Intro Insights from 1*D* Multi-dimensions Geometry New results New formulation o

The structure of the maximal development for shock-forming 3*D* compressible Euler solutions

Jared Speck with Leo Abbrescia

Vanderbilt University

September 14, 2023

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Insights from 1*D* Multi-dimensions Geometry

Intro

٥Ō

$$\partial_t \varrho + \partial_a (\varrho v^a) = 0,$$

$$\varrho \mathbf{B} v^i = -\partial_i p \quad (= \partial_t (\varrho v^i) + \partial_a (\varrho v^a v^i))$$

$$\mathbf{B} s = 0$$

New results New formulation Looking forward Extra slides on Burgers'

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Geometry

Insights from 1D Multi-dimensions

Intro

00

$$\partial_t \varrho + \partial_a (\varrho v^a) = 0,$$

$$\varrho \mathbf{B} v^i = -\partial_i p \quad (= \partial_t (\varrho v^i) + \partial_a (\varrho v^a v^i))$$

$$\mathbf{B} s = 0$$

New results New formulation Looking forward Extra slides on Burgers

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

0 < ρ =density; v =velocity; s =entropy; p =pressure

Insights from 1*D* Multi-dimensions

Intro

$$\partial_t \varrho + \partial_a (\varrho v^a) = 0,$$

$$\varrho \mathbf{B} v^i = -\partial_i p \quad (= \partial_t (\varrho v^i) + \partial_a (\varrho v^a v^i))$$

$$\mathbf{B} s = 0$$

New results

New formulation Looking forward

Extra slides on Burgers

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 0 < ρ =density; v =velocity; s =entropy; p =pressure
- **B** := $\partial_t + v^a \partial_a$ = material derivative

Geometry

The system is quasilinear hyperbolic

Insights from 1*D* Multi-dimensions

Intro

$$\partial_t \varrho + \partial_a (\varrho v^a) = 0,$$

$$\varrho \mathbf{B} v^i = -\partial_i \rho \quad (= \partial_t (\varrho v^i) + \partial_a (\varrho v^a v^i))$$

$$\mathbf{B} s = 0$$

New results

New formulation Looking forward Extra slides on Burgers

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 0 < ρ =density; v =velocity; s =entropy; p =pressure
- $\mathbf{B} := \partial_t + \mathbf{v}^a \partial_a = \text{material derivative}$
- The system is quasilinear hyperbolic
- Equation of state *p* = *p*(*ρ*, *s*) closes the system
- We assume c = sound speed := $\sqrt{\frac{\partial \rho}{\partial \varrho}} > 0$

Insights from 1*D* Multi-dimensions

Intro

$$\partial_t \varrho + \partial_a (\varrho v^a) = 0,$$

$$\varrho \mathbf{B} v^i = -\partial_i p \quad (= \partial_t (\varrho v^i) + \partial_a (\varrho v^a v^i))$$

$$\mathbf{B} s = 0$$

New results

- **B** := $\partial_t + v^a \partial_a$ = material derivative
- The system is quasilinear hyperbolic
- Equation of state p = p(ρ, s) closes the system
- We assume c = sound speed := $\sqrt{\frac{\partial p}{\partial \varrho}} > 0$
- Two propagation phenomena: sound waves and transporting of vorticity/entropy

New formulation Looking forward Extra slides on Burgers

Insights from 1*D* Multi-dimensions

Intro

$$\partial_t \varrho + \partial_a (\varrho v^a) = 0,$$

$$\varrho \mathbf{B} v^i = -\partial_i \boldsymbol{p} \quad \left(= \partial_t (\varrho v^i) + \partial_a (\varrho v^a v^i) \right)$$

$$\mathbf{B} \boldsymbol{s} = 0$$

New results

New formulation Looking forward Extra slides on Burgers

- $\mathbf{B} := \partial_t + \mathbf{v}^a \partial_a = \text{material derivative}$
- The system is quasilinear hyperbolic
- Equation of state p = p(ρ, s) closes the system
- We assume c = sound speed := $\sqrt{\frac{\partial p}{\partial \varrho}} > 0$
- Two propagation phenomena: sound waves and transporting of vorticity/entropy
- Neither phenomena nor their coupling are apparent

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Scope of the talk

 New results concern non-relativistic 3D compressible Euler equations

Intro Insights from 1*D* Multi-dimensions Geometry New results New formulation Looking forward Extra slides on Burgers'

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- New results concern non-relativistic 3D compressible Euler equations
- Vorticity and entropy are allowed

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- New results concern non-relativistic 3*D* compressible Euler equations
- Vorticity and entropy are allowed
- ∃ parallel theory for the relativistic Euler equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- New results concern non-relativistic 3*D* compressible Euler equations
- Vorticity and entropy are allowed
- ∃ parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- New results concern non-relativistic 3*D* compressible Euler equations
- Vorticity and entropy are allowed
- ∃ parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

- New results concern non-relativistic 3*D* compressible Euler equations
- Vorticity and entropy are allowed
- ∃ parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

• Construct the maximal (classical globally hyperbolic) development

- New results concern non-relativistic 3*D* compressible Euler equations
- Vorticity and entropy are allowed
- ∃ parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

• Construct the maximal (classical globally hyperbolic) development

(日) (日) (日) (日) (日) (日) (日)

Eperon–Reall–Sbierski: need to know MGHD's structure to ensure classical uniqueness

Understand the full singular set

- New results concern non-relativistic 3*D* compressible Euler equations
- Vorticity and entropy are allowed
- ∃ parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

• Construct the maximal (classical globally hyperbolic) development

Eperon–Reall–Sbierski: need to know MGHD's structure to ensure classical uniqueness

- Understand the full singular set
- Understand the Cauchy horizon (a null hypersurface emanating from the 'first singularity')

- New results concern non-relativistic 3*D* compressible Euler equations
- Vorticity and entropy are allowed
- ∃ parallel theory for the relativistic Euler equations
- Will discuss initially smooth, shock-forming solutions
- Will focus on smooth, asymmetric perturbations of plane symmetric isentropic solutions, but the techniques are robust

Goals:

• Construct the maximal (classical globally hyperbolic) development

Eperon–Reall–Sbierski: need to know MGHD's structure to ensure classical uniqueness

- Understand the full singular set
- Understand the Cauchy horizon (a null hypersurface emanating from the 'first singularity')

(日) (日) (日) (日) (日) (日) (日)

• Set up the shock development problem

New results New formulation Looking forward Extra slides on Burgers

Remarks on 1D theory

•000

For 1*D* hyperbolic conservation laws, for small BV data, \exists robust theory accommodating the formation of singularities and subsequent weak evolution:

Insights from 1D Multi-dimensions Geometry

New results New formulation Looking forward Extra slides on Burgers

(日) (日) (日) (日) (日) (日) (日)

Remarks on 1D theory

For 1*D* hyperbolic conservation laws, for small BV data, \exists robust theory accommodating the formation of singularities and subsequent weak evolution:

Challis (1848)

OOO

- Stokes (1850s)
- Riemann (1860)
- Oleinik (1959)
- Zabusky (1962)
- Lax (1964)
- Glimm (1965)
- Keller–Ting (1966)
- Dafermos (1970)
- Smoller (1970)
- Liu (1974)
- John (1974)
- Klainerman–Majda (1980)
- Jenssen (2000)
- Chen–Feldman (2003)
- Bianchini–Bressan (2005)

Intro Insights from 1 D Multi-dimensions Geometry New results New formulation Cooking forward Extra slides on Burgers'

In 1*D*, isentropic ($s \equiv 0$) compressible Euler:

$$\underline{\textit{L}}\mathcal{R}_{-}=0, \qquad \qquad \textit{L}\mathcal{R}_{+}=0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Riemann invariants

Insights from 1D Multi-dimensions

In 1*D*, isentropic ($s \equiv 0$) compressible Euler:

Geometry

$$\underline{\textit{L}}\mathcal{R}_{-}=0, \qquad \qquad \textit{L}\mathcal{R}_{+}=0$$

n

New results

New formulation Looking forward Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\mathcal{R}_{\pm} = v^1 \pm F(\varrho)$ are Riemann invariants
- *F* determined by equation of state *p* = *p*(*ρ*, *s*)

•
$$L = \partial_t + (v^1 + c)\partial_1$$

• $\underline{L} = \partial_t + (v^1 - c)\partial_1$
• $c = \sqrt{\frac{\partial p}{\partial \varrho}} = \text{speed of sound} >$

New results New formulation Looking forward Extra slides on Burgers

Shocks for 1D isentropic compressible Euler

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_t \Psi + \Psi \partial_x \Psi = 0$,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Shocks for 1*D* isentropic compressible Euler

New results New formulation Looking forward Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Insights from 1D Multi-dimensions Geometry

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_t \Psi + \Psi \partial_x \Psi = 0$, i.e., $(\partial_t + \Psi \partial_x) \partial_x \Psi = -(\partial_x \Psi)^2$

• For non-degenerate data, plane-wave shock formation is stable under 1*D* symmetric perturbations.

New results New formulation Looking forward Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Geometry

Insights from 1D Multi-dimensions

- For non-degenerate data, plane-wave shock formation is stable under 1*D* symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_x^3 \Psi(0, x) > 0$ at the mins of $\partial_x \Psi(0, x)$

New results New formulation Looking forward Extra slides on Burgers

(日) (日) (日) (日) (日) (日) (日)

Insights from 1D Multi-dimensions Geometry

- For non-degenerate data, plane-wave shock formation is stable under 1*D* symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_x^3 \Psi(0, x) > 0$ at the mins of $\partial_x \Psi(0, x)$ "transversal convexity."

New results

New formulation Looking forward Extra slides on Burgers

(日) (日) (日) (日) (日) (日) (日)

Geometry

Insights from 1D Multi-dimensions

- For non-degenerate data, plane-wave shock formation is stable under 1*D* symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_x^3 \Psi(0, x) > 0$ at the mins of $\partial_x \Psi(0, x)$ "transversal convexity."
- Picture is qualitatively different compared to Burgers' equation: Cauchy horizons.

New results

Geometry

Insights from 1D Multi-dimensions

Simple (with $\mathcal{R}_{-} \equiv 0$) isentropic ($s \equiv 0$) plane waves form shocks through the same Riccati-type mechanism as in Burgers' equation $\partial_t \Psi + \Psi \partial_x \Psi = 0$, i.e., $(\partial_t + \Psi \partial_x) \partial_x \Psi = -(\partial_x \Psi)^2$

- For non-degenerate data, plane-wave shock formation is stable under 1*D* symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_x^3 \Psi(0, x) > 0$ at the mins of $\partial_x \Psi(0, x)$ "transversal convexity."
- Picture is qualitatively different compared to Burgers' equation: Cauchy horizons.
- Cauchy horizons can rescue uniqueness of classical solutions.

New formulation Looking forward Extra slides on Burgers

New results

New formulation Looking forward Extra slides on Burgers

Insights from 1D Multi-dimensions

- For non-degenerate data, plane-wave shock formation is stable under 1*D* symmetric perturbations.
- For Burgers' equation, non-degeneracy means that $\partial_x^3 \Psi(0, x) > 0$ at the mins of $\partial_x \Psi(0, x)$ "transversal convexity."
- Picture is qualitatively different compared to Burgers' equation: Cauchy horizons.
- Cauchy horizons can rescue uniqueness of classical solutions. So far, this is understood only locally in the regime with transversal convexity.

Maximal globally hyperbolic development for 1*D* isentropic compressible Euler solutions

New results

New formulation Looking forward

Extra slides on Burgers

Geometry

Insights from 1D Multi-dimensions

0000

・ロト・西ト・ヨト・ヨー シック

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Hence, the modern (starting in late 1990s) approach in multi-dimensions:

Detailed study of all the structures that can arise in singular flows

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Hence, the modern (starting in late 1990s) approach in multi-dimensions:

Detailed study of all the structures that can arise in singular flows

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Geometry plays a key role

Multi-dimensions?

Rauch: in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for BV data

Hence, the modern (starting in late 1990s) approach in multi-dimensions:

- Detailed study of all the structures that can arise in singular flows
- Geometry plays a key role
- Relies on energy estimates, which are very difficult near singularities

(日) (日) (日) (日) (日) (日) (日)

Multi-D shocks and singularities

Geometry

New results

New formulation Looking forward Extra slides on Burgers

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Majda (1980s)

Insights from 1D Multi-dimensions

- Alinhac (late 1990s)
- Christodoulou (2007, 2019)
- Christodoulou–Miao (2014)
- Miao–Yu (2016)
- Holzegel–Luk–Speck–Wong (2016)
- Luk–Speck (2016, 2020s)
- Merle–Raphael–Rodnianski–Szeftel (2020s)
- Abbrescia–Speck (2020s)
- Buckmaster–lyer (2020s)
- Buckmaster–Drivas–Shkoller–Vicol (2020s)
- Ginsburg–Rodnianski (pre-print)
- (Luo–Yu) (irrotational rarefaction waves in 2D)
- Anderson–Luk (pre-print on Einstein–Euler)

Multi-D shocks and singularities

Geometry

New results

• Majda (1980s)

Insights from 1*D* Multi-dimensions

- Alinhac (late 1990s)
- Christodoulou (2007, 2019)
- Christodoulou–Miao (2014)
- Miao–Yu (2016)
- Holzegel–Luk–Speck–Wong (2016)
- Luk–Speck (2016, 2020s)
- Merle–Raphael–Rodnianski–Szeftel (2020s)
- Abbrescia–Speck (2020s)
- Buckmaster–lyer (2020s)
- Buckmaster–Drivas–Shkoller–Vicol (2020s)
- Ginsburg–Rodnianski (pre-print)
- (Luo-Yu) (irrotational rarefaction waves in 2D)
- Anderson–Luk (pre-print on Einstein–Euler)

With Abbrescia, for open sets of data in 3*D*, we have given the first complete description of the full structure of the singular set and the Cauchy horizon

New formulation Looking forward Extra slides on Burgers

Infinite density of the characteristics

New results

New formulation Looking forward

Extra slides on Burgers

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Geometry

Insights from 1D Multi-dimensions

0000

Figure: Infinite density of the characteristics \mathcal{P}_u on \mathcal{B}
New results with L. Abbrescia

Geometry

Insights from 1D Multi-dimensions

000

New results New formulation Looking forward Extra slides on Burgers

(ロ) (同) (三) (三) (三) (○) (○)

Figure: A localized subset of the maximal classical development and the shock hypersurface in Cartesian space

Acoustical metric

Insights from 1D Multi-dimensions

The acoustical metric is tied to sound wave propagation.

New results New formulation Looking forward

Extra slides on Burgers

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition (The acoustical metric and its inverse)

Geometry

$$\mathbf{g} := -dt \otimes dt + c^{-2} \sum_{a=1}^{3} (dx^a - v^a dt) \otimes (dx^a - v^a dt),$$

 $\mathbf{g}^{-1} := -\mathbf{B} \otimes \mathbf{B} + c^2 \sum_{a=1}^{3} \partial_a \otimes \partial_a$

Acoustical metric

Insights from 1*D* Multi-dimensions

The acoustical metric is tied to sound wave propagation.

New results

New formulation Looking forward

Extra slides on Burgers

Definition (The acoustical metric and its inverse)

Geometry

000000000

$$\begin{split} \mathbf{g} &:= -dt \otimes dt + c^{-2} \sum_{a=1}^{3} (dx^{a} - v^{a} dt) \otimes (dx^{a} - v^{a} dt), \\ \mathbf{g}^{-1} &:= -\mathbf{B} \otimes \mathbf{B} + c^{2} \sum_{a=1}^{3} \partial_{a} \otimes \partial_{a} \end{split}$$

Material derivative vectorfield **B** is **g**-timelike and thus transverse to acoustically null hypersurfaces:

$$\mathbf{g}(\mathbf{B},\mathbf{B})=-1$$

Acoustic eikonal function

Definition (The acoustic eikonal function)

The acoustic eikonal function *u* solves:

$$egin{array}{lll} (\mathbf{g}^{-1})^{lphaeta}\partial_{lpha}u\partial_{eta}u=\mathbf{0},\ u|_{t=\mathbf{0}}=-x^{1}, & \partial_{t}u>\mathbf{0} \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Acoustic eikonal function

Definition (The acoustic eikonal function)

The acoustic eikonal function *u* solves:

$$(\mathbf{g}^{-1})^{lphaeta}\partial_{lpha}u\partial_{eta}u=\mathbf{0}, \ u|_{t=0}=-x^{1}, \qquad \partial_{t}u>\mathbf{0}$$

We denote the level sets of the eikonal function by \mathcal{P}_u (\mathcal{P}_u^t if truncated at time *t*)

Acoustic eikonal function

Definition (The acoustic eikonal function)

The acoustic eikonal function *u* solves:

$$(\mathbf{g}^{-1})^{lphaeta}\partial_{lpha}u\partial_{eta}u=\mathbf{0}, \ u|_{t=0}=-x^{1}, \qquad \partial_{t}u>\mathbf{0}$$

We denote the level sets of the eikonal function by \mathcal{P}_u (\mathcal{P}_u^t if truncated at time *t*)

Definition (Geometric coordinates)

We refer to (t, u, x^2, x^3) as the geometric coordinates.

Intro Insights from 1D Multi-dimensions Geometry OCOCO New results New formulation Cooking forward Extra slides on Burgers

Inverse foliation density

Definition

$$\boxed{\mu := -\frac{1}{(\mathbf{g}^{-1})^{\alpha\beta}\partial_{\alpha}t\partial_{\beta}u} = \frac{1}{\mathbf{B}u}}$$

Can show:

$$|\mu|_{t=0} \approx 1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inverse foliation density

Definition

$$\mu := -\frac{1}{(\mathbf{g}^{-1})^{\alpha\beta}\partial_{\alpha}t\partial_{\beta}u} = \frac{1}{\mathbf{B}u}$$

Can show:

$$|\mu|_{t=0} \approx 1$$

 $\mu = 0$ signifies a shock (infinite density of characteristics and blowup of ∂u)

Proof philosophy

Big idea (Alinhac and Christodoulou): Solution remains rather smooth in geometric coordinates

Intro Insights from 1D Multi-dimensions Geometry New results New formulation Looking forward Extra slides on Burgers'

Big idea (Alinhac and Christodoulou): Solution remains rather smooth in geometric coordinates

•
$$\partial_{\alpha} \sim \frac{1}{\mu} \frac{\partial}{\partial u} + \frac{\partial}{\partial t} + \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3}$$

Intro Insights from 1*D* Multi-dimensions Geometry New results New formulation Looking forward Extra slides on Burgers'

Proof philosophy

Big idea (Alinhac and Christodoulou): Solution remains rather smooth in geometric coordinates

•
$$\partial_{\alpha} \sim \frac{1}{\mu} \frac{\partial}{\partial u} + \frac{\partial}{\partial t} + \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3}$$

• Hence, $\mu = 0$ represents a degeneracy between Cartesian and geometric partial derivatives

Infinite density of the characteristics

0000000000

New results

New formulation Looking forward

Extra slides on Burgers

(日) (日) (日) (日) (日) (日) (日)

Geometry

Insights from 1*D* Multi-dimensions

Figure: Infinite density of the characteristics \mathcal{P}_u on \mathcal{B}

Intro Insights from 1*D* Multi-dimensions Ococo Ococo

Strictly convex sub-regime

The strictly convex sub-regime is easier to study:

Figure: Strictly convex crease and singular boundary in Cartesian coordinate space

Null vectorfields

Definition

Null vectorfields

$$egin{aligned} & L^lpha_{(geo)} := -(\mathbf{g}^{-1})^{lphaeta}\partial_eta u, \ & L^lpha := \mu L^lpha_{(geo)} \end{aligned}$$

Easy to see:

In plane symmetry, *L* agrees with the vectorfield defined explicitly in terms of Riemann invariants

New results New formulation Looking forward Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Vectorfield frames constructed from u

Definition (Frame vectorfields)

- X is Σ_t -tangent, left-pointing, satisfies $\mathbf{g}(X, X) = 1$, and **g**-orthogonal to $\ell_{t,u} := \Sigma_t \cap \mathcal{P}_u$
- $\breve{X} := \mu X$ (satisfies $\breve{X}u = 1$)
- For $A = 2, 3, Y_{(A)} := \mathbf{g}$ -orthogonal projection of (rectangular) ∂_A onto $\ell_{t,\mu}$

Definition (Frame adapted to the characteristics)

The rescaled frame is:

•
$$\{L, \check{X}, Y_{(2)}, Y_{(3)}\}$$

Geometry 000000000000

New results New formulation Looking forward Extra slides on Burgers

(日) (日) (日) (日) (日) (日) (日)

Vectorfield frames constructed from u

Definition (Frame vectorfields)

- X is Σ_t -tangent, left-pointing, satisfies $\mathbf{g}(X, X) = 1$, and **g**-orthogonal to $\ell_{t,u} := \Sigma_t \cap \mathcal{P}_u$
- $\breve{X} := \mu X$ (satisfies $\breve{X}u = 1$)
- For $A = 2, 3, Y_{(A)} := \mathbf{g}$ -orthogonal projection of (rectangular) ∂_A onto $\ell_{t,\mu}$

Definition (Frame adapted to the characteristics)

The rescaled frame is:

• $\{L, \check{X}, Y_{(2)}, Y_{(3)}\}$

Big ideas:

- Derive regular estimates relative to the rescaled frame
- Shows that the solution and its $\{L, X, Y_{(2)}, Y_{(3)}\}$ -derivatives remain rather smooth (equivalently, smooth w.r.t. (t, u, x^2, x^3) and smooth in directions tangent to \mathcal{P}_{μ})

00000000000000

New results New formulation Looking forward Extra slides on Burgers

Vectorfield frames constructed from u

Definition (Frame vectorfields)

- X is Σ_t -tangent, left-pointing, satisfies $\mathbf{g}(X, X) = 1$, and **g**-orthogonal to $\ell_{t,\mu} := \Sigma_t \cap \mathcal{P}_{\mu}$
- $\check{X} := \mu X$ (satisfies $\check{X}u = 1$)
- For $A = 2, 3, Y_{(A)} := \mathbf{g}$ -orthogonal projection of (rectangular) ∂_A onto $\ell_{t,\mu}$

Definition (Frame adapted to the characteristics)

The rescaled frame is:

• $\{L, \check{X}, Y_{(2)}, Y_{(3)}\}$

Big ideas:

- Derive regular estimates relative to the rescaled frame
- Shows that the solution and its $\{L, X, Y_{(2)}, Y_{(3)}\}$ -derivatives remain rather smooth (equivalently, smooth w.r.t. (t, u, x^2, x^3) and smooth in directions tangent to \mathcal{P}_{μ})
- Big technical difficulty: High order geometric energies can blow up as $\mu \downarrow 0$: $\mathbb{E}_{\text{Top}} \leq \mu^{-10}$, $\mathbb{E}_{\text{Top}-1} \leq \mu^{-8}$, \cdots , $\mathbb{E}_{Mid} \leq 1$ (日) (日) (日) (日) (日) (日) (日)

A picture of the dynamics

Geometry New res

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

New results 0000

New formulation Looking forward Extra slides on Burgers

Statement of main results

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\frac{\partial^2}{\partial \mu^2} \mu|_{\{\mu=0\}} > 0.$

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $rac{\partial^2}{\partial u^2} \mu |_{\{\mu=0\}} > 0.$ Then:

 The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $rac{\partial^2}{\partial u^2} \mu |_{\{\mu=0\}} > 0.$ Then:

- The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.
- First paper (posted): we give a complete description of a portion of the singular boundary \mathcal{B} , including the entire crease.

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\frac{\partial^2}{\partial u^2}\mu|_{\{\mu=0\}}>0.$ Then:

- The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.
- First paper (posted): we give a complete description of a portion of the singular boundary \mathcal{B} , including the entire crease.
- Writing-in-progress: we give a complete description of a neighborhood of the Cauchy horizon C that includes the entire crease.

Theorem (JS and L. Abbrescia)

Fix a 1D simple, isentropic shock-forming background solution satisfying the transversal convexity condition $\frac{\partial^2}{\partial u^2}\mu|_{\{\mu=0\}}>0.$ Then:

- The shock formation is stable under general 3D perturbations of the data with vorticity and entropy.
- First paper (posted): we give a complete description of a portion of the singular boundary \mathcal{B} , including the entire crease.
- Writing-in-progress: we give a complete description of a neighborhood of the Cauchy horizon C that includes the entire crease.
- In total, we reveal a portion of the maximal (classical) globally hyperbolic development, including a neighborhood of the boundary.

New results with L. Abbrescia

Geometry

Insights from 1*D* Multi-dimensions

New results

New formulation Looking forward Extra slides on Burgers

(日) (日) (日) (日) (日) (日) (日)

Figure: A localized subset of the maximal classical development and the shock hypersurface in Cartesian space

The crease and the singular boundary

Insights from 1D Multi-dimensions Geometry

Geometry New results New formulation Looking forward Extra slides on Burgers'

Construction of <u>u</u> for the Cauchy horizon

We construct an eikonal function \underline{u} such that $\underline{C} \subset {\underline{u} = 0}$

Construction of <u>u</u> for the Cauchy horizon

We construct an eikonal function \underline{u} such that $\underline{C} \subset {\underline{u} = 0}$

The data of <u>u</u>:

$$\underline{\textit{\textit{u}}}|_{\{\breve{\textit{X}}\mu=0\}}=-\mu$$

Construction of <u>u</u> for the Cauchy horizon

We construct an eikonal function \underline{u} such that $\underline{C} \subset {\underline{u} = 0}$

The data of <u>u</u>:

$$\underline{\textit{\textit{U}}}|_{\{\breve{\textit{X}}\mu=0\}}=-\mu$$

Then \underline{u} is propagated via the eikonal equation:

$$(\mathbf{g}^{-1})^{\alpha\beta}\partial_{\alpha}\underline{u}\partial_{\beta}\underline{u}=\mathbf{0}$$

The Cauchy horizon region

Insights from 1*D* Multi-dimensions

New results New formulation Looking forward Extra slides on Burgers

(ロ) (同) (三) (三) (三) (○) (○)

Figure: The Cauchy horizon region in Cartesian space

Insights from 1D Multi-dimensions Geometry

In isentropic plane symmetry, the equations reduce to $L\mathcal{R}_{(+)} = 0$, $\underline{L}\mathcal{R}_{(-)} = 0$. In particular:

New results

00

New formulation Looking forward Extra slides on Burgers

Geometry

Insights from 1*D* Multi-dimensions

In isentropic plane symmetry, the equations reduce to $L\mathcal{R}_{(+)} = 0$, $\underline{L}\mathcal{R}_{(-)} = 0$. In particular:

New results

New formulation Looking forward

Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 To study the flow away from symmetry, it is advantageous to treat the system from a wave-equation-like point of view

Geometry

Insights from 1D Multi-dimensions

In isentropic plane symmetry, the equations reduce to $L\mathcal{R}_{(+)} = 0$, $\underline{L}\mathcal{R}_{(-)} = 0$. In particular:

New results.

New formulation Looking forward

Extra slides on Burgers

- To study the flow away from symmetry, it is advantageous to treat the system from a wave-equation-like point of view
- There are many tools for geometric wave equations

Multi-dimensions

Insights from 1D

In isentropic plane symmetry, the equations reduce to $L\mathcal{R}_{(+)} = 0$, $\underline{L}\mathcal{R}_{(-)} = 0$. In particular:

New results

New formulation Looking forward

Extra slides on Burgers

- To study the flow away from symmetry, it is advantageous to treat the system from a wave-equation-like point of view
- There are many tools for geometric wave equations
- Also useful for low-regularity well-posedness

00

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

New results New formulation Looking forward Extra slides on Burgers

New formulation of 3D compressible Euler

Theorem (J. Luk–JS; M. Disconzi–JS in relativistic case)

Consider smooth compressible Euler solutions in 3D. For $\Psi \in \vec{\Psi} := (\varrho, v^1, v^2, v^3, s)$, we have, schematically:

$$\begin{split} \Box_{\mathbf{g}(\vec{\Psi})} \Psi &= \nabla \times \left(\frac{\nabla \times \mathbf{v}}{\varrho} \right) + \mathsf{div} \ \nabla \mathbf{s} \\ &+ \mathbf{g} - \mathit{null forms}, \\ \mathbf{B} \left(\frac{\nabla \times \mathbf{v}}{\varrho} \right) &= \nabla \vec{\Psi} \cdot \left(\frac{\nabla \times \mathbf{v}}{\varrho} \right) + \nabla \vec{\Psi} \cdot \nabla \mathbf{s}, \\ \mathbf{B} \nabla \mathbf{s} &= \nabla \vec{\Psi} \cdot \nabla \mathbf{s} \end{split}$$

New results

New formulation Looking forward 00

Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

New formulation of 3D compressible Euler

Theorem (J. Luk-JS: M. Disconzi-JS in relativistic case)

Consider smooth compressible Euler solutions in 3D. For $\Psi \in \vec{\Psi} := (\varrho, v^1, v^2, v^3, s)$, we have, schematically:

$$\begin{aligned} \Box_{\mathbf{g}(\vec{\Psi})} \Psi &= \nabla \times \left(\frac{\nabla \times \mathbf{v}}{\varrho} \right) + \mathsf{div} \ \nabla \mathbf{s} \\ &+ \mathbf{g} - \mathit{null forms}, \\ \mathbf{B} \left(\frac{\nabla \times \mathbf{v}}{\varrho} \right) &= \nabla \vec{\Psi} \cdot \left(\frac{\nabla \times \mathbf{v}}{\varrho} \right) + \nabla \vec{\Psi} \cdot \nabla \mathbf{s}, \\ \mathbf{B} \nabla \mathbf{s} &= \nabla \vec{\Psi} \cdot \nabla \mathbf{s} \end{aligned}$$

Big idea: show that near shocks, $\nabla \times \left(\frac{\nabla \times v}{a} \right)$, div ∇s , and a-null forms are perturbative; precise nonlinear structure of these terms matters

New results 00

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

New formulation Looking forward Extra slides on Burgers

New formulation of 3D compressible Euler

Theorem (J. Luk-JS: M. Disconzi-JS in relativistic case)

Consider smooth compressible Euler solutions in 3D. For $\Psi \in \vec{\Psi} := (\varrho, v^1, v^2, v^3, s)$, we have, schematically:

$$\begin{split} \Box_{\mathbf{g}(\vec{\Psi})}\Psi &= \nabla \times \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \mathsf{div} \ \nabla \mathbf{s} \\ &+ \mathbf{g} - \mathit{null forms}, \\ \mathbf{B}\left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) &= \nabla \vec{\Psi} \cdot \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \nabla \vec{\Psi} \cdot \nabla \mathbf{s}, \\ \mathbf{B} \nabla \mathbf{s} &= \nabla \vec{\Psi} \cdot \nabla \mathbf{s} \end{split}$$

Big idea: show that near shocks, $\nabla \times \left(\frac{\nabla \times v}{a} \right)$, div ∇s , and a-null forms are perturbative; precise nonlinear structure of these terms matters

• **g**-null forms such as $(\mathbf{g}^{-1})^{\alpha\beta}\partial_{\alpha}\Psi\partial_{\beta}\Psi$ are known to be harmless error terms near shocks.
New results 00

New formulation Looking forward Extra slides on Burgers

New formulation of 3D compressible Euler

Theorem (J. Luk-JS: M. Disconzi-JS in relativistic case)

Consider smooth compressible Euler solutions in 3D. For $\Psi \in \vec{\Psi} := (\varrho, v^1, v^2, v^3, s)$, we have, schematically:

$$\begin{split} \Box_{\mathbf{g}(\vec{\Psi})}\Psi &= \nabla \times \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \mathsf{div} \ \nabla \mathbf{s} \\ &+ \mathbf{g} - \mathit{null forms}, \\ \mathbf{B}\left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) &= \nabla \vec{\Psi} \cdot \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \nabla \vec{\Psi} \cdot \nabla \mathbf{s}, \\ \mathbf{B} \nabla \mathbf{s} &= \nabla \vec{\Psi} \cdot \nabla \mathbf{s} \end{split}$$

Big idea: show that near shocks, $abla imes \left(rac{
abla imes v}{
ho} \right)$, div abla s, and a-null forms are perturbative; precise nonlinear structure of these terms matters

- **g**-null forms such as $(\mathbf{g}^{-1})^{\alpha\beta}\partial_{\alpha}\Psi\partial_{\beta}\Psi$ are known to be harmless error terms near shocks.
- Need to overcome derivative loss by showing that

$$abla imes \left(rac{
abla imes m{
u}}{arrho}
ight)$$
, div $abla m{s}$ are as regular as $abla ec{\Psi}$

Geometry New results

New formulation Looking forward

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Extra slides on Burgers

New formulation of 3D compressible Euler

Theorem (J. Luk–JS; M. Disconzi–JS in relativistic case)

Consider smooth compressible Euler solutions in 3D. For $\Psi \in \vec{\Psi} := (\rho, v^1, v^2, v^3, s)$, we have, schematically:

$$\begin{split} \Box_{\mathbf{g}(\vec{\Psi})}\Psi &= \nabla \times \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \mathsf{div} \ \nabla \mathbf{s} \\ &+ \mathbf{g} - \mathit{null forms}, \\ \mathbf{B}\left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) &= \nabla \vec{\Psi} \cdot \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \nabla \vec{\Psi} \cdot \nabla \mathbf{s}, \\ \mathbf{B} \nabla \mathbf{s} &= \nabla \vec{\Psi} \cdot \nabla \mathbf{s} \end{split}$$

Big idea: show that near shocks, $\nabla \times \left(\frac{\nabla \times v}{a} \right)$, div ∇s , and a-null forms are perturbative; precise nonlinear structure of these terms matters

- **g**-null forms such as $(\mathbf{g}^{-1})^{\alpha\beta}\partial_{\alpha}\Psi\partial_{\beta}\Psi$ are known to be harmless error terms near shocks.
- Need to overcome derivative loss by showing that
 - $\nabla \times \left(\frac{\nabla \times v}{a}\right)$, div ∇s are as regular as $\nabla \vec{\Psi}$

This can be achieved via div-curl-transport systems that enjoy good null structure.

Geometry New results

New formulation Looking forward Extra slides on Burgers

New formulation of 3D compressible Euler

Theorem (J. Luk–JS; M. Disconzi–JS in relativistic case)

Consider smooth compressible Euler solutions in 3D. For $\Psi \in \vec{\Psi} := (\rho, v^1, v^2, v^3, s)$, we have, schematically:

$$\begin{split} \Box_{\mathbf{g}(\vec{\Psi})}\Psi &= \nabla \times \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \mathsf{div} \ \nabla \mathbf{s} \\ &+ \mathbf{g} - \mathit{null forms}, \\ \mathbf{B}\left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) &= \nabla \vec{\Psi} \cdot \left(\frac{\nabla \times \mathbf{v}}{\varrho}\right) + \nabla \vec{\Psi} \cdot \nabla \mathbf{s}, \\ \mathbf{B} \nabla \mathbf{s} &= \nabla \vec{\Psi} \cdot \nabla \mathbf{s} \end{split}$$

Big idea: show that near shocks, $\nabla \times \left(\frac{\nabla \times v}{a} \right)$, div ∇s , and a-null forms are perturbative; precise nonlinear structure of these terms matters

- g-null forms such as $(g^{-1})^{\alpha\beta}\partial_{\alpha}\Psi\partial_{\beta}\Psi$ are known to be harmless error terms near shocks.
- Need to overcome derivative loss by showing that
 - $\nabla \times \left(\frac{\nabla \times \mathbf{v}}{a}\right)$, div ∇s are as regular as $\nabla \vec{\Psi}$

This can be achieved via div-curl-transport systems that enjoy good null structure.

 \rightarrow With L. Abbrescia, we derived suitable "elliptic-hyperbolic" identities for $\frac{\nabla \times v}{d}$ and ∇s on arbitrary globally hyperbolic domains for 3D compressible Euler solutions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Directions to consider

 Global structure of MGHD and uniqueness of classical solutions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem

Intro on the second sec

Directions to consider

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Directions to consider

Insights from 1*D* Multi-dimensions

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)

New results

New formulation Looking forward

Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Long-time behavior of vorticity

Directions to consider

Insights from 1*D* Multi-dimensions

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)

New results

New formulation Looking forward

Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Long-time behavior of vorticity
- Zero viscosity limits in high norm (see Chaturvedi–Graham for 1D Burgers' equation)

Insights from 1D Multi-dimensions

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)

New results.

New formulation Looking forward

Extra slides on Burgers

- Long-time behavior of vorticity
- Zero viscosity limits in high norm (see Chaturvedi–Graham for 1D Burgers' equation)
- Similar results for more complicated multiple speed systems: elasticity, crystal optics, nonlinear electromagnetism,..., which take the form:

$$h_{AB}^{lphaeta}(\partial\Phi)\partial_{lpha}\partial_{eta}\Phi^{B}=0$$

Multi-dimensions

Insights from 1D

- Global structure of MGHD and uniqueness of classical solutions
- Shock development problem
- Long-time behavior of solutions with shocks (at least in a perturbative regime in a subset of spacetime)

New results

New formulation Looking forward

Extra slides on Burgers

- Long-time behavior of vorticity
- Zero viscosity limits in high norm (see Chaturvedi–Graham for 1D Burgers' equation)
- Similar results for more complicated multiple speed systems: elasticity, crystal optics, nonlinear electromagnetism,..., which take the form:

$$h_{AB}^{\alpha\beta}(\partial\Phi)\partial_{\alpha}\partial_{\beta}\Phi^{B}=0$$

Would require the development of new geometry.

Insights from 1*D* Multi-dimensions Geometry

Burgers' equation for $\Psi(t, x)$:

New results New formulation Looking forward Extra slides on Burgers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$egin{aligned} & L\Psi = \mathbf{0}, & \Psi(\mathbf{0}, x) = \mathring{\Psi}(x) \ & L := \partial_t + (\mathbf{1} + \Psi) \partial_x \end{aligned}$$

Insights from 1D Multi-dimensions Geometry

Burgers' equation for $\Psi(t, x)$:

New results New formulation Looking forward Extra slides on Burgers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$egin{aligned} & L\Psi=0, & \Psi(0,x)=\mathring{\Psi}(x)\ & L:=\partial_t+(1+\Psi)\partial_x \end{aligned}$$

$$\implies L\partial_x \Psi = -(\partial_x \Psi)^2$$

Geometry

Insights from 1*D* Multi-dimensions

Burgers' equation for $\Psi(t, x)$:

New results

New formulation Looking forward Extra slides on Burgers

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

0000000

$$egin{aligned} & L\Psi = \mathbf{0}, & \Psi(\mathbf{0}, x) = \mathring{\Psi}(x) \ & L := \partial_t + (\mathbf{1} + \Psi) \partial_x \end{aligned}$$

$$\implies L\partial_x \Psi = -(\partial_x \Psi)^2$$

• $L\Psi = 0 \implies \Psi$ is conserved along characteristics, which are the flow lines of *L*, i.e.,

$$rac{d}{dt}\gamma_z(t)=L\circ\gamma_z(t),\qquad \gamma_z(0)=(0,z)\in\Sigma_0$$

Geometry

Insights from 1*D* Multi-dimensions

Burgers' equation for $\Psi(t, x)$:

New results

New formulation Looking forward Extra slides on Burgers

0000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$egin{aligned} & L\Psi = \mathbf{0}, & \Psi(\mathbf{0}, x) = \mathring{\Psi}(x) \ & L := \partial_t + (\mathbf{1} + \Psi) \partial_x \end{aligned}$$

$$\implies L\partial_x \Psi = -(\partial_x \Psi)^2$$

*L*Ψ = 0 ⇒ Ψ is conserved along characteristics, which are the flow lines of *L*, i.e.,

$$rac{d}{dt}\gamma_z(t)=L\circ\gamma_z(t),\qquad \gamma_z(0)=(0,z)\in\Sigma_0$$

• Solutions Ψ satisfy: $\Psi \circ \gamma_z(t) = \Psi \circ \gamma_z(0) = \mathring{\Psi}(z)$

Insights from 1*D* Multi-dimensions

Burgers' equation for $\Psi(t, x)$:

New results

New formulation Looking forward Extra slides on Burgers

$$egin{aligned} & L\Psi = \mathbf{0}, & \Psi(\mathbf{0}, x) = \mathring{\Psi}(x) \ & L := \partial_t + (\mathbf{1} + \Psi) \partial_x \end{aligned}$$

$$\implies L\partial_x \Psi = -(\partial_x \Psi)^2$$

• $L\Psi = 0 \implies \Psi$ is conserved along characteristics, which are the flow lines of *L*, i.e.,

$$rac{d}{dt}\gamma_z(t)=L\circ\gamma_z(t),\qquad \gamma_z(0)=(0,z)\in\Sigma_0$$

- Solutions Ψ satisfy: $\Psi \circ \gamma_z(t) = \Psi \circ \gamma_z(0) = \mathring{\Psi}(z)$
- Second boxed equation is a Riccati-type ODE in $\partial_x \Psi$; typically, $\partial_x \Psi$ blows up in finite time.

Intro Insights from 1D Multi-dimensions Geometry New results New formulation Looking forward Extra slides on Burgers'

Singular curve

The set of singular points can be parameterized by $(0, z) \in \Sigma_0$:

$$\begin{split} & \mathbb{S}(z) = \left(-\frac{1}{\frac{d}{dz} \mathring{\Psi}(z)}, z - \frac{(1 + \mathring{\Psi}(z))}{\frac{d}{dz} \mathring{\Psi}(z)} \right) \\ & = (\mathsf{Blowup-time}, \mathsf{Blowup} \ x\text{-coordinate}) \end{split}$$

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Intro Insights from 1 D Multi-dimensions Geometry New results New formulation Looking forward Extra slides on Burgers'

Singular curve

The set of singular points can be parameterized by $(0, z) \in \Sigma_0$:

$$\begin{split} & \mathbb{S}(z) = \left(-\frac{1}{\frac{d}{dz} \mathring{\Psi}(z)}, z - \frac{(1 + \mathring{\Psi}(z))}{\frac{d}{dz} \mathring{\Psi}(z)} \right) \\ & = (\mathsf{Blowup-time}, \mathsf{Blowup} \ x\text{-coordinate}) \end{split}$$

Crucial degeneracy: the curve $z \to S(z)$ is parallel to *L*:

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Intro Insights from 1 D Multi-dimensions Geometry New results New formulation Looking forward Extra slides on Burgers

Singular curve

The set of singular points can be parameterized by $(0, z) \in \Sigma_0$:

$$\begin{split} \mathbb{S}(z) &= \left(-\frac{1}{\frac{d}{dz} \mathring{\Psi}(z)}, z - \frac{(1 + \mathring{\Psi}(z))}{\frac{d}{dz} \mathring{\Psi}(z)} \right) \\ &= (\mathsf{Blowup-time}, \mathsf{Blowup} \ x\text{-coordinate}) \end{split}$$

Crucial degeneracy: the curve $z \to S(z)$ is parallel to *L*:

$$\begin{aligned} \frac{d}{dz} \mathbb{S}(z) &= \frac{\frac{d^2}{dz^2} \mathring{\Psi}(z)}{(\frac{d}{dz} \mathring{\Psi}(z))^2} \left(1, 1 + \mathring{\Psi}(z)\right) \\ &= \frac{\frac{d^2}{dz^2} \mathring{\Psi}(z)}{(\frac{d}{dz} \mathring{\Psi}(z))^2} L|_{\mathring{\Psi}(z)} \end{aligned}$$

3

The Cartesian coordinates picture

Insights from 1D Multi-dimensions Geometry

$$S((0, \frac{1}{2}])$$

$$S(0) = (1, 1)$$

$$t \xrightarrow{S([-\frac{1}{2}, 0))}$$

$$t \xrightarrow{Y_{z}(t), z < 0} (0, 0)$$

$$t \xrightarrow{Y_{0}(t)} t \xrightarrow{Y_{0}(t)} t \xrightarrow{Y_{z}(t), z > 0}$$
Figure: The singular curve and shock hypersurface in Cartesian coordinates for $\Psi(x) = -x + \frac{1}{3}x^{3}$

New results New formulation Looking forward

Extra slides on Burgers'

Geometry

Insights from 1*D* Multi-dimensions

The Burgers' equation singularity is renormalizable. That is, the solution is globally smooth relative to well-constructed geometric coordinates.

New results

New formulation Looking forward

Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

"Hiding" the singularity

Geometry

Insights from 1*D* Multi-dimensions

By solving

$$Lu=0, \qquad \qquad u|_{t=0}=-x,$$

New results

New formulation Looking forward

Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

we can construct geometric coordinates (t, u) such that:

$$\frac{\partial}{\partial t} := \frac{\partial}{\partial t}|_{u} = \partial_{t} + (1 + \Psi)\partial_{x} = L = \partial_{t} + (1 + \Psi)\partial_{x}$$

"Hiding" the singularity

Insights from 1*D* Multi-dimensions

By solving

$$Lu=0, \qquad \qquad u|_{t=0}=-x,$$

New results

New formulation Looking forward

Extra slides on Burgers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

we can construct geometric coordinates (t, u) such that:

$$\frac{\partial}{\partial t} := \frac{\partial}{\partial t}|_{u} = \partial_{t} + (1 + \Psi)\partial_{x} = L = \partial_{t} + (1 + \Psi)\partial_{x}$$

In (t, u) coordinates, Burgers' equation is

Geometry

$$\frac{\partial}{\partial t}\Psi(t,u)=0$$

"Hiding" the singularity

Insights from 1*D* Multi-dimensions

By solving

$$Lu=0, \qquad \qquad u|_{t=0}=-x,$$

New results

New formulation Looking forward

Extra slides on Burgers

we can construct geometric coordinates (t, u) such that:

$$\frac{\partial}{\partial t} := \frac{\partial}{\partial t}|_{u} = \partial_{t} + (1 + \Psi)\partial_{x} = L = \partial_{t} + (1 + \Psi)\partial_{x}$$

In (t, u) coordinates, Burgers' equation is

Geometry

$$\frac{\partial}{\partial t}\Psi(t,u)=0$$

Thus,

$$\Psi(t,u) = \mathring{\Psi}(u) := \Psi(0,u)$$

Intro Insights from 1*D* Multi-dimensions Geometry New results New formulation Looking forward Extra slides on Burgers'

The inverse foliation density μ

Set:

$$\mu := -\frac{1}{\partial_x u}, \qquad \mu|_{t=0} \equiv 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro Insights from 1*D* Multi-dimensions Geometry New results New formulation of Society Soci

The inverse foliation density μ

Set:

$$\mu := -\frac{1}{\partial_x u}, \qquad \mu|_{t=0} \equiv 1$$

Evolution equation for μ :

$$\frac{\partial}{\partial t}\mu(t,u) = \frac{\partial}{\partial u}\Psi(t,u) = -\frac{d}{du}\mathring{\Psi}(u)$$

・ロト・西ト・ヨト・日下 ひゃぐ

The inverse foliation density μ

Geometry

Set:

$$\mu := -\frac{1}{\partial_x u}, \qquad \mu|_{t=0} \equiv 1$$

New results

New formulation Looking forward

Evolution equation for μ :

$$\frac{\partial}{\partial t}\mu(t,u) = \frac{\partial}{\partial u}\Psi(t,u) = -\frac{d}{du}\mathring{\Psi}(u)$$

Can easily solve:

Insights from 1*D* Multi-dimensions

$$\mu(t,u) = 1 - t \frac{d}{du} \mathring{\Psi}(u)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 = のへぐ

Extra slides on Burgers

How to think about the singularity

Insights from 1*D* Multi-dimensions Geometry

CHOV relation $\implies \partial_x \Psi$ blows up when $\mu \to 0$:

New results New formulation Looking forward

Extra slides on Burgers

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$\partial_x \Psi = -\frac{1}{\mu} \frac{\partial}{\partial u} \Psi = -\frac{1}{\mu} \frac{d}{du} \mathring{\Psi}(u)$$

The geometric coordinates picture

Insights from 1 D Multi-dimensions Geometry

$$\mathcal{B}_{\{0\}} = (1,0) = \text{crease} = \mathcal{B}_{[-\frac{1}{2},\frac{1}{2}]} \cap \{\frac{\partial}{\partial u}\mu = 0\}$$

$$\mathcal{B}_{[0,\frac{1}{2}]} = \mathcal{B}_{[-\frac{1}{2},\frac{1}{2}]} \cap \{\frac{\partial}{\partial u}\mu > 0\}$$

$$\mathcal{B}_{[-\frac{1}{2},0]} = \mathcal{B}_{[-\frac{1}{2},\frac{1}{2}]} \cap \{\frac{\partial}{\partial u}\mu < 0\}$$

$$\underbrace{u \quad t}_{\{\mathcal{P}_{u}, \ u > 0\}} \quad \underbrace{(0,0)}_{(t,u)} \quad \mathcal{P}_{0} \quad \{\mathcal{P}_{u}, \ u < 0\}$$

New results New formulation Looking forward

Extra slides on Burgers

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Figure: Portions $\mathcal{B}_J = \{\mu = 0\} \cap \{u \in J\}$ for Burgers' equation in geometric coordinates with $\mathring{\Psi}(u) = u - \frac{1}{3}u^3$