The structure of the maximal development for shock-forming 3D compressible Euler solutions

Jared Speck with Leo Abbrescia

Vanderbilt University
September 14, 2023

3D compressible Euler flow

$$
\begin{aligned}
\partial_{t} \varrho+\partial_{a}\left(\varrho \boldsymbol{v}^{a}\right) & =0 \\
\varrho \mathbf{B} v^{i} & =-\partial_{i} p \quad\left(=\partial_{t}\left(\varrho v^{i}\right)+\partial_{a}\left(\varrho v^{a} \boldsymbol{v}^{i}\right)\right) \\
\mathbf{B} s & =0
\end{aligned}
$$

3D compressible Euler flow

$$
\begin{aligned}
\partial_{t} \varrho+\partial_{a}\left(\varrho \boldsymbol{v}^{a}\right) & =0 \\
\varrho \mathbf{B} \boldsymbol{v}^{i} & =-\partial_{i} p \quad\left(=\partial_{t}\left(\varrho v^{i}\right)+\partial_{a}\left(\varrho v^{a} \boldsymbol{v}^{i}\right)\right) \\
\mathbf{B} s & =0
\end{aligned}
$$

- $0<\varrho=$ density; $v=$ velocity; $s=$ entropy; $p=$ pressure

3D compressible Euler flow

$$
\begin{aligned}
\partial_{t} \varrho+\partial_{a}\left(\varrho v^{a}\right) & =0 \\
\varrho \mathbf{B} v^{i} & =-\partial_{i} p \quad\left(=\partial_{t}\left(\varrho v^{i}\right)+\partial_{a}\left(\varrho v^{a} \boldsymbol{v}^{i}\right)\right) \\
\mathbf{B} s & =0
\end{aligned}
$$

- $0<\varrho=$ density; $v=$ velocity; $s=$ entropy; $p=$ pressure
- $\mathbf{B}:=\partial_{t}+v^{a} \partial_{a}=$ material derivative
- The system is quasilinear hyperbolic

3D compressible Euler flow

$$
\begin{aligned}
\partial_{t} \varrho+\partial_{a}\left(\varrho v^{a}\right) & =0 \\
\varrho \mathbf{B} v^{i} & =-\partial_{i} p \quad\left(=\partial_{t}\left(\varrho v^{i}\right)+\partial_{a}\left(\varrho v^{a} v^{i}\right)\right) \\
\mathbf{B} s & =0
\end{aligned}
$$

- $0<\varrho=$ density; $v=$ velocity; $s=$ entropy; $p=$ pressure
- $\mathbf{B}:=\partial_{t}+v^{a} \partial_{a}=$ material derivative
- The system is quasilinear hyperbolic
- Equation of state $p=p(\varrho, s)$ closes the system
- We assume $c=$ sound speed $:=\sqrt{\frac{\partial p}{\partial \varrho}}>0$

3D compressible Euler flow

$$
\begin{aligned}
\partial_{t} \varrho+\partial_{a}\left(\varrho v^{a}\right) & =0 \\
\varrho \mathbf{B} v^{i} & =-\partial_{i} p \quad\left(=\partial_{t}\left(\varrho v^{i}\right)+\partial_{a}\left(\varrho v^{a} \boldsymbol{v}^{i}\right)\right) \\
\mathbf{B} s & =0
\end{aligned}
$$

- $0<\varrho=$ density; $v=$ velocity; $s=$ entropy; $p=$ pressure
- B $:=\partial_{t}+v^{a} \partial_{a}=$ material derivative
- The system is quasilinear hyperbolic
- Equation of state $p=p(\varrho, s)$ closes the system
- We assume $c=$ sound speed $:=\sqrt{\frac{\partial p}{\partial \varrho}}>0$
- Two propagation phenomena: sound waves and transporting of vorticity/entropy

3D compressible Euler flow

$$
\begin{aligned}
\partial_{t} \varrho+\partial_{a}\left(\varrho v^{a}\right) & =0 \\
\varrho \mathbf{B} v^{i} & =-\partial_{i} p \quad\left(=\partial_{t}\left(\varrho v^{i}\right)+\partial_{a}\left(\varrho v^{a} \boldsymbol{v}^{i}\right)\right) \\
\mathbf{B} s & =0
\end{aligned}
$$

- $0<\varrho=$ density; $v=$ velocity; $s=$ entropy; $p=$ pressure
- B $:=\partial_{t}+v^{a} \partial_{a}=$ material derivative
- The system is quasilinear hyperbolic
- Equation of state $p=p(\varrho, s)$ closes the system
- We assume $c=$ sound speed $:=\sqrt{\frac{\partial p}{\partial \varrho}}>0$
- Two propagation phenomena: sound waves and transporting of vorticity/entropy
- Neither phenomena nor their coupling are apparent

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed
- \exists parallel theory for the relativistic Euler equations

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed
- \exists parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed
- \exists parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed
- \exists parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

- Construct the maximal (classical globally hyperbolic) development

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed
- \exists parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

- Construct the maximal (classical globally hyperbolic) development
Eperon-Reall-Sbierski: need to know MGHD's
structure to ensure classical uniqueness
- Understand the full singular set

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed
- \exists parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

- Construct the maximal (classical globally hyperbolic) development
Eperon-Reall-Sbierski: need to know MGHD's structure to ensure classical uniqueness
- Understand the full singular set
- Understand the Cauchy horizon (a null hypersurface emanating from the 'first singularity')

Scope of the talk

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed
- \exists parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

- Construct the maximal (classical globally hyperbolic) development
Eperon-Reall-Sbierski: need to know MGHD's
structure to ensure classical uniqueness
- Understand the full singular set
- Understand the Cauchy horizon (a null hypersurface emanating from the 'first singularity')
- Set up the shock development problem

Remarks on 1D theory

For $1 D$ hyperbolic conservation laws, for small BV data, \exists robust theory accommodating the formation of singularities and subsequent weak evolution:

Remarks on 1D theory

For $1 D$ hyperbolic conservation laws, for small BV data, \exists robust theory accommodating the formation of singularities and subsequent weak evolution:

- Challis (1848)
- Stokes (1850s)
- Riemann (1860)
- Oleinik (1959)
- Zabusky (1962)
- Lax (1964)
- Glimm (1965)
- Keller-Ting (1966)
- Dafermos (1970)
- Smoller (1970)
- Liu (1974)
- John (1974)
- Klainerman-Majda (1980)
- Jenssen (2000)
- Chen-Feldman (2003)
- Bianchini-Bressan (2005)

Riemann invariants

In 1D, isentropic $(s \equiv 0)$ compressible Euler:

$$
\underline{L \mathcal{R}_{-}}=0, \quad L \mathcal{R}_{+}=0
$$

Riemann invariants

In 1D, isentropic $(s \equiv 0)$ compressible Euler:

$$
L \mathcal{R}_{-}=0, \quad L \mathcal{R}_{+}=0
$$

- $\mathcal{R}_{ \pm}=v^{1} \pm F(\varrho)$ are Riemann invariants
- F determined by equation of state $p=p(\varrho, s)$
- $L=\partial_{t}+\left(v^{1}+c\right) \partial_{1}$
- $\underline{L}=\partial_{t}+\left(v^{1}-c\right) \partial_{1}$
- $c=\sqrt{\frac{\partial p}{\partial \varrho}}=$ speed of sound >0

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$,

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$, i.e., $\left(\partial_{t}+\Psi \partial_{x}\right) \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}$

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$, i.e., $\left(\partial_{t}+\Psi \partial_{x}\right) \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}$

- For non-degenerate data, plane-wave shock formation is stable under $1 D$ symmetric perturbations.

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$, i.e., $\left(\partial_{t}+\Psi \partial_{x}\right) \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}$

- For non-degenerate data, plane-wave shock formation is stable under 1D symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_{x}^{3} \Psi(0, x)>0$ at the mins of $\partial_{x} \Psi(0, x)$

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$, i.e., $\left(\partial_{t}+\Psi \partial_{x}\right) \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}$

- For non-degenerate data, plane-wave shock formation is stable under 1D symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_{x}^{3} \Psi(0, x)>0$ at the mins of $\partial_{x} \Psi(0, x)$ "transversal convexity."

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$, i.e., $\left(\partial_{t}+\Psi \partial_{x}\right) \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}$

- For non-degenerate data, plane-wave shock formation is stable under $1 D$ symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_{x}^{3} \Psi(0, x)>0$ at the mins of $\partial_{x} \Psi(0, x)$ "transversal convexity."
- Picture is qualitatively different compared to Burgers' equation: Cauchy horizons.

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$, i.e., $\left(\partial_{t}+\Psi \partial_{x}\right) \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}$

- For non-degenerate data, plane-wave shock formation is stable under $1 D$ symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_{x}^{3} \Psi(0, x)>0$ at the mins of $\partial_{x} \Psi(0, x)$ "transversal convexity."
- Picture is qualitatively different compared to Burgers' equation: Cauchy horizons.
- Cauchy horizons can rescue uniqueness of classical solutions.

Shocks for $1 D$ isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_{t} \Psi+\Psi \partial_{x} \Psi=0$, i.e., $\left(\partial_{t}+\Psi \partial_{x}\right) \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}$

- For non-degenerate data, plane-wave shock formation is stable under $1 D$ symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_{x}^{3} \Psi(0, x)>0$ at the mins of $\partial_{x} \Psi(0, x)$ "transversal convexity."
- Picture is qualitatively different compared to Burgers' equation: Cauchy horizons.
- Cauchy horizons can rescue uniqueness of classical solutions. So far, this is understood only locally in the regime with transversal convexity.

Maximal globally hyperbolic development for $1 D$ isentropic compressible Euler solutions

Figure: Local structure of MGHD for \mathcal{R}_{+}-dominated 1D isentropic compressible Euler solutions

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Hence, the modern (starting in late 1990s) approach in multi-dimensions:

- Detailed study of all the structures that can arise in singular flows

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Hence, the modern (starting in late 1990s) approach in multi-dimensions:

- Detailed study of all the structures that can arise in singular flows
- Geometry plays a key role

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Hence, the modern (starting in late 1990s) approach in multi-dimensions:

- Detailed study of all the structures that can arise in singular flows
- Geometry plays a key role
- Relies on energy estimates, which are very difficult near singularities

Multi-D shocks and singularities

- Majda (1980s)
- Alinhac (late 1990s)
- Christodoulou $(2007,2019)$
- Christodoulou-Miao (2014)
- Miao-Yu (2016)
- Holzegel-Luk-Speck-Wong (2016)
- Luk-Speck (2016, 2020s)
- Merle-Raphael-Rodnianski-Szeftel (2020s)
- Abbrescia-Speck (2020s)
- Buckmaster-lyer (2020s)
- Buckmaster-Drivas-Shkoller-Vicol (2020s)
- Ginsburg-Rodnianski (pre-print)
- (Luo-Yu) (irrotational rarefaction waves in 2D)
- Anderson-Luk (pre-print on Einstein-Euler)

Multi-D shocks and singularities

- Majda (1980s)
- Alinhac (late 1990s)
- Christodoulou $(2007,2019)$
- Christodoulou-Miao (2014)
- Miao-Yu (2016)
- Holzegel-Luk-Speck-Wong (2016)
- Luk-Speck (2016, 2020s)
- Merle-Raphael-Rodnianski-Szeftel (2020s)
- Abbrescia-Speck (2020s)
- Buckmaster-lyer (2020s)
- Buckmaster-Drivas-Shkoller-Vicol (2020s)
- Ginsburg-Rodnianski (pre-print)
- (Luo-Yu) (irrotational rarefaction waves in 2D)
- Anderson-Luk (pre-print on Einstein-Euler)

With Abbrescia, for open sets of data in 3D, we have given the first complete description of the full structure of the singular set and the Cauchy horizon

Infinite density of the characteristics

Figure: Infinite density of the characteristics \mathcal{P}_{u} on \mathcal{B}

New results with L. Abbrescia

Figure: A localized subset of the maximal classical development and the shock hypersurface in Cartesian space

Acoustical metric

The acoustical metric is tied to sound wave propagation.
Definition (The acoustical metric and its inverse)

$$
\begin{aligned}
\mathbf{g} & :=-d t \otimes d t+c^{-2} \sum_{a=1}^{3}\left(d x^{a}-v^{a} d t\right) \otimes\left(d x^{a}-v^{a} d t\right), \\
\mathbf{g}^{-1} & :=-\mathbf{B} \otimes \mathbf{B}+c^{2} \sum_{a=1}^{3} \partial_{a} \otimes \partial_{a}
\end{aligned}
$$

Acoustical metric

The acoustical metric is tied to sound wave propagation.
Definition (The acoustical metric and its inverse)

$$
\begin{aligned}
\mathbf{g} & :=-d t \otimes d t+c^{-2} \sum_{a=1}^{3}\left(d x^{a}-v^{a} d t\right) \otimes\left(d x^{a}-v^{a} d t\right), \\
\mathbf{g}^{-1} & :=-\mathbf{B} \otimes \mathbf{B}+c^{2} \sum_{a=1}^{3} \partial_{a} \otimes \partial_{a}
\end{aligned}
$$

Material derivative vectorfield \mathbf{B} is \mathbf{g}-timelike and thus transverse to acoustically null hypersurfaces:

$$
\mathbf{g}(\mathbf{B}, \mathbf{B})=-1
$$

Acoustic eikonal function

Definition (The acoustic eikonal function)

The acoustic eikonal function u solves:

$$
\begin{array}{rlr}
\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u & =0, \\
\left.u\right|_{t=0} & =-x^{1}, \quad \partial_{t} u>0
\end{array}
$$

Acoustic eikonal function

Definition (The acoustic eikonal function)

The acoustic eikonal function u solves:

$$
\begin{aligned}
\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u & =0, \\
\left.u\right|_{t=0} & =-x^{1}, \quad \partial_{t} u>0
\end{aligned}
$$

We denote the level sets of the eikonal function by $\mathcal{P}_{u}\left(\mathcal{P}_{u}^{t}\right.$ if truncated at time t)

Acoustic eikonal function

Definition (The acoustic eikonal function)

The acoustic eikonal function u solves:

$$
\begin{array}{rlr}
\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u & =0, \\
\left.u\right|_{t=0} & =-x^{1}, \quad \partial_{t} u>0
\end{array}
$$

We denote the level sets of the eikonal function by $\mathcal{P}_{u}\left(\mathcal{P}_{u}^{t}\right.$ if truncated at time t)

Definition (Geometric coordinates)

We refer to $\left(t, u, x^{2}, x^{3}\right)$ as the geometric coordinates.

Inverse foliation density

Definition

$$
\mu:=-\frac{1}{\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} t \partial_{\beta} u}=\frac{1}{\mathbf{B} u}
$$

Can show:

$$
\left.\mu\right|_{t=0} \approx 1
$$

Inverse foliation density

Definition

$$
\mu:=-\frac{1}{\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} t \partial_{\beta} u}=\frac{1}{\mathbf{B} u}
$$

Can show:

$$
\left.\mu\right|_{t=0} \approx 1
$$

$\mu=0$ signifies a shock (infinite density of characteristics and blowup of ∂u)

Proof philosophy

Big idea (Alinhac and Christodoulou): Solution remains rather smooth in geometric coordinates

Proof philosophy

Big idea (Alinhac and Christodoulou): Solution remains rather smooth in geometric coordinates

- $\partial_{\alpha} \sim \frac{1}{\mu} \frac{\partial}{\partial u}+\frac{\partial}{\partial t}+\frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial x^{3}}$

Proof philosophy

Big idea (Alinhac and Christodoulou): Solution remains rather smooth in geometric coordinates

- $\partial_{\alpha} \sim \frac{1}{\mu} \frac{\partial}{\partial u}+\frac{\partial}{\partial t}+\frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial x^{3}}$
- Hence, $\mu=0$ represents a degeneracy between Cartesian and geometric partial derivatives

Infinite density of the characteristics

Figure: Infinite density of the characteristics \mathcal{P}_{u} on \mathcal{B}

Strictly convex sub-regime

The strictly convex sub-regime is easier to study:

Figure: Strictly convex crease and singular boundary in Cartesian coordinate space

Null vectorfields

Definition

Null vectorfields

$$
\begin{aligned}
L_{(g e o)}^{\alpha} & :=-\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\beta} u, \\
L^{\alpha} & :=\mu L_{(\text {geo })}^{\alpha}
\end{aligned}
$$

Easy to see:

$$
\Delta t=1
$$

In plane symmetry, L agrees with the vectorfield defined explicitly in terms of Riemann invariants

Vectorfield frames constructed from u

Definition (Frame vectorfields)

- X is Σ_{t}-tangent, left-pointing, satisfies $\mathbf{g}(X, X)=1$, and g-orthogonal to $\ell_{t, u}:=\Sigma_{t} \cap \mathcal{P}_{u}$
- $\breve{X}:=\mu X$ (satisfies $\breve{X} u=1$)
- For $A=2,3, Y_{(A)}:=\mathbf{g}$-orthogonal projection of (rectangular) ∂_{A} onto $\ell_{t, u}$

Definition (Frame adapted to the characteristics)

The rescaled frame is:

- $\left\{L, \check{X}, Y_{(2)}, Y_{(3)}\right\}$

Vectorfield frames constructed from u

Definition (Frame vectorfields)

- X is Σ_{t}-tangent, left-pointing, satisfies $\mathbf{g}(X, X)=1$, and g-orthogonal to $\ell_{t, u}:=\Sigma_{t} \cap \mathcal{P}_{u}$
- $\breve{X}:=\mu X$ (satisfies $\breve{X} u=1$)
- For $A=2,3, Y_{(A)}:=\mathbf{g}$-orthogonal projection of (rectangular) ∂_{A} onto $\ell_{t, u}$

Definition (Frame adapted to the characteristics)

The rescaled frame is:

- $\left\{L, \breve{X}, Y_{(2)}, Y_{(3)}\right\}$

Big ideas:

- Derive regular estimates relative to the rescaled frame
- Shows that the solution and its
$\left\{L, \breve{X}, Y_{(2)}, Y_{(3)}\right\}$-derivatives remain rather smooth (equivalently, smooth w.r.t. $\left(t, u, x^{2}, x^{3}\right)$ and smooth in directions tangent to \mathcal{P}_{u})

Vectorfield frames constructed from u

Definition (Frame vectorfields)

- X is Σ_{t}-tangent, left-pointing, satisfies $\mathbf{g}(X, X)=1$, and g-orthogonal to $\ell_{t, u}:=\Sigma_{t} \cap \mathcal{P}_{u}$
- $\breve{X}:=\mu X$ (satisfies $\breve{X} u=1$)
- For $A=2,3, Y_{(A)}:=\mathbf{g}$-orthogonal projection of (rectangular) ∂_{A} onto $\ell_{t, u}$

Definition (Frame adapted to the characteristics)

The rescaled frame is:

- $\left\{L, \breve{X}, Y_{(2)}, Y_{(3)}\right\}$

Big ideas:

- Derive regular estimates relative to the rescaled frame
- Shows that the solution and its
$\left\{L, \breve{X}, Y_{(2)}, Y_{(3)}\right\}$-derivatives remain rather smooth (equivalently, smooth w.r.t. (t, u, x^{2}, x^{3}) and smooth in directions tangent to \mathcal{P}_{u})
- Big technical difficulty: High order geometric energies can blow up as $\mu \downarrow 0$: $\mathbb{E}_{\text {Top }} \lesssim \mu^{-10}, \mathbb{E}_{\text {Top }-1} \lesssim \mu^{-8}, \cdots$, $\mathbb{E}_{\text {Mid }} \lesssim 1$

A picture of the dynamics

Statement of main results

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\left.\frac{\partial^{2}}{\partial u^{2}} \mu\right|_{\{\mu=0\}}>0$.

Statement of main results

Theorem (JS and L. Abbrescia)

Fix a $1 D$ simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\left.\frac{\partial^{2}}{\partial u^{2}} \mu\right|_{\{\mu=0\}}>0$. Then:

- The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.

Statement of main results

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\left.\frac{\partial^{2}}{\partial u^{2}} \mu\right|_{\{\mu=0\}}>0$. Then:

- The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.
- First paper (posted): we give a complete description of a portion of the singular boundary \mathcal{B}, including the entire crease.

Statement of main results

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\left.\frac{\partial^{2}}{\partial u^{2}} \mu\right|_{\{\mu=0\}}>0$. Then:

- The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.
- First paper (posted): we give a complete description of a portion of the singular boundary \mathcal{B}, including the entire crease.
- Writing-in-progress: we give a complete description of a neighborhood of the Cauchy horizon $\underline{\mathcal{C}}$ that includes the entire crease.

Statement of main results

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\left.\frac{\partial^{2}}{\partial u^{2}} \mu\right|_{\{\mu=0\}}>0$. Then:

- The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.
- First paper (posted): we give a complete description of a portion of the singular boundary \mathcal{B}, including the entire crease.
- Writing-in-progress: we give a complete description of a neighborhood of the Cauchy horizon $\underline{\mathcal{C}}$ that includes the entire crease.
- In total, we reveal a portion of the maximal (classical) globally hyperbolic development, including a neighborhood of the boundary.

New results with L. Abbrescia

Figure: A localized subset of the maximal classical development and the shock hypersurface in Cartesian space

The crease and the singular boundary

${ }^{(\text {Interesting })} \Sigma_{0}$

Construction of u for the Cauchy horizon

We construct an eikonal function \underline{u} such that $\underline{\mathcal{C}} \subset\{\underline{u}=0\}$

Construction of \underline{u} for the Cauchy horizon

We construct an eikonal function \underline{u} such that $\underline{\mathcal{C}} \subset\{\underline{u}=0\}$
The data of \underline{u} :

$$
\left.\underline{u}\right|_{\left\{\check{x}_{\mu}=0\right\}}=-\mu
$$

Construction of u for the Cauchy horizon

We construct an eikonal function \underline{u} such that $\underline{\mathcal{C}} \subset\{\underline{u}=0\}$
The data of \underline{u} :

$$
\left.\underline{u}\right|_{\left\{\check{x}_{\mu}=0\right\}}=-\mu
$$

Then \underline{u} is propagated via the eikonal equation:

$$
\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} \underline{u} \partial_{\beta} \underline{u}=0
$$

The Cauchy horizon region

Figure: The Cauchy horizon region in Cartesian space

Connection to wave equations

In isentropic plane symmetry, the equations reduce to $\boldsymbol{L \mathcal { R } _ { (+) }}=0, \underline{\mathcal{R}_{(-)}}=0$. In particular:

$$
\begin{aligned}
& \underline{L L L \mathcal{R}_{(+)}}=0, \\
& \underline{L} \underline{\mathcal{R}_{(-)}}=0
\end{aligned}
$$

Connection to wave equations

In isentropic plane symmetry, the equations reduce to $L \mathcal{R}_{(+)}=0, \underline{\mathcal{R}_{(-)}}=0$. In particular:

$$
\begin{aligned}
& \underline{L L L \mathcal{R}_{(+)}}=0, \\
& \underline{L} \underline{\mathcal{R}}_{(-)}=0
\end{aligned}
$$

- To study the flow away from symmetry, it is advantageous to treat the system from a wave-equation-like point of view

Connection to wave equations

In isentropic plane symmetry, the equations reduce to $L \mathcal{R}_{(+)}=0, \underline{\mathcal{R}_{(-)}}=0$. In particular:

$$
\begin{aligned}
& \underline{L L L \mathcal{R}_{(+)}}=0, \\
& \underline{L} \underline{\mathcal{R}}_{(-)}=0
\end{aligned}
$$

- To study the flow away from symmetry, it is advantageous to treat the system from a wave-equation-like point of view
- There are many tools for geometric wave equations

Connection to wave equations

In isentropic plane symmetry, the equations reduce to $L \mathcal{R}_{(+)}=0, \underline{\mathcal{R}_{(-)}}=0$. In particular:

$$
\begin{aligned}
& \underline{L L} \mathcal{R}_{(+)}=0, \\
& L \underline{L} \mathcal{R}_{(-)}=0
\end{aligned}
$$

- To study the flow away from symmetry, it is advantageous to treat the system from a wave-equation-like point of view
- There are many tools for geometric wave equations
- Also useful for low-regularity well-posedness

New formulation of $3 D$ compressible Euler

Theorem (J. Luk-JS; M. Disconzi-JS in relativistic case)
Consider smooth compressible Euler solutions in 3D. For $\psi \in \vec{\psi}:=\left(\varrho, v^{1}, v^{2}, v^{3}, s\right)$, we have, schematically:

$$
\begin{aligned}
\square_{\mathbf{g}(\vec{\psi})} \Psi= & \nabla \times\left(\frac{\nabla \times v}{\varrho}\right)+\operatorname{div} \nabla s \\
& +\mathbf{g}-\text { null forms }, \\
\mathbf{B}\left(\frac{\nabla \times v}{\varrho}\right)= & \nabla \vec{\Psi} \cdot\left(\frac{\nabla \times v}{\varrho}\right)+\nabla \vec{\psi} \cdot \nabla s, \\
\mathbf{B} \nabla s & =\nabla \vec{\psi} \cdot \nabla s
\end{aligned}
$$

New formulation of 3D compressible Euler

Theorem (J. Luk-JS; M. Disconzi-JS in relativistic case)
Consider smooth compressible Euler solutions in 3D. For $\psi \in \vec{\Psi}:=\left(\varrho, v^{1}, v^{2}, v^{3}, s\right)$, we have, schematically:

$$
\begin{aligned}
\square_{\mathbf{g}(\vec{\psi})} \Psi= & \nabla \times\left(\frac{\nabla \times v}{\varrho}\right)+\operatorname{div} \nabla s \\
& +\mathbf{g}-\text { null forms }, \\
\mathbf{B}\left(\frac{\nabla \times v}{\varrho}\right)= & \nabla \vec{\psi} \cdot\left(\frac{\nabla \times v}{\varrho}\right)+\nabla \vec{\psi} \cdot \nabla \boldsymbol{s}, \\
\mathbf{B} \nabla s= & \nabla \vec{\psi} \cdot \nabla s
\end{aligned}
$$

Big idea: show that near shocks, $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right)$, $\operatorname{div} \nabla s$, and \mathbf{g}-null forms are perturbative; precise nonlinear structure of these terms matters

New formulation of 3D compressible Euler

Theorem (J. Luk-JS; M. Disconzi-JS in relativistic case)
Consider smooth compressible Euler solutions in 3D. For $\psi \in \vec{\Psi}:=\left(\varrho, v^{1}, v^{2}, v^{3}, s\right)$, we have, schematically:

$$
\begin{aligned}
\square_{\mathbf{g}(\vec{\psi})} \Psi= & \nabla \times\left(\frac{\nabla \times v}{\varrho}\right)+\operatorname{div} \nabla s \\
& +\mathbf{g}-\text { null forms }, \\
\mathbf{B}\left(\frac{\nabla \times v}{\varrho}\right) & =\nabla \vec{\psi} \cdot\left(\frac{\nabla \times v}{\varrho}\right)+\nabla \vec{\psi} \cdot \nabla s, \\
\mathbf{B} \nabla s & =\nabla \vec{\psi} \cdot \nabla s
\end{aligned}
$$

Big idea: show that near shocks, $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right)$, $\operatorname{div} \nabla s$, and \mathbf{g}-null forms are perturbative; precise nonlinear structure of these terms matters

- \mathbf{g}-null forms such as $\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} \psi \partial_{\beta} \psi$ are known to be harmless error terms near shocks.

New formulation of 3D compressible Euler

Theorem (J. Luk-JS; M. Disconzi-JS in relativistic case)
Consider smooth compressible Euler solutions in 3D. For $\psi \in \vec{\Psi}:=\left(\varrho, v^{1}, v^{2}, v^{3}, s\right)$, we have, schematically:

$$
\begin{aligned}
\square_{\mathbf{g}(\vec{\psi})} \Psi= & \nabla \times\left(\frac{\nabla \times v}{\varrho}\right)+\operatorname{div} \nabla s \\
& +\mathbf{g}-\text { null forms }, \\
\mathbf{B}\left(\frac{\nabla \times v}{\varrho}\right) & =\nabla \vec{\psi} \cdot\left(\frac{\nabla \times v}{\varrho}\right)+\nabla \vec{\psi} \cdot \nabla s, \\
\mathbf{B} \nabla s & =\nabla \vec{\psi} \cdot \nabla s
\end{aligned}
$$

Big idea: show that near shocks, $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right)$, $\operatorname{div} \nabla s$, and \mathbf{g}-null forms are perturbative; precise nonlinear structure of these terms matters

- \mathbf{g}-null forms such as $\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} \Psi \partial_{\beta} \Psi$ are known to be harmless error terms near shocks.
- Need to overcome derivative loss by showing that $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right), \operatorname{div} \nabla s$ are as regular as $\nabla \vec{\psi}$

New formulation of 3D compressible Euler

Theorem (J. Luk-JS; M. Disconzi-JS in relativistic case)
Consider smooth compressible Euler solutions in 3D. For $\psi \in \vec{\Psi}:=\left(\varrho, v^{1}, v^{2}, v^{3}, s\right)$, we have, schematically:

$$
\begin{aligned}
\square_{\mathbf{g}(\vec{\psi})} \psi & =\nabla \times\left(\frac{\nabla \times v}{\varrho}\right)+\operatorname{div} \nabla s \\
& +\mathbf{g}-\text { null forms } \\
\mathbf{B}\left(\frac{\nabla \times v}{\varrho}\right) & =\nabla \vec{\psi} \cdot\left(\frac{\nabla \times v}{\varrho}\right)+\nabla \vec{\psi} \cdot \nabla s, \\
\mathbf{B} \nabla s & =\nabla \vec{\psi} \cdot \nabla s
\end{aligned}
$$

Big idea: show that near shocks, $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right)$, $\operatorname{div} \nabla s$, and \mathbf{g}-null forms are perturbative; precise nonlinear structure of these terms matters

- \mathbf{g}-null forms such as $\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} \Psi \partial_{\beta} \psi$ are known to be harmless error terms near shocks.
- Need to overcome derivative loss by showing that $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right), \operatorname{div} \nabla s$ are as regular as $\nabla \vec{\Psi}$
(9) This can be achieved via div-curl-transport systems that enjoy good null structure.

New formulation of 3D compressible Euler

Theorem (J. Luk-JS; M. Disconzi-JS in relativistic case)
Consider smooth compressible Euler solutions in 3D. For $\psi \in \vec{\Psi}:=\left(\varrho, v^{1}, v^{2}, v^{3}, s\right)$, we have, schematically:

$$
\begin{aligned}
\square_{\mathbf{g}(\vec{\psi})} \Psi= & \nabla \times\left(\frac{\nabla \times v}{\varrho}\right)+\operatorname{div} \nabla s \\
& +\mathbf{g}-\text { null forms }, \\
\mathbf{B}\left(\frac{\nabla \times v}{\varrho}\right) & =\nabla \vec{\psi} \cdot\left(\frac{\nabla \times v}{\varrho}\right)+\nabla \vec{\psi} \cdot \nabla s, \\
\mathbf{B} \nabla s & =\nabla \vec{\psi} \cdot \nabla s
\end{aligned}
$$

Big idea: show that near shocks, $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right)$, $\operatorname{div} \nabla s$, and \mathbf{g}-null forms are perturbative; precise nonlinear structure of these terms matters

- \mathbf{g}-null forms such as $\left(\mathbf{g}^{-1}\right)^{\alpha \beta} \partial_{\alpha} \Psi \partial_{\beta} \Psi$ are known to be harmless error terms near shocks.
- Need to overcome derivative loss by showing that $\nabla \times\left(\frac{\nabla \times v}{\varrho}\right), \operatorname{div} \nabla s$ are as regular as $\nabla \vec{\psi}$
(©) This can be achieved via div-curl-transport systems that enjoy good null structure. \rightarrow With L. Abbrescia, we derived suitable "elliptic-hyperbolic" identities for $\frac{\nabla \times v}{\varrho}$ and ∇s on arbitrary globally hyperbolic domains for $3 D$ compressible Euler solutions

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)
- Long-time behavior of vorticity

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)
- Long-time behavior of vorticity
- Zero viscosity limits in high norm (see Chaturvedi-Graham for 1D Burgers' equation)

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)
- Long-time behavior of vorticity
- Zero viscosity limits in high norm (see Chaturvedi-Graham for 1D Burgers' equation)
- Similar results for more complicated multiple speed systems: elasticity, crystal optics, nonlinear electromagnetism,..., which take the form:

$$
h_{A B}^{\alpha \beta}(\partial \Phi) \partial_{\alpha} \partial_{\beta} \Phi^{B}=0
$$

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)
- Long-time behavior of vorticity
- Zero viscosity limits in high norm (see Chaturvedi-Graham for 1D Burgers' equation)
- Similar results for more complicated multiple speed systems: elasticity, crystal optics, nonlinear electromagnetism,..., which take the form:

$$
h_{A B}^{\alpha \beta}(\partial \Phi) \partial_{\alpha} \partial_{\beta} \Phi^{B}=0
$$

Would require the development of new geometry.

Burger's equation in $1 D$

Burgers' equation for $\Psi(t, x)$:

$$
\begin{array}{rlr}
L \Psi & =0, & \Psi(0, x)=\overleftarrow{\psi}(x) \\
L & :=\partial_{t}+(1+\Psi) \partial_{x} &
\end{array}
$$

Burger's equation in $1 D$

Burgers' equation for $\Psi(t, x)$:

$$
\begin{aligned}
L \Psi & =0, & \Psi(0, x)=\stackrel{\circ}{\Psi}(x) \\
L & :=\partial_{t}+(1+\Psi) \partial_{x} &
\end{aligned}
$$

$$
\Longrightarrow L \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}
$$

Burger's equation in $1 D$

Burgers' equation for $\Psi(t, x)$:

$$
\begin{array}{rlr}
L \Psi & =0, & \Psi(0, x)=\dot{\Psi}(x) \\
L & :=\partial_{t}+(1+\Psi) \partial_{x} &
\end{array}
$$

$$
\Longrightarrow L \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}
$$

- $L \Psi=0 \Longrightarrow \Psi$ is conserved along characteristics, which are the flow lines of L, i.e.,

$$
\frac{d}{d t} \gamma_{z}(t)=L \circ \gamma_{z}(t), \quad \gamma_{z}(0)=(0, z) \in \Sigma_{0}
$$

Burger's equation in $1 D$

Burgers' equation for $\Psi(t, x)$:

$$
\begin{array}{rlr}
L \Psi & =0, & \Psi(0, x)=\stackrel{\circ}{\Psi}(x) \\
L & :=\partial_{t}+(1+\Psi) \partial_{x} &
\end{array}
$$

$$
\Longrightarrow L \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}
$$

- $L \Psi=0 \Longrightarrow \Psi$ is conserved along characteristics, which are the flow lines of L, i.e.,

$$
\frac{d}{d t} \gamma_{z}(t)=L \circ \gamma_{z}(t), \quad \gamma_{z}(0)=(0, z) \in \Sigma_{0}
$$

- Solutions ψ satisfy: $\psi \circ \gamma_{z}(t)=\Psi \circ \gamma_{z}(0)=\stackrel{\circ}{\Psi}(z)$

Burger's equation in $1 D$

Burgers' equation for $\Psi(t, x)$:

$$
\begin{array}{rlr}
L \Psi & =0, & \Psi(0, x)=\stackrel{\circ}{\Psi}(x) \\
L & :=\partial_{t}+(1+\Psi) \partial_{x} &
\end{array}
$$

$$
\Longrightarrow L \partial_{x} \Psi=-\left(\partial_{x} \Psi\right)^{2}
$$

- $L \Psi=0 \Longrightarrow \Psi$ is conserved along characteristics, which are the flow lines of L, i.e.,

$$
\frac{d}{d t} \gamma_{z}(t)=L \circ \gamma_{z}(t), \quad \gamma_{z}(0)=(0, z) \in \Sigma_{0}
$$

- Solutions ψ satisfy: $\psi \circ \gamma_{z}(t)=\psi \circ \gamma_{z}(0)=\stackrel{\Psi}{\psi}(z)$
- Second boxed equation is a Riccati-type ODE in $\partial_{x} \Psi$; typically, $\partial_{x} \Psi$ blows up in finite time.

Singular curve

The set of singular points can be parameterized by $(0, z) \in \Sigma_{0}$:

$$
\begin{aligned}
\mathcal{S}(z) & =\left(-\frac{1}{\frac{d}{d z} \stackrel{\circ}{\Psi}(z)}, z-\frac{(1+\stackrel{\circ}{\Psi}(z))}{\frac{d}{d z} \stackrel{\Psi}{\Psi}(z)}\right) \\
& =(\text { Blowup-time }, \text { Blowup } x \text {-coordinate })
\end{aligned}
$$

Singular curve

The set of singular points can be parameterized by $(0, z) \in \Sigma_{0}$:

$$
\begin{aligned}
\mathcal{S}(z) & =\left(-\frac{1}{\frac{d}{d z} \stackrel{+}{\Psi}(z)}, z-\frac{(1+\stackrel{\circ}{\Psi}(z))}{\frac{d}{d z} \stackrel{\Psi}{\Psi}(z)}\right) \\
& =(\text { Blowup-time }, \text { Blowup } x \text {-coordinate })
\end{aligned}
$$

Crucial degeneracy: the curve $z \rightarrow \mathcal{S}(z)$ is parallel to L :

Singular curve

The set of singular points can be parameterized by $(0, z) \in \Sigma_{0}$:

$$
\begin{aligned}
\mathcal{S}(z) & =\left(-\frac{1}{\frac{d}{d z} \stackrel{\sim}{\Psi}(z)}, z-\frac{(1+\stackrel{\circ}{\Psi}(z))}{\frac{d}{d z} \stackrel{\Psi}{\Psi}(z)}\right) \\
& =(\text { Blowup-time }, \text { Blowup } x \text {-coordinate })
\end{aligned}
$$

Crucial degeneracy: the curve $z \rightarrow \mathcal{S}(z)$ is parallel to L :

$$
\begin{aligned}
\frac{d}{d z} \mathcal{S}(z) & =\frac{\frac{d^{2}}{d z^{2}} \stackrel{\circ}{\Psi}(z)}{\left(\frac{d}{d z} \stackrel{(z)}{ }\right)^{2}}(1,1+\dot{\Psi}(z)) \\
& =\left.\frac{\frac{d^{2}}{d z^{2}} \stackrel{(}{\Psi}(z)}{\left(\frac{d}{d z} \stackrel{\Psi}{\Psi}(z)\right)^{2}} L\right|_{\dot{\Psi}(z)}
\end{aligned}
$$

The Cartesian coordinates picture

Figure: The singular curve and shock hypersurface in Cartesian coordinates for $\Psi(x)=-x+\frac{1}{3} x^{3}$

Crucial and under-appreciated fact

The Burgers' equation singularity is renormalizable. That is, the solution is globally smooth relative to well-constructed geometric coordinates.

"Hiding" the singularity

By solving

$$
L u=0,\left.\quad u\right|_{t=0}=-x,
$$

we can construct geometric coordinates (t, u) such that:

$$
\frac{\partial}{\partial t}:=\left.\frac{\partial}{\partial t}\right|_{u}=\partial_{t}+(1+\Psi) \partial_{x}=L=\partial_{t}+(1+\Psi) \partial_{x}
$$

"Hiding" the singularity

By solving

$$
L u=0,\left.\quad u\right|_{t=0}=-x,
$$

we can construct geometric coordinates (t, u) such that:

$$
\frac{\partial}{\partial t}:=\left.\frac{\partial}{\partial t}\right|_{u}=\partial_{t}+(1+\Psi) \partial_{x}=L=\partial_{t}+(1+\Psi) \partial_{x}
$$

In (t, u) coordinates, Burgers' equation is

$$
\frac{\partial}{\partial t} \psi(t, u)=0
$$

"Hiding" the singularity

By solving

$$
L u=0,\left.\quad u\right|_{t=0}=-x,
$$

we can construct geometric coordinates (t, u) such that:

$$
\frac{\partial}{\partial t}:=\left.\frac{\partial}{\partial t}\right|_{u}=\partial_{t}+(1+\Psi) \partial_{x}=L=\partial_{t}+(1+\Psi) \partial_{x}
$$

In (t, u) coordinates, Burgers' equation is

$$
\frac{\partial}{\partial t} \psi(t, u)=0
$$

Thus,

$$
\Psi(t, u)=\dot{\Psi}(u):=\Psi(0, u)
$$

The inverse foliation density μ

Set:

$$
\mu:=-\frac{1}{\partial_{x} u},\left.\quad \mu\right|_{t=0} \equiv 1
$$

The inverse foliation density μ

Set:

$$
\mu:=-\frac{1}{\partial_{x} u},\left.\quad \mu\right|_{t=0} \equiv 1
$$

Evolution equation for μ :

$$
\frac{\partial}{\partial t} \mu(t, u)=\frac{\partial}{\partial u} \Psi(t, u)=-\frac{d}{d u} \Psi(u)
$$

The inverse foliation density μ

Set:

$$
\mu:=-\frac{1}{\partial_{x} u},\left.\quad \mu\right|_{t=0} \equiv 1
$$

Evolution equation for μ :

$$
\frac{\partial}{\partial t} \mu(t, u)=\frac{\partial}{\partial u} \Psi(t, u)=-\frac{d}{d u} \Psi(u)
$$

Can easily solve:

$$
\mu(t, u)=1-t \frac{d}{d u} \Psi(u)
$$

How to think about the singularity

CHOV relation $\Longrightarrow \partial_{x} \Psi$ blows up when $\mu \rightarrow 0$:

$$
\partial_{x} \Psi=-\frac{1}{\mu} \frac{\partial}{\partial u} \Psi=-\frac{1}{\mu} \frac{d}{d u} \Psi(u)
$$

The geometric coordinates picture

$$
\mathcal{B}_{\left(0, \frac{1}{2}\right]}=\mathcal{B}_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \cap\left\{\frac{\partial}{\partial u} \mu>0\right\}, ~ \mathcal{B}_{\{0\}}=(1,0)=\text { crease }=\mathcal{B}_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \cap\left\{\frac{\partial}{\partial u} \mu=0\right\}
$$

Figure: Portions $\mathcal{B}_{J}=\{\mu=0\} \cap\{u \in J\}$ for Burgers' equation in geometric coordinates with $\dot{\Psi}(u)=u-\frac{1}{3} u^{3}$

