, presently known as the compressible Eu-
ler equations, modeling the motion of a compressible
fluid without viscosity (with viscosity = the com-
pressible Navier–Stokes equations). The equations
remain a fascinating source of challenging mathemat-
ical problems connecting many branches of math-
ematics, including analysis, PDE, geometry, and
topology. There are also related fluid PDEs account-
ing for relativistic effects, the relativistic Euler equa-
tions, and they are a fundamental model in cosmol-
ogy and astrophysics. While much has been rigor-
ously understood about fluids in the idealized setting
of 1D (one spatial dimension), much less is known
about multi-dimensional fluids, the main subject of
this article.

The compressible Euler equations are quasilinear
hyperbolic conservation laws, i.e., they can be writ-
ten in divergence form, leading (upon integrating over
space and using the divergence theorem) to conserved
quantities including total mass, momentum, and en-
ergy. They have a well-posed initial value problem
formulation, which means that given suitably regular
initial data (say at time 0), one can uniquely solve
the equations for a regular solution, at least for short
times. Importantly, the equations exhibit finite speed
of propagation, which means that the fluid’s future
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state is locally determined only by nearby points in
the present.

“Compressible” means that the fluid can be
squished, and squishy-ness lies behind a fascinating
phenomenon: shock singularities. This means that
when there is sufficient compression, then even start-
ing from very smooth initial conditions, the fluid
variables can develop infinite gradient singularities
while remaining bounded. In particular, finite-time
blowup can occur, despite the conserved quantities.
The mathematical problem of describing this kind
of blowup is known as the shock formation problem.
Starting from a suitable set of blowup-points known
as a “first singularity,” one can reformulate the fluid
flow in a weak form, essentially by demanding that
an integrated version of the conservation laws should
hold, even in the presence of singularities (integrals
of functions with gradient singularities can still make
sense, even when the PDEs don’t!). In weak form,
one finds that from the first singularity, a super-sonic
(faster than sound waves) “shock hypersurface” can
emerge, across which the fluid experiences a jump dis-
continuity. Such discontinuous super-sonic solutions
are known as shock waves, and they are associated
with natural phenomena such as sonic booms and
the crack of a whip; see Sect. 4 for further discussion.

In total, the picture described above is one of a
fluid that starts out smooth, then develops a gradient
singularity, which in turn engenders a discontinuous
shock wave solution. In 1D, the dynamics are rel-
atively well understood because they fall under the
scope of one-dimensional hyperbolic conservation law
theory, for which a robust set of mathematical tools
has been developed [Daf10]. In multiple spatial di-
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mensions, the theory is much less understood, and
parts of the picture described above have not been
rigorously proved, even for short amounts of time.
Nevertheless, as we will describe, there has been dra-
matic progress on multi-dimensional shocks.
Fascinatingly, another kind of fluid singularity can

occur, one known as an implosion, in which the den-
sity blows up in finite time. These were first dis-
covered in the breakthrough work [MRRS22], which
showed that implosions can develop from C∞ initial
data. Shocks are of special interest because they tend
to be stable, while implosions are conjectured to be
unstable. This article is focused on shocks.

1.1 A first-order formulation

For (t, x) ∈ R×R3, the 3D compressible Euler equa-
tions can be formulated as a first-order PDE sys-
tem in the velocity v : R × R3 → R3, the density
ϱ : R×R3 → [0,∞), and the entropy s : R×R3 → R,
which accounts for thermodynamics. Euler’s original
formulation of the equations was under-determined,
but the theory of thermodynamics developed in the
1800’s supplied the key missing ingredient: the no-
tion of an equation of state, which postulates the fluid
pressure p as a function of ϱ and s, i.e., p = p(ϱ, s).

The speed of sound, defined by c :=
√

∂p
∂ϱ , is a

fundamental quantity in the analysis. We will con-
sider only the non-degenerate regime in which c > 0.
Relative to standard “Cartesian coordinates” x0 :=
t, x1, x2, x3 on “Cartesian space” R1+3, the equations
can be written as follows,1 where ∂α := ∂

∂xα :

∂tϱ+ ∂a(ϱv
a) = 0, (1a)

ϱBvi = −∂ip, (i = 1, 2, 3) (1b)

Bs = 0. (1c)

Above,

B := ∂t + va∂a, (2)

is the material derivative vectorfield, and throughout
Xf := Xα∂α denotes the derivative of the function

1We use Einstein summation convention in that repeated
adjacent indices are summed over their respective ranges,
which is 1− 3 for Latin indices and 0− 3 for Greek indices.

f in the direction of the vectorfield X. Importantly,
as we mentioned earlier, there is a divergence-form
version of the equations, which is equivalent to (1a)–
(1c) for C1 solutions:

∂tϱ+ ∂a(ϱv
a) = 0, (3a)

∂t(ϱv
i) + ∂a(ϱv

avi) + ∂ip = 0, (i = 1, 2, 3), (3b)

∂tE + ∂a {(E + p)va} = 0, (3c)

where E = ϱe+ 1
2ϱ|v|

2 is the total energy, e is the spe-
cific internal energy per particle, related to entropy
by the 2nd law of thermodynamics: de = Tds−pd( 1ϱ ),
where the temperature T is determined by the equa-
tion of state.

1.2 Sound waves, transporting, and
the acoustical metric

The compressible Euler equations exhibit two kids of
phenomena: sound waves, and transporting, as is in-
dicated e.g. by the “transport equation” (1c). Solu-
tions such that∇×v = 0 and s ≡ constant are known
as irrotational and isentropic and are much easier to
study because the transport phenomena are absent,
and there are only sound waves. In this case, one
can introduce a potential function Φ, and it can be
shown that v and ϱ are completely determined by its
spacetime gradient ∂∂∂Φ (the condition s ≡ constant is
preserved by equation (1c)). One can show that the
dynamics reduces to a single equation:

(g−1)αβ(∂∂∂Φ)∂α∂βΦ = 0, (4)

where g is the acoustical metric, a solution-dependent
Lorentzian metric (a bilinear form of signature
(−,+,+,+)) determined by the equation of state.
Equation (4) is a quasilinear (i.e., nonlinear but lin-
ear in the second derivatives of Φ) PDE of wave type,
i.e., sound waves are modeled by (4). The acoustical
metric is fundamental even outside of the irrotational
and isentropic class of solutions, and generally takes
the following form:

g := −dt⊗ dt+ c−2
3∑

a=1

(dxa − vadt)⊗ (dxa − vadt).

(5)
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2 Shock formation & geometry

2.1 Model problems

Shock formation is intimately connected to the
blowup that occurs in solutions to Riccati’s ODE:

ẏ = −y2, y(0) = y0, (6)

which has the explicit solution y = y0

1−ty0
that devel-

ops a singularity at t = 1
y0
. The connection between

shocks and (6) can be readily seen in Burgers’ equa-
tion2, a toy model on R1+1 (equipped with standard
coordinates (t, x)):

∂tΨ(t, x) + (1 + Ψ(t, x))∂xΨ = 0, Ψ(0, x) = Ψ̊(x),
(7)

where Ψ̊(x) is given initial data. Taking a ∂x deriva-
tive of (7), we deduce that

L∂xΨ = −(∂xΨ)2, (8)

where

L := ∂t + (1 + Ψ)∂x (9)

is the (solution-dependent) characteristic vector-
field, whose integral curves are called characteristics.
Equation (8) is of Riccati-type in ∂xΨ and admits
many solutions that blow up along the integral curves
of L. On the other hand, (7) is equivalent to LΨ = 0,
so Ψ is constant along the integral curves of L and
never blows up; this is the crudest picture of the for-
mation of a shock. Burgers’ equation also allows for
an unusually easy illustration of finite speed of prop-
agation, as each characteristic – as well as Ψ along it
– is completely determined by the initial condition of
Ψ at the point where the curve hits the x axis.
The blowup of ∂xΨ is tied to the infinite density

of the characteristics. In Fig. 1, we have exhibited
two families of characteristics forming infinite density
on the singular boundary B1 ∪ B2 (the red curve),
which has two branches (B1 and B2) separated by a

2Burgers’ equation is usually written as ∂tΨ + Ψ∂xΨ = 0
instead of (7). The difference is harmless for the purposes of
this article, and we included the extra 1 factor only to tilt Fig.1
for easier comparisons with the compressible Euler equations.

B1 B2

t

x

Figure 1: A singular curve B1 ∪ B2 for Burgers’
equation in Cartesian coordinates for data Ψ̊(x) =
−x+ 1

3x
3

cusp. Since Ψ is constant along the integral curves
of L, Fig. 1 also exhibits non-uniqueness of classical
solutions in regions where the characteristics cross.

2.2 Nonlinear geometric optics for
Burgers’ equation

We now provide a second description of the Burgers’
equation blowup, one that is much closer in spirit
to techniques that have proven successful in multi-
dimensions. We first implement nonlinear geometric
optics via an eikonal function u, where L is as in (9):

Lu = 0, u(0, x) = −x. (10)

We refer to (t, u) as “geometric coordinates” and de-
note the corresponding partial derivatives by ∂

∂t ,
∂
∂u .

Since Lt = 1 and Lu = 0, we must have L = ∂
∂t .

Hence, in geometric coordinates, equation (7) be-
comes a linear PDE :

∂

∂t
Ψ(t, u) = 0, Ψ(0, u) = Ψ0(u) := Ψ̊(−u). (11)

The solution is Ψ(t, u) = Ψ0(u). In particular, in
geometric coordinates, smooth initial data gives rise
to eternally smooth solutions. A similar phenomenon
occurs in multi-D, which is what makes the PDE
analysis tractable in suitable geometric coordinates.
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To see the singularity in the original (t, x) coordi-
nates, we introduce the inverse foliation density :

µ := − 1

∂xu
. (12)

When µ = 0, the density of the characteristics is
infinite and a shock singularity has formed. In par-
ticular, µ = 0 along the singular curve B1 ∪ B2 in
Fig. 1. From (12), one easily deduces the change of
variables relation:

∂x = − 1

µ

∂

∂u
. (13)

By differentiating (10) with ∂x and using (7) and
(10), one can show that in geometric coordinates, µ
satisfies a transport equation:

∂

∂t
µ(t, u) = − ∂

∂u
Ψ(t, u) = − d

du
Ψ0(u), µ(0, u) = 1.

(14)

From (14), one readily deduces that µ(t, u) vanishes
in finite time at values of u such that d

duΨ0(u) > 0,
and then (13) implies that ∂xΨ must blow up “like
1/µ” at such points. Note that the ∂x derivative
is transverse to the characteristics, while L is tan-
gent. Thus, the derivatives of Ψ in directions trans-
verse to the characteristics blow up, while equation
(7) is equivalent to LΨ = 0 and thus Ψ remains
smooth in directions tangent to the characteristics.
Crucially, these phenomena are also present in the
multi-dimensional fluid flows.

2.3 Riemann invariants for 1D isen-
tropic compressible Euler flow

In the foundational paper [Rie60], Riemann studied
1D solutions to (1a)–(1c) with s ≡ 0, where “1D
means that v2 = v3 ≡ 0 and ρ, v1 are functions of
(t, x1) ∈ R×R. He showed that for C1 solutions, the
equations are equivalent to:

LR(+) = 0, LR(−) = 0, (15)

where R(±) := v1 ± F (ϱ) are the Riemann invari-
ants, F is an invertible function determined by the
equation of state, and

L := ∂t + (v1 + c)∂1, L := ∂t + (v1 − c)∂1 (16)

are explicitly determined characteristic vectorfields.
L and L are intimately connected to the 1D acous-
tical metric, i.e., (5) with the x2 and x3 directions
suppressed. One can compute that:

(g−1)αβ = −1

2
LαLβ − 1

2
LαLβ , (α, β = 0, 1). (17)

(15) can be thought of as a system of Burgers’-like
equations. Even though there are two directions of
propagation, the methods of Sect. 2.2 can be used to
prove shock formation for data that are dominated
by one Riemann invariant, e.g., data for which the
gradient of R(+) is large while that of R(−) is small;
see Fig. 5. In particular, one can carry out the anal-
ysis with the help of an L-adapted eikonal function,
i.e., a solution to Lu = 0, which in view of (17), is
a solution to the (acoustic) eikonal equation, which
has been used extensively in mathematical general
relativity (GR):

(g−1)αβ∂αu∂βu = 0. (18)

Equation (18) plays a fundamental role in the study
of multi-dimensional shocks. Importantly, because
R(−) propagates in a different direction than R(+),
one can show that for R(+)-dominated initial data,
∂1R(−) remains bounded at the points where ∂1R(+)

blows up, i.e., R(−) is more regular than R(+).

2.4 Multi-dimensional irrotational
and isentropic shock formation

The biggest difference between proving shock forma-
tion in 1D versus multi-dimensions is that all known
multi-dimensional well-posedness results (i.e., exis-
tence, uniqueness, and continuous dependence on
initial conditions) rely on energy estimates, lead-
ing to well-posedness in L2-type Sobolev spaces.
In particular, Rauch showed [Rau86] that Bounded
Variation function spaces, which form the crux of
many aspects of 1D theory [Daf10], cannot be used
in multi-dimensions. Energies are analogs of the
quantity

∫
R3

{
(∂tΨ(t, x))2 + |∇Ψ(t, x)|2

}
d3x, which,

upon time-differentiating under the integral, inte-
grating by parts, can be shown to be constant in
time for solutions Ψ to the 3D linear wave equation
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Figure 2: A domain of dependence on which energy
identities hold

−∂2
tΨ+∆Ψ = 0. The key point is that deriving en-

ergy estimates up to a singularity can be very hard,
and this difficulty is absent in 1D because energy es-
timates can be avoided. Importantly, “energy iden-
tities” can be localized to “domains of dependence,”
a manifestation of finite speed of propagation that is
schematically depicted in Fig. 2.

Alinhac was the first to prove stable shock multi-
dimensional formation [Ali99]. He studied equations
of type (4) and a used an eikonal function, i.e., a so-
lution u to (18), with g(∂∂∂Φ) the Lorentzian metric in
(4), as well as a related geometric coordinate system
in the spirit of the (t, u)-one from Sect. 2.2. It turns
out that it is very difficult to derive energy estimates
in geometric coordinates due to “change of variables”
terms that appear to “lose derivatives,” i.e., have in-
sufficient regularity. The difficulty is that the regu-
larity of u is limited by the regularity of the principal
coefficients g(∂∂∂Ψ) in equation (4), and the change
of variables between geometric and standard Carte-
sian coordinates already depends on one derivative
of u. Nevertheless, Alinhac was able to avoid los-
ing derivatives by invoking a Nash–Moser iteration
scheme. In total, he was able to follow the solution
up to the constant-time hypersurface of first blowup,
but not further, and his proof worked only in “non-
degenerate” situations such that there is only a single
blowup-point at the time of first blowup.

The next big breakthrough was by Christodoulou,

whose monumental monograph [Chr07] concerned ir-
rotational and isentropic perturbations of the non-
vacuum constant-state solutions3 to the 3D rela-
tivistic Euler equations. Due to the irrotationality
and isentropicity, the flow is described by a wave
equation of type (4). Like Alinhac, Christodoulou
used an eikonal function, i.e., a solution u to (18),
with g a relativistic analog of the acoustical met-
ric (5). This allowed him, in particular, to con-
struct a multi-dimensional analog of the 1D charac-
teristic vectorfield L featured in (16), and it played
a fundamental role in his PDE analysis. Crucially,
in multi-dimensions, L is no longer explicitly given,
but rather is proportional to the gradient vector-
field −(g−1)αβ∂βu (normalized such that Lt = 1)
and thus is determined by the acoustical metric
(which depends on the fluid) and u. As a conse-
quence of the eikonal equation (18), L is null, i.e.,
g(L,L) := gαβL

αLβ = 0, and thus the level sets of
u are null hypersurfaces. Moreover, owing in part to
his experience using eikonal functions in mathemat-
ical GR, notably in the proof of the global stability
of Minkowski space [CK90], Christodoulou found a
sharper, more geometric way to derive energy esti-
mates up to the singularity without relying on Nash–
Moser estimates. This allowed him to prove that
the non-vacuum constant-state solutions are unsta-
ble to shock formation under small and smooth per-
turbations of the initial data, and it allowed him to
study the perturbed solutions in a large region, go-
ing beyond the first singular point, as is described in
Sect. 3. A particularly compelling aspect of the proof
is that to close his energy estimates, Christodoulou
had to control the mean curvature of the null hy-
persurfaces, which satisfies Raychaudhuri’s equation,
famous among the general relativists. Raychaud-
huri’s equation involves the acoustical Ricci curvature
Ric(g) and thus Christodoulou’s approach to study-
ing shock formation brought into play geometric-
analytic techniques from Lorentzian geometry.

3Non-vacuum constant solutions have a constant non-zero
density and vanishing velocity.
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2.5 Multi-dimensional shock forma-
tion beyond the irrotational and
isentropic class

The multi-dimensional shock formation results of
Christodoulou were extended to allow for solutions
with vorticity in 2D [LS18], and then later also
with entropy in 3D [LS24]. The proofs relied on a
discovery [Spe19] (extending earlier work by Luk–
Speck) that the compressible Euler equations (1a)–
(1c) imply a geometric system of wave-transport-
div-curl type, which can be schematically depicted
as follows, where Ψ ∈ {ϱ, v1, v2, v3, s}, □gΨ :

1√
|detg|

∂α

{√
|detg|(g−1)αβ∂βΨ

}
is the covariant

wave operator of the acoustical metric g = g(Ψ),
∂∂∂ denotes spacetime gradient, and ∇ denotes spatial
gradient:

□g(Ψ)Ψ = curl(curlv) + div∇s, (19a)

Bcurlv = ∂∂∂Ψ · curlv, (19b)

B∇s = ∂∂∂Ψ · ∇s. (19c)

The system (19a)–(19c) allows for a sharp imple-
mentation of nonlinear geometric options and ex-
hibits many remarkable properties, as is explained in
[Spe19]. Equation (19a) in particular gives a sharp
formulation of the coupling between sound waves and
vorticity/entropy. It is much more difficult to de-
rive energy estimates for the system (19a)–(19c) com-
pared to the irrotational case, i.e., compared to equa-
tion (4), because difficult div-curl-type estimates are
needed. It is even harder to localize the estimates
to compact domains of dependence (see Fig. 2). For
these reasons, [LS18,LS24] followed the solution only
up to the constant-time hypersurface of first blowup.

An alternative method of proving shock forma-
tion in 3D with vorticity and entropy, based on un-
derstanding perturbations of self-similar solutions,
was developed in [BSV23]. The authors constructed
an open set of fully non-degenerate data, analogous
to the one studied by Alinhac [Ali99], such that a
self-similar Burgers’-type shock forms at an isolated
point. This is distinct from [LS24], where the blow-
up points need not be isolated.

3 Maximal globally hyperbolic
developments

Due to finite speed of propagation, a singularity at
one point does not preclude one from continuing the
solution classically to other regions. This suggests
the following compelling question:

What is the largest spacetime region for
which the PDE admits a classical solution
that is uniquely determined by initial data?

The answer to this question is extraordinarily sub-
tle and depends on the geometry of the solution,
which is Lorentzian in the case of the compressible
Euler equations, in view of the formulation (19a)–
(19c), which features the acoustical metric g. Given
the Lorentzian geometry, the natural condition guar-
anteeing uniqueness of solutions on a spacetime re-
gion M ⊂ R1+3 arose in the study of mathematical
general relativity: global hyperbolicity. This means
that there exists a hypersurface Σ ⊂ M such that
every smooth inextendible timelike4 curve in M in-
tersects Σ precisely once. Such a Σ is called a Cauchy
hypersurface. Such M arise naturally when Σ is
spacelike5 and one solves the initial value problem
with initial data given on Σ. We call such an M a
globally hyperbolic development (GHD) of the data
on Σ.

Definition 3.1 (MGHD) A GHD M is said to
be a maximal globally hyperbolic development
(MGHD) if it is inextendible as a GHD of the data
on Σ.

The crucial word in Def. 3.1 that answers the ques-
tion posed above is the word inextendible, i.e., it is
not possible to find a larger GHD containing the
initial data surface Σ. MGHDs are the holy grail
of classical solutions. The importance MGHDs was
first revealed in mathematical general relativity in
the seminal work of Choquet-Bruhat–Geroch, who

4A curve γ is timelike (with respect to g) if g(γ̇, γ̇) < 0.
5A hypersurface Σ is g-spacelike if its g-normal satisfies

g(N,N) < 0. One can intuitively think that g-spacelike hy-
persurfaces are like the constant time slices {t} × R3.
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proved [CBG69] the existence of a unique MGHD for
sufficiently regular initial data for Einstein’s equa-
tions, a hyperbolic PDE system that in the vacuum
case take the form Ric = 0, where Ric is the Ricci
curvature of the Lorentzian spacetime metric.

It is now easy to see why in the context of fluid
mechanics, MGHDs and shock singularities should
be analyzed in unison: points at which a shock has
started to form, i.e., at which the fluid gradient has
blown up, constitute boundary points of MGHDs.
From this perspective, the first point of blowup iden-
tified by Alinhac [Ali99] is the “lowest point” on
the boundary of the MGHD for the quasilinear wave
equation (4), i.e., a multi-dimensional analog of the
cusp in Fig. 1.

For a large class of solutions of the 3D compressible
Euler equations, specifically for general (asymmetric)
perturbations of the 1D solutions from Sect. 2.3, the
boundary of the MGHD in a future neighborhood of
a shock singularity locally consists of three parts (see
Figs.3–4 below):

• A co-dimension 2 submanifold known as the
crease and denoted by ‘∂−B’, along which the
fluid’s first-order Cartesian coordinate partial
derivatives blow up. The crease can be shown to
be spacelike with respect to the acoustical met-
ric g, and it plays the role of the “true initial
singularity” in the theory of shock formation.

• A hypersurface B that emanates from ∂−B,
termed the singular boundary, along which µ = 0
and the fluid’s gradient continues to blowup.

• A Cauchy horizon C, which is a hypersurface
that is null with respect to g (i.e., its normal
has vanishing g-length) and also emanates from
the crease, but along which the solution extends
smoothly (except at the crease).

We clarify that B ∪ C makes up only a localized
portion of the boundary of an MGHD for the com-
pressible Euler equations. Moreover, to date, it is
the only component of ∂M that has been under-
stood. By “generic shock-forming solutions,” we
mean those whose inverse foliation density satisfies

the following bound6 relative to geometric coordi-
nates (t, u, x2, x3):

∂2µ

∂u2

∣∣
∂−B ≥ C > 0, (20)

where the word “generic” stems from the fact that
µ is an everywhere positive function that vanishes
everywhere prior to the crease. We call this property
transversal convexity ; see Fig. 3.

{µ = 0} ∩ { ∂
∂uµ > 0} B = {µ = 0}

∩{ ∂
∂uµ ≤ 0}

∂−B = {µ = 0}
∩{ ∂

∂uµ = 0}

C

Σ0

(x2, x3)

t
u

Figure 3: B and C in geometric coordinates

The first breakthrough for compressible fluid
MGHDs was Christodoulou’s work [Chr07] on the
3D irrotational isentropic relativistic Euler equations,
described in Sect. 2. Christodoulou assumed an in-
equality that is equivalent to (20), and as is explained
on [Chr07, Pages 929, 968–969], by varying the “an-
gle of tilt” of families of flat spacelike (with respect to
g) hypersurfaces Σflat, he used them to foliate space-
time and reveal an implicit portion of the boundary
of the MGHD. If one strengthens (20) by assuming
“strict convexity of the crease in (u, x2, x3),” then
his approach allows one to access the entire crease.
While Christodoulou’s framework yields a description
of some part of an MGHD, the precise portion that it
reveals is not made explicit through the construction,
in particular when strict convexity fails. Moreover,

6There are alternative, more geometric ways to formulate
(20), but we have omitted them to keep the presentation short.
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Σ0

(x2, x3)

t
Pu

x1

B
C

L

Figure 4: B and C in Cartesian coordinates

strict convexity does not hold for all shock-forming
solutions. For example, it does not hold for 1D so-
lutions (viewed as 3D solutions with symmetry), nor
for their general perturbations.
The first constructive proof of a localized portion

of the MGHD for the 3D compressible Euler solutions
was our work [AS22]. The two big advancements were
that the paper went beyond the irrotational case, i.e.,
it treated open sets of solutions with vorticity and dy-
namic entropy, and it did not assume strict convexity
of the crease. The proof also relied on new, solution-
dependent foliations of spacetime, precisely adapted
to the shape of the boundary. We briefly summarize
the results of [AS22]:

Theorem 3.1 Fix any 1D isentropic initial data
such that the corresponding shock-forming solution
satisfies (20). Then for sufficiently small general
3D perturbations of the 1D initial data without any
irrotationality, isentropicity, or strict convexity as-
sumptions, there holds:

• A sharp description of the formation and sta-
bility of a full connected component of ∂−B
and B, along which the fluid’s first-order
Cartesian coordinate partial derivatives blow
up. In particular, relative to geometric coor-
dinates (t, u, x2, x3), the crease is characterized

by ∂−B = {µ = 0} ∩ { ∂
∂uµ = 0} and the sin-

gular boundary is characterized by B = {µ =
0} ∩ { ∂

∂uµ ≤ 0}.

• A causal7 intrinsic description of ∂−B and B.

• A causal extrinsic description of ∂−B and B, in-
cluding sharp quantitative control of its embed-
ding into Cartesian space R1+3.

[AS22] shows that the boundary of the MGHD
is extremely intricate. As is depicted in Fig. 4, the
characteristics pile up along all of B with infinite
density in the Cartesian differential structure. This
implies that relative to the Cartesian coordinates
(t, x1, x2, x3), the extrinsic geometry of B is that of
a g-spacelike hypersurface, as past-directed g-null
geodesics8 emanating from B do not remain in B.
Nevertheless, it was shown in [AS22] that B is ruled
by integral curves of L in the Cartesian differential
structure and hence its intrinsic geometry is that of
a null hypersurface; see Fig. 4, where one such inte-
gral curve is displayed. We stress that the acoustical
metric g depends only on the undifferentiated fluid
variables in Cartesian coordinates and can be shown
to extend continuously up to B, even though it is not
C1 up to it. The lack differentiability of g in Carte-
sian coordinates leads to lack of uniqueness of the
integral curves of L, which in turn leads to some fas-
cinating geometric and analytic degeneracies along B,
derived in [AS22]. Nevertheless, the continuity of g
up to B allows one to “measure” the aforementioned
integral curves of L as being g-null along B.

The remaining portion of the boundary of the
MGHD in Figs. 3–4 is the Cauchy horizon C, which
for some 2D solutions exhibiting a strictly convex
boundary, was constructed in the recent important
work [SV24].

Theorem 3.2 There exists an open set of initial
data for the 2D isentropic compressible Euler equa-
tions obeying a strict convexity condition and with

7The word “causal” refers to geometric properties as mea-
sured by g. The name is inspired because questions of causal-
ity and determinism in special relativity are determined by the
Minkowski metric.

8A curve γ is g-null if it satisfies g(γ̇, γ̇) = 0. One can think
that g-null curves propagate at the speed of sound.
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gradients of size 1/ε, such that when ε is small
and positive, within a rectangular region of spacetime
sandwiched by O(ε)-separated Cartesian-time hyper-
surfaces, there holds:

• A sharp description of the formation, stability,
and gradient blowup of the fluid on an O(ε)-size
strictly convex portion of ∂−B and B.

• A sharp description of an O(ε)-size strictly con-
vex portion of the Cauchy horizon C, where no
fluid blowup occurs, except along ∂−B.

The paper [SV24] also introduced two new meth-
ods: a way to generalize the Riemann invariants to
multi-dimensions, and novel energy identities that al-
low one to close the proof assuming less regularity for
the eikonal function and vorticity compared to prior
works.
For shock-forming compressible fluids, the Cauchy

horizon plays a crucial role as the savior of classi-
cal determinism and uniqueness in that it prevents
the “classical-uniqueness-destroying part” of the set
{µ = 0} from having a chance to form. This is
easy to see for the 1D isentropic solutions described
in Sect. 2.3, which we depict in Fig. 5. In the fig-
ure, one can see that the Cauchy horizon C, which
in that setting is an integral curve of L emanating
from the crease (which looks like a cusp in the fig-
ure), delineates the boundary of the region of global
hyperbolicity and prevents the “fictitious portion of
the singularity boundary,” denoted by a dotted curve,
from forming. This is in stark contrast to the non-
uniqueness we saw for Burgers’ equation in Fig. 1,
where there is no analogous notion of global hyper-
bolicity, the singular boundary has two branches sep-
arated by a cusp, and there is no mechanism to pre-
vent the characteristics from strictly crossing.
Note that the portion {µ = 0}∩{ ∂

∂uµ > 0} is omit-
ted in Thms. 3.1–3.2. This is the multi-dimensional
analog of the “fictitious portion of B” featured in
Fig. 5. This fictitious portion can be described from
a geometric/causal perspective. That is, by doing
formal Taylor expansions in geometric coordinates
starting from ∂−B, one finds that the fictitious por-
tion – if it existed – would lie in the g-timelike fu-
ture of the Cauchy horizon C; see the dotted por-

C fictitious portion
of B

B ⊂ {µ = 0}

t

x1

Figure 5: Localized MGHD in Cartesian coordinates
for shock-forming R+-dominated 1D isentropic com-
pressible Euler solutions

tion in Fig. 3. Importantly, the map from geomet-
ric coordinates, where all of the analysis is done in
[AS22, SV24], to Cartesian coordinates9 would have
failed to be injective on the region in Fig. 3 that would
have included the fictitious portion of the singular
boundary, where the multi-valuedness corresponds to
the multi-valuedness (non-uniqueness) of classical so-
lutions that we saw for Burgers’ equation when the
characteristics cross. The works [AS22,SV24] on the
multi-dimensional compressible Euler equations show
that the change of variable map is in fact injective in
the region trapped between Σ0 and B ∪ C, and hence
there is a GHD of the data there, without the prob-
lem of multi-valuedness.

4 Shock developments vs.
shock fronts

Having established that MGHDs define the limits of
the classical theory for the initial value problem, we
can now entertain the question of whether it is pos-
sible to meaningfully solve the compressible Euler
equations beyond a shock singularity. A weak solu-

9More precisely, [SV24] works with the inverse map from
Cartesian coordinates to geometric coordinates, which they
call Arbitrary Lagrangian Eulerian (ALE) coordinates.
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tion solution is one that satisfies (3a)–(3c) upon mul-
tiplying by any smooth, compactly supported “test
function,” integrating over a spacetime domain, and
integrating by parts to put the derivatives on the test
function. In this way, one may consider the equations
as solved and still allow singularities, as functions
with sufficiently mild singularities (such as jump dis-
continuities) can be integrated. The divergence the-
orem can be used to show that classical solutions are
weak solutions and also that sufficiently regular weak
solutions are classical solutions.

4.1 The shock development problem

A compelling way10 to study weak solutions with
shocks is to look for solutions (see Fig. 6) satisfying:

Emanating from the crease, a new shock hy-
persurface K emerges, across which the so-
lution exhibits a jump discontinuity, in ac-
cordance with “jump conditions” described
below. The solution should be weak in a
neighborhood of K but pointwise smooth –
and hence classical – on either side of K.

It turns out that having the solution be weak across
K forces a coupling of the spacetime normal of K
with the average state of the fluid on either side of
it. That is, the “speed and direction of the shock
surface” is determined by the “jump” in the fluid
across K. The precise nonlinear relationships be-
tween the two are called the Rankine–Hugoniot (RH)
jump conditions. The “jump” is what we see in shock
waves from mother nature such as volcanic erup-
tions or supernova explosions. Mathematically, K is a
new unknown that must be solved for in conjunction
with the fluid using the RH jump conditions, making
these weak solutions a fully nonlinear evolutionary
free boundary problem.

Describing the transition from a classical solution,
to forming a shock singularity, to a weak solution

10One can consider weak solutions with drastically different
geometric configurations to those with a single shock hypersur-
face as in Fig. 6. The ones discussed here are the most heavily
studied, in part due to there being a well-developed uniqueness
theory for them in 1D [Daf10].

with a shock hypersurface K is called the shock devel-
opment problem. The first solution to a shock devel-
opment problem was by Lebaud [Leb94], in which she
treated the 1D isentropic compressible Euler equa-
tions.

To date, the only shock development result in
multiple space dimensions without symmetry is
Christodoulou’s breakthrough monograph on the re-
stricted shock development problem [Chr19]. “Re-
stricted” means that he studied only irrotational and
isentropic solutions and ignored the jump in entropy
and vorticity across the shock hypersurface; the RH
jump conditions plus the laws of thermodynamics im-
ply that in a true compressible fluid, the vorticity
and entropy should jump across K. In [Chr19], he
constructed a local, piecewise smooth solution to a
hyperbolic PDE that approximates the compressible
Euler equations, and the two smooth regions were
separated by a shock hypersurface K, which he also
constructed. The “initial conditions” were a portion
of an MGHD all the way up to B∪C. In other words,
a sharp (local) understanding of the MGHD is neces-
sary to properly set up the PDE analysis of the shock
development problem. Christodoulou studied solu-
tions satisfying a convexity condition of type (20),
and without such a condition, it is not clear whether
the shock development problem is well-posed.

Importantly, K protrudes into the MGHD of the
classical solution; see Fig. 6. Accounting for the jump
across K, this means that the weak solution and the
classical solution disagree on the shaded depicted in
Fig. 6. The cause for this is that the RH jump con-
ditions force K to be super-sonic, while the singular
boundary B is characteristic and hence propagates
at the speed of sound; see Sect. 3. This does not di-
minish the importance of the MGHD, since a sharp
understanding of its boundary has played a role in
setting up and solving the shock development prob-
lem in the restricted case [Chr19], and moreover, B
and K are asymptotically tangent at the crease. We
clarify that only the speed of K defined by the fluid
state to its past is super-sonic; the speed of K de-
fined by the fluid state to its future is sub-sonic.
This agrees with experimental data taken from shock
waves observed in nature, and, at least in some so-
lution regimes, it is equivalent to having the entropy

10



Σ0

(x2, x3)

t

x1
∂−B

B

K

C

Figure 6: The shock hypersurface K

increase across K. Solutions satisfying this condi-
tion are sometimes called entropy solutions, and the
key takeaway is that uniqueness of solutions to the
shock development problem is only expected when K
is super-sonic to its past and sub-sonic to its future.
Even in 1D, weak solutions can be non-unique in 1D
without the entropy condition; see [Daf10].

4.2 The shock front problem

An important problem related to – but distinct from
– shock development is the shock front problem. In-
stead of studying the transition from classical solu-
tions to those with jumps, one studies the flow with
initial data that already have a discontinuity satis-
fying the RH jump conditions across a hypersurface.
The goal is to propagate the jump discontinuity with
a piece-wise smooth fluid solution divided by a shock
hypersurface (which also must be constructed). The
shock front problem was shown to be well-posed for
small times in Majda’s celebrated work [Maj83].

5 Outlook

Christodoulou’s book [Chr07] on shock formation ini-
tiated an explosion of outstanding progress in both
the classical and weak theory of shocks that has

been sustained for nearly two decades so far; see
e.g. [LS18, Chr19, AS22, BSV23, SV24, GR24]. This
progress shows no signs of slowing down. We con-
clude with a far-from-exhaustive list of future direc-
tions that we believe to be compelling.
Existence & Uniqueness of MGHDs with
shocks: The outstanding result [ERS19] shows that
one cannot ensure uniqueness of an MGHD (the pa-
per gave examples of hyperbolic PDEs where unique-
ness fails!) unless one constructs it in its entirety and
then proves that it enjoys some crucial global struc-
tural properties. Roughly, the paper shows that a suf-
ficient condition for uniqueness is that the “MGHD
lies on one side of its boundary,” i.e., a global version
of Fig. 6. The works [AS22, SV24] construct not the
full MGHD of the data, but rather only a compact
portion of one and its boundary. Presently, we do
not have any examples of unique, entire MGHDs for
compressible Euler solutions with shocks.
Shock development: The laws of thermodynamics
and RH jump conditions force entropy and vortic-
ity to jump across a shock hypersurface. Although
Christodoulou’s resolution [Chr19] of the restricted
shock development shed considerable light, there is
a great leap in difficulty to allow for dynamic en-
tropy and vorticity, and the general shock develop-
ment problem therefore remains open.
General relativity: [Chr07] highlighted the
tremendous synergy between shock waves and tech-
niques developed to study general relativity. It re-
mains an outstanding open problem to prove shock
formation for the Einstein–Euler system, a general-
relativistic PDE system modeling a self-gravitating
fluid. The main new difficulty is that fluid character-
istics propagate at a strictly slower speed than gravi-
tational waves and so the techniques from [Chr07] do
not apply directly. There is exciting work-in-progress
on this problem for irrotational isentropic solutions
by John Anderson and Jonathan Luk.
Weak interactions: Shock development, compli-
cated as it may be, is only one type of fluid phe-
nomenon that can occur. We are far from fully un-
derstanding the possible behavior of weak solutions.
What is likely more tractable is to use our current
understanding of shock waves as “building blocks”
for more complex fluid configurations. That is, one
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could study the interaction of e.g. two shock hyper-
surfaces K1 and K2 colliding, or the interactions of
two Cauchy horizons C1 and C2, or the interaction
of a shock hypersurface K1 from one shock and a
Cauchy horizon C2 from another.
Global weak solutions: Majda produced solutions
to the shock front problem for short times in [Maj83].
There has been very recent progress on the global-
in-time well-posedness of weak irrotational and isen-
tropic solutions, starting with two hypersurfaces of
jump discontinuities [GR24]. It is not at all clear –
but would be fascinating to understand – if any global
result can be proved in the presence of vorticity.
Inviscid limits: A physically and mathematically
important question is whether shock-forming com-
pressible Euler solutions can be rigorously be shown
to be limits of compressible Navier–Stokes solutions
as the viscosity (which tends to have a regulariz-
ing effect) in the Navier–Stokes equations goes to
zero. This research program goes by the name of
inviscid limits and has recently been well under-
stood in the context of Burgers’ equation (7) for
shock-forming initial data with transversal convex-
ity by Chaturvedi–Graham [CG23]. An important
open problem, even in 1D, is to extend the results of
[CG23] to the compressible Euler equations.
Other systems: There are many other physical phe-
nomena, including nonlinear electromagnetism and
elasticity, such that multi-dimensional shocks are ex-
pected to form. In the corresponding PDE systems,
the geometry is captured by a tensor that is more
complicated than a Lorentzian metric and thus brand
new ideas are needed to study shocks.
The theory has come a long way since Riemann’s

foundational gradient blowup-result [Rie60] for 1D
compressible fluids. Although making progress on the
multi-dimensional front-lines is very challenging, the
field has never before been more prepared to handle
the difficulties. We are truly at the heart of a golden
age in the multi-dimensional theory of shocks.
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[Rie60] Bernhard Riemann, Über die Fortpflanzung ebener
Luftwellen von endlicher Schwingungsweite, Ab-
handlungen der Königlichen Gesellschaft der Wis-
senschaften in Göttingen 8 (1860), 43–66.

[Spe19] Jared Speck, A New Formulation of the 3D Com-
pressible Euler Equations with Dynamic Entropy:
Remarkable Null Structures and Regularity Prop-
erties, Arch. Ration. Mech. Anal. 234 (2019), no. 3,
1223–1279. MR4011696

[SV24] Steve Shkoller and Vlad Vicol, The geometry of
maximal development and shock formation for the
euler equations in multiple space dimensions, In-
ventiones mathematicae (2024/06/03).

13

http://www.ams.org/mathscinet-getitem?mr=1309163
http://www.ams.org/mathscinet-getitem?mr=3858399
http://www.ams.org/mathscinet-getitem?mr=4736521
http://www.ams.org/mathscinet-getitem?mr=699241
http://www.ams.org/mathscinet-getitem?mr=699241
http://www.ams.org/mathscinet-getitem?mr=4445442
http://www.ams.org/mathscinet-getitem?mr=859822
http://www.ams.org/mathscinet-getitem?mr=4011696

	Compressible fluids & shocks
	A first-order formulation
	Sound waves, transporting, and the acoustical metric

	Shock formation & geometry
	Model problems
	Nonlinear geometric optics for Burgers' equation
	Riemann invariants for 1D isentropic compressible Euler flow
	Multi-dimensional irrotational and isentropic shock formation
	Multi-dimensional shock formation beyond the irrotational and isentropic class

	Maximal globally hyperbolic developments
	Shock developments vs. shock fronts
	The shock development problem
	The shock front problem

	Outlook

