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Abstract. These lecture notes are an extended version of our paper [1]. Here, we provide some additional details that, while
standard, might be helpful to those who are learning the field. Moreover, we eliminate the assumption of compact support on
the initial data, which we assumed in [1] to simplify some technical but non-essential aspects of the analysis.

We study the Cauchy problem for the 3D compressible Euler equations under an arbitrary equation of state with positive
speed of sound, aside from that of a Chaplygin gas. For open sets of smooth initial data with non-trivial vorticity and entropy,
our main results yield a constructive proof of the formation, structure, and stability of the singular boundary, which is the set
of points where the solution forms a shock singularity, i.e., where some first-order Cartesian coordinate partial derivatives of the
velocity and density blow up. We prove that in the solution regime under study, the singular boundary has the structure of a
degenerate 3D sub-manifold-with-boundary that is ruled by acoustically null curves. Our approach yields the full structure of
a neighborhood of a connected component of the crease, which is a 2D acoustically spacelike sub-manifold equal to the past
boundary of the singular boundary. In the study of shocks, the crease plays the role of the “true initial singularity” from which
the singular boundary emerges, and it is a crucial ingredient for setting up the shock development problem. These are the first
results revealing the totality of these structures without symmetry, irrotationality, or isentropicity assumptions. Moreover, even
within the sub-class of irrotational and isentropic solutions, these are the first constructive results revealing these structures
without a strict convexity assumption on the shape of the singular boundary. Our proof relies on a new method: the construction
of rough foliations of spacetime, dynamically adapted to the exact shape of the singular boundary and crease, where the latter
is provably two degrees less differentiable than the fluid. Our results also set the stage for our forthcoming paper, in which we
will prove the emergence and stability of a Cauchy horizon, which emanates from the crease and “evolves” in a direction that is
“opposite” the singular boundary in a sense determined by the intrinsic acoustic geometry of the flow.
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1. Introduction

These lecture notes are an extended version of our paper [1]. Here, we provide some additional details that, while
standard, might be helpful to those who are learning the field. Moreover, we eliminate the assumption of compact support
on the initial data, which we assumed in [1] to simplify some technical but non-essential aspects of the analysis.

We study the Cauchy problem for the 3D compressible Euler equations with vorticity and dynamic entropy, and
without symmetry assumptions. This is the first of two papers in which we construct a large (though bounded) portion
of the maximal classical globally hyperbolic development (which we refer to as the “maximal development” for short from
now on) – up to the boundary – of the initial data for open sets of initially smooth, shock-forming solutions. When
a shock forms, the gradients of the density ϱ and the velocity v blow up, though ϱ and v remain bounded. This
phenomenon is also known in the literature as wave breaking. Roughly speaking, the maximal development is the largest
possible classical solution + region that is determined by given, regular initial data. Our main results are the constructions
of the (gradient-singularity-forming) solution + localized region depicted in Fig. 1 (see Remark 1.3 for comments on our
notation in the figure) and a proof of their stability under Sobolev-class perturbations of the initial data on the Cauchy

hypersurface Σ0
def= {t = 0}.

Our papers provide the first results that construct and fully justify Fig. 1 for open sets of initial data without
symmetry, irrotationality, or isentropicity assumptions.
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(A) A localized subset of the maximal classical development in
Cartesian coordinate space
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(B) Infinite density of the characteristics Pu on B

Figure 1. Cartesian coordinate space illustrations of the main results

The present paper concerns the analysis up to the singular boundary, which we denote by1 “B,” while our companion
work [3] concerns the analysis up to the Cauchy horizon, which we denote by “C.” Roughly, B is the sub-manifold-with-
boundary2 of points where the fluid’s first-order partial derivatives blow up, while C is a future boundary that “feels the
influence” of the singularity, even though the solution can be uniquely smoothly extended to C\∂−B. Our work [3] will
show that even though C is a boundary of the classical solution region, the solution canonically induces a limit geometry
on it so that in the standard differential structure associated to the Cartesian coordinates, C has the structure of an
acoustically3 null submanifold-with-boundary. Readers can jump to Theorem 1.4 for an abbreviated version of the main
results of this paper, and Theorems 31.1 and 34.1 for precise, extended statements. Readers can also consult Appendix C,
where, in the drastically simplified contexts of the 1D Burgers’ equation and the 1D compressible Euler equations, we
provide a gentle introduction to various subtleties and degeneracies that we encounter in our analysis (some of which
have not been described in prior literature, even in 1D !) as well as an introduction to the various geometric points of
view that we use to study the flow. As we describe in Sect. 1.4, our papers resolve several open problems and allow one to

1More precisely, we follow the solution up to a compact portion of the singular boundary that we denote by B[0,n0] in our main theorems.
2It is not obvious that the set of blowup-points has the structure of a sub-manifold-with-boundary in Cartesian coordinate space. Indeed, uncovering

this structure is one of the main results of the paper. While this structure holds for open sets of solutions, including the solutions we handle in this
paper, for other solutions, the set of blowup-points might fail to have the structure of a sub-manifold-with-boundary.

3The word “acoustic” refers to the acoustical metric g of definition (2.15a), which is the solution-dependent Lorentzian metric that dictates the
geometry of sound waves. Throughout the paper, all Lorentzian geometric notions such as spacelike, timelike, null, etc. are with respect to g.
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properly set up the shock development problem, which is the problem of (locally) describing the transition of the solution
from classical to weak, past the “initial singularity,” which is the acoustically spacelike co-dimension 2 sub-manifold that
we denote by “∂−B” (the past boundary of B, where ∂−B = B∩C) in the figure. In full generality, the shock development
problem is open, though there has been inspiring progress, which we describe in Sect. 1.9.12. It is crucially important,
for example in setting up the shock development problem, that our approach yields a complete description of the initial
singularity. We highlight the following key point:

The “initial singularity” should not be thought of as a point in spacetime, but rather the set ∂−B depicted
in Fig. 1A, a subset of B that we refer to as the crease. In the solution regime under study, we construct an
entire connected component of ∂−B, and we prove that it has the structure of a 2-dimensional acoustically
spacelike sub-manifold. The crease is distinguished by the following key property, tied to causality: unlike
points in B\∂−B, points in ∂−B are past limit points of acoustically causal curves that are contained
in a region where the solution can uniquely be extended to exist classically. More precisely, if p ∈ ∂−B,
then there is a past-directed acoustically null geodesic in C\∂−B (a set along which the fluid can uniquely
be extended to as to be smooth) such that the null geodesic terminates at p, where the fluid’s first-order
partial derivatives blow up. In Fig. 1A, we depict one of these “null generators of C.”

While we treat in detail a specific regime in our two papers – perturbations of simple isentropic plane-symmetric
solutions – the methods we develop are robust and could be applied to other regimes, such as perturbations of non-
vacuum steady state solutions in R

1+3. We already stress that our results apply to situations in which B fails to be
strictly convex (that is, whenever it fails to be strictly concave up), and that even for irrotational and isentropic solutions,
substantial new ideas are needed in this case to follow the solution up to B and to understand its structure; see Sect. 1.3.
In Fig. 1, we have depicted a B that, while “convex in the x1-direction,” it fails to be convex “in the (x2,x3)-directions.”
We mention here that the very recent result of Shkoller–Vicol [66] on the 2D isentropic Euler equations, which uses some
interesting new tools, constructs an O(ϵ)-portion of strictly convex portions ∂−B, B, and C for some initial data with
gradient of size 1

ϵ ; see Sect. 1.8 for further discussion.

1.1. Outline of the remainder of the introduction. In Sect. 1.2, we introduce the compressible Euler equations, though
not in the form we use to prove our main results. In Sect. 1.3, we highlight some of the challenges in the proofs of our
main results and discuss a few of the most important new ideas we use to overcome them. In Sect. 1.4, we provide an
overview of the two open problems that we resolve in the paper, and we describe how they are connected to the shock
development problem. In Sect. 1.5, we state Theorem 1.4, which is a first, somewhat informal, abbreviated version of our
main results; see Theorems 31.1 and 34.1 for the extended, precise statements. In Sect. 1.6, having stated Theorem 1.4, we
provide some extended remarks on the ideas and methods we use in the proof. In Sect. 1.7, we describe the most relevant
precursor results to this paper, focusing on those works that yielded methods that we use here. In Sect. 1.9, we discuss
the history of the study of shock formation and highlight some important developments in the subject. In Sect. 1.10, we
provide an overview of the main ideas of the proofs of our main results, in particular highlighting various technical issues
that were not discussed earlier in the introduction. In Sect. 1.11, we provide an outline of the remainder of the paper.

1.2. First version of the equations and local well-posedness. Our main results concern the Cauchy problem for the
3D compressible Euler equations, which can be formulated as a quasilinear hyperbolic PDE system in the velocity

v : R×Σ→ R
3, the density ϱ : R×Σ→ [0,∞), and the entropy s : R×Σ→ R. In this paper, Σ

def= R×T2 denotes
the “space manifold,” that is, we assume that “space” is diffeomorphic to R×T2. In our setup, the Cartesian coordinates
on spacetime are (t,x1,x2,x3), where t is the standard Cartesian time function, x1 denotes the standard Cartesian

coordinate on R, and (x2,x3) denote standard Cartesian coordinates on T
2 def= [−π,π]2 (with the endpoints identified).

The spatial topology R × T2 allows us to simplify various aspects of our approach, leading to a cleaner presentation
of the analysis. However, our analysis is local in spacetime and, with modest additional effort, all our results could be
extended to other spatial topologies such as R3. Relative to the Cartesian coordinates (t,x1,x2,x3), the 3D compressible
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equations can be expressed as follows4 (see [28] for background on the equations):

Bvi = −
∂ip

ϱ
, (i = 1,2,3), (1.1a)

Bϱ = −ϱdivv, (1.1b)

Bs = 0, (1.1c)

where p is the pressure, B denotes the material vectorfield:

B def= ∂t + va∂a, (1.2)

and div is the standard Euclidean divergence operator (see Def. 2.3). To close the equations, we assume an equation of
state p = p(ϱ,s). Our results apply for any sufficiently smooth equation of state – except for that of a Chaplygin gas (see
Sect. 2.3.1) – with positive sound speed c defined by:

c
def=

√
p;ϱ, (1.3)

where p;ϱ is the partial derivative of the equation of state with respect to the density at fixed entropy.

We stress up front that our analysis crucially relies on a geometric reformulation of (1.1a)–(1.1c) as a system
of covariant wave equations coupled to transport-div-curl equations, where the nonlinear terms exhibit
remarkable null and regularity properties. The reformulation was derived in [72] (see also the precursor
[51]), and we recall it in Theorem 2.15.

We assume that smooth initial data (v,ϱ, s)|Σ0
for (1.1a)–(1.1c) are prescribed along the spacelike hypersurface Σ0

def=
{t = 0} = {0} ×R × T2. We consider only initial data such that ϱ|Σ0

> 0, thereby avoiding the severe degeneracies
that can occur at fluid-vacuum boundaries. It is well-known that the equations (1.1a)–(1.1c) are locally well-posed for

non-vacuum initial data on Σ0
def= {t = 0} such that (v,ϱ, s)|Σ0

∈H3(Σ0). To follow the solution to the singular boundary,
we assume that the data belong to a sufficiently high order Sobolev space, where different solution variables have distinct,
directionally dependent amounts of regularity. In Sect. 11, we state detailed assumptions on the state of the solution near
the shock; starting the analysis “near the shock” allows us to focus on the most interesting aspect of the dynamics. The
assumptions of Sect. 11 are the main ones we need to close our proof. The assumptions of Sect. 11 hold for open sets
of solutions whose data on Σ0 are close, in a high order Sobolev space, to the data of a family of “background” simple
isentropic plane symmetric solutions. All of the known approaches to studying shocks away from symmetry rely on the
assumption that the data belong to a high order Sobolev space. This is due to possibly singular energy estimates at the
high derivative levels – even in the “good” geometric coordinate system (t,u,x2,x3), described below, which “hides” the
singularity at the low to mid derivative levels; see Sects. 1.10.9 and (1.10.12) for further discussion of these fundamental
technical issues.

1.3. An overview of the degeneracies and difficulties in the problem. The analysis needed to fully justify Fig. 1 is
fraught with degeneracies and difficulties. While many prior works on shocks have constructed the solution in strict
subsets of the region in Fig. 1A, our papers are the first to fully grapple with the degeneracies and construct the solution
in the entire region. To handle solutions with non-zero vorticity and dynamic entropy, we rely on an arsenal of geometric
and analytic techniques, developed in earlier works [4, 24, 50–52, 72], combined with key new ideas that we describe below.
Here, we highlight some of the main challenges in the analysis and mention some of the methods we use to overcome
them.

• (Singularities). The solution forms a shock along the sub-manifold-with-boundary B. That is, some of its first-
order partial derivatives with respect to the Cartesian coordinates blow up along B (including along the crease
∂−B), though the solution itself remains bounded. The blowup-dynamics are extremely rich: some quantities
exhibit blowup of their derivatives – but only derivatives in certain directions5 – while other quantities and their
derivatives in all directions remain bounded. We refer to Theorem 34.1 for the details.

• (Nonlinear geometric optics and geometric coordinates) As in many prior works on shock formation, to follow
the solution up to B and to obtain a precise understanding of the singularity formation, we cannot rely on the
Cartesian coordinates, which are not adapted to the singularity. Instead, we rely on nonlinear geometric optics.

4Throughout, if V is a vectorfield and f is a scalar function, then Vf def= Vα∂αf denotes the derivative of f in the direction of V.
5Roughly, along B, many quantities’ derivatives in directions transversal to the characteristics blow up, while their tangential derivatives remain

bounded, much like in the simple case of Burgers’ equation in 1D : ∂tΨ +Ψ ∂xΨ = 0.
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Specifically, nonlinear geometric optics yields a “geometric coordinate system” (see Def. 3.5) – one that is globally
homeomorphic (in the compact region under study) to the Cartesian coordinate system but not diffeomorphic to
it up to B – relative to which the solution remains rather smooth; see Sect. 1.6. The key ingredient in implementing
nonlinear geometric optics is an eikonal function u solving the acoustic eikonal equation (g−1)αβ∂αu∂βu = 0,
where the acoustical metric g is the solution-dependent Lorentzian metric (see (2.15a)) that captures the intrinsic
geometry of sound waves. The level-sets of u, which we denote by Pu , are characteristic for the compressible Euler
equations; roughly, the Pu represent surfaces along which sound waves can propagate. In the present paper, our
geometric coordinate system is (t,u,x2,x3), where u is the eikonal function and t,x2,x3 are standard Cartesian
coordinate functions.

• (Degeneracies in the acoustic geometry) The fluid singularity along B is intimately tied to degeneracies in the
acoustic geometry; roughly, along B, the characteristic hypersurfaces Pu (which we also refer to as “characteristics,”
“null hypersurfaces,” “acoustically null hypersurfaces,” or “g-null hypersurfaces”), develop infinite density along B.
In the present paper, the infinite density of the Pu is characterized by the vanishing of a function µ, the inverse
foliation density, which we describe below in detail; µ is positive in the maximal development, except along B.
We depict this infinite density in Fig. 1B, where we show three distinct null hypersurfaces “piling up” along B. It
is important to appreciate that in the solution regime we are studying, distinct characteristic hypersurfaces, viewed
as sub-manifolds in Cartesian coordinate space, never actually intersect6 on B, even though their density becomes
infinite. This phenomenon is crucial for properly setting up the shock development problem.

“Fictitious portion”
{µ = 0} ∩ {X̆µ > 0} B

∂−B

C

Σ0

(x2,x3) ∈ T2

t
u ∈R MInjective

(A) Singular boundary and Cauchy horizon in geometric coordinates

“Fictitious portion”
{µ = 0} ∩ {X̆µ > 0}

B∂−B
C

Σ0

(x2,x3) ∈ T2

t
x1 ∈R

Pu

(B) Singular boundary and Cauchy horizon in Cartesian coordinates

Figure 2. Illustrations of the main results in two coordinate systems

Our main results show that the singular boundary B, viewed as a subset of geometric coordinate space (see
Fig. 2A), is:

B = {µ = 0} ∩ {X̆µ ≤ 0}, (1.4)

where the vectorfield X̆ , described later on (see Fig. 10 for a depiction of X̆ in Cartesian coordinate space), is
transversal to the Pu and satisfies X̆u = 1. The crease ∂−B is characterized by:

∂−B = {µ = 0} ∩ {X̆µ = 0}. (1.5)

From (1.4)–(1.5), the status of ∂−B as a boundary of B is clear. In the regime under study, the two level-sets
on RHS (1.5) intersect transversally, which is what gives the crease the structure of a 2D sub-manifold. The
transversality of the intersection is a consequence of acoustical transversal convexity, which is mild condition
satisfied by open sets of solutions and which we describe below in more detail. By doing formal Taylor expansions
in geometric coordinates starting from the crease, one could check that the “fictitious portion” {µ = 0}∩{X̆µ > 0}
– if it existed – would lie in the timelike future of the Cauchy horizon C; see the dotted portion in Fig. 2A,

6This fact follows from the homeomorphism property of the map Υ , as described in Theorem 1.4.
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which formally depicts {µ = 0} ∩ {X̆µ > 0}. Since C lies in the causal future of the singularity along ∂−B,
{µ = 0} ∩ {X̆µ > 0} cannot be part of the maximal development.

We now highlight that the complementary set {µ = 0} ∩ {X̆µ > 0} is a “fictitious portion” that is not part
of the singular boundary or the maximal development. In the context of Fig. 2A in geometric coordinate space,
the irrelevance of {µ = 0} ∩ {X̆µ > 0} for B and the maximal development can be understood as follows: the
singular boundary portion B in the figure cannot be extended to the left into the region where X̆µ would be
positive because before that region has a chance to dynamically develop, it will be cut off by a Cauchy horizon
emanating from the crease ∂−B, which is the left boundary of B in the figure. Moreover, Figs. 2A–2B exhibit the
following issue: the map from geometric coordinates to Cartesian coordinates would have failed to be injective on
the full region depicted Fig. 2A (which includes the fictitious portion of the singular boundary) , though the map is
injective onMInjective, which we define to be the region trapped in between Σ0 and C∪B; see Fig. 2A. We clarify
that although the present paper and our companion work [3] collectively exhibit the injectivity of the map from
geometric coordinates to Cartesian coordinates on MInjective, one cannot literally prove the failure of injectivity

on the extended region containing {µ = 0} ∩ {X̆µ > 0} because one cannot actually construct the solution up to
{µ = 0} ∩ {X̆µ > 0}. However, in the solution regime we study in this article, failure of injectivity of the map on
the extended region (which would include {µ = 0}∩{X̆µ > 0}) could formally be shown through Taylor expansions
of the solution and the acoustic geometry at the crease. As a consequence of the formal failure of injectivity, we
emphasize that in Fig. 2B (which is in Cartesian coordinates), the fictitious portion {µ = 0} ∩ {X̆µ > 0} (displayed
in dotted lines in Fig. 2B) would have been located in a region that is already covered by geometric coordinates
corresponding to the region MInjective. A related fact is that the particular characteristics depicted in Fig. 2B (we
have shown two characteristic hypersurfaces and labeled one of them by “Pu”) never have the opportunity to
develop infinite density because they are cut off by the Cauchy horizon C before they have a chance to enter the
region where they would have piled up along {µ = 0} ∩ {X̆µ > 0}.

• (Null hypersurfaces and PDE energy degeneracies). In Fig. 1A, B and C are acoustically null hypersurfaces
emanating from the crease, and in particular, B is ruled by acoustically null curves whose tangent vectors are
denoted by L in the figure; see Prop. 33.2 for a proof of these properties of B, and see Remarks 32.8 and
Remark 33.3 for a discussion of some interesting degeneracies that occur along B. As is well-known, any L2-type
energy that one uses to control solutions necessarily degenerates along null hypersurfaces, becoming only positive
semi-definite instead of positive definite. This is a particularly challenging issue in the present context, where
singularities are forming along all of B.

• (Regularity and rough foliations). Many objects in the construction (in particular, the crease ∂−B) are less regular
than the fluid solution, which leads to difficult regularity theory for the problem. To “detect” these rough objects
as they emerge in the course of the evolution, we rely on a new family of rough foliations given by the level-sets
of rough time functions, described below. The word “rough” refers to the fact that the rough time functions are
also less regular than the fluid solution. There is another way in which the problem of shock formation can be
viewed as a low regularity problem: the piling up of the characteristics is tied to the blowup of a Euclidean-
unit-length derivative of various fluid variables in directions transversal to the characteristics, even though the
solution remains rather smooth in directions tangent to the characteristics. In particular, we are forced to close
the estimates knowing that with respect to the Cartesian differential structure, there will be no differentiability in
transversal directions at the end of the classical evolution. As we already mentioned, the geometric coordinates
(t,u,x2,x3) partially ameliorate this difficulty in the sense that the solution remains rather smooth with respect
to them. Nonetheless, as in other works on shock formation, our high order geometric energies can still become
singular; see Sect. 1.10.12. This is one of the main technical challenges in the PDE analysis since singular high
order energy estimates make it difficult for us to prove that the solution’s partial derivatives with respect to the
geometric coordinates remain bounded at the lower derivative levels.

• (One sub-manifold of B at a time via a family of rough time functions). Our approach to constructing B is
to show that it can be foliated by a family of n-parameterized sub-manifolds T̆0,−n with n ≥ 0 a real parameter,
and to construct each T̆0,−n, “one n at a time;” see Fig. 4. Our construction is such that the crease ∂−B coincides
with T̆0,0. One might wonder why we didn’t try to derive all of B “at the same time.” From the discussion three
points above, we see that that approach would have effectively required us to work with foliations of spacetime
that contain or are asymptotic to level-sets of µ in regions where µ is small (recall that B is a portion of {µ = 0}).
The difficulty is that for real numbers m small and positive, near the crease, the level-sets {µ = m} have a
g-timelike portion, along which top-order L2 estimates for the solution are not available. This can formally be
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∂−B

C

Σ0

(x2,x3) ∈ T2

t

{µ = m}

{µ = 2m}

{X̆µ = 0}

{X̆µ < 0}{X̆µ > 0}

X̆

u ∈R {µ = m}
timelike
here

Figure 3. The singular boundary and the level-sets {µ = m} and {µ = 2m} for a small m > 0, in
geometric coordinates

understood as the statement that in the solution regime under study, along the surface {µ = 0}, RHS (32.31b)
would be positive7 in the regions where X̆µ > 0. See Fig. 3, which shows these level-sets becoming g-timelike in
the region near their intersection with the Cauchy horizon C. In fact, for m > 0 small, any surface that agreed
with the level-set {µ = m} up to second-order along the surface {X̆µ = 0} would suffer from the same difficulty:
it would necessarily contain a g-timelike portion, along which L2 estimates for the solution are not available.

Remark 1.1 (Impossibility of C2 spacelike foliations and the limited regularity of (Interesting)τ). The upshot is that
in the solution regime under study, it is impossible to detect the entire singular boundary B by deriving estimates
on C2 (relative to the geometric coordinates) g-spacelike foliations of spacetime such that B (including its past
boundary ∂−B) is contained in the interior of one of the leaves of the foliation. This difficulty is connected to the
following issue: in our main theorem, namely Theorem 34.1, the regionMInteresting that we study (which contains

B) is foliated by the level-sets of a C1,1 (relative to the geometric coordinates) time function (Interesting)τ, and this
C1,1 regularity is optimal given the shape of region; see Remark 32.10. In our approach to the PDE analysis, the
C1,1 regularity of (Interesting)τ would be insufficient for our proofs of some of our estimates (e.g., the co-dimension
two Gauss curvature estimates we derive in Lemma 28.11). We circumvent these difficulties by avoiding deriving
high order PDE estimates on the level sets of (Interesting)τ; we instead derive estimates along the level sets of the
time functions (n)τ, which, though less regular than the fluid solution, are more regular than (Interesting)τ.

To construct the sub-manifolds T̆0,−n ⊂ B and circumvent the difficulties noted in Remark 1.1, we proceed
as follows. For each n ∈ [0,n0], where n0 > 0 is a small, data-dependent constant, we construct a rough time
function (n)τ, which is C2,1 relative to the geometric coordinates; see Sect. 4. Note that (n)τ is one degree more
differentiable than the time function (Interesting)τ mentioned above, which is sufficient for avoiding the difficulties
we highlighted in Remark 1.1. Our construction of (n)τ depends on the eikonal function u, i.e., our construction of
(n)τ relies on nonlinear geometric optics. For each n ∈ [0,n0], the level-sets of (n)τ yield a foliation of spacetime

7In the regime under study, the term Lµ on RHS (32.31b) is strictly negative and the term |∇/ µ|2g/ is of negligible size.



L. Abbrescia and J. Speck 9

by g-spacelike hypersurfaces, and T̆0,−n ⊂ {(n)τ = 0}. Hence, to construct T̆0,−n, it suffices to control the fluid
up to the level-set {(n)τ = 0}; the vast majority of our efforts in this paper are dedicated towards that task. The
union

⋃
n∈[0,n0] T̆0,−n is the portion of B that we construct in our main theorem. The portion of B that formally

corresponds to n < 0 never has a chance to emerge in the maximal classical development because it is cut off
by the Cauchy horizon C. In Fig. 2A, the “irrelevant portion” of B, corresponding to n < 0, is formally delineated
by dotted curves (we cannot actually construct this portion, and we have displayed it only to illustrate that C lies
below it). We could have extended our results to handle a larger range of n values, i.e., n > n0; we avoided this
because we would have had to modify our construction of the (n)τ for large n, which would have lengthened the
paper. We refer Sect. 1.4 for a more detailed overview of our construction of the rough time functions and the
T̆0,−n.

Remark 1.2 (The terminology “rough time function”). The word “rough” in “rough time function” refers to the fact
that the elements of {(n)τ}n∈[0,n0] are less regular than the fluid; see Sect. 1.10.7 for further details. In the present

paper, each (n)τ is C2,1 (with respect to the geometric coordinates) because the fluid variables are C3,1. The fluid
variables are C3,1 because we have only assumed limited differentiability on the fluid data in directions transversal
to the characteristics Pu , even though we assumed they are much smoother in the Pu-tangential directions; see
Sect. 11 for our data-assumptions. Despite the terminology “rough time function,” if we had instead assumed that
the fluid data were C∞, then each (n)τ would also have been C∞. In contrast, even with C∞ fluid data, the time
function (Interesting)τ from Remark 1.1 would have had only C1,1 regularity.

• (Lack of strict convexity). Observe that in Fig. 1A, there are points q ∈ B such that the tangent plane to B at
q, which we denote by TqB and view to be a subset of 1 + 3-dimensional Cartesian coordinate space, does not
lie below B. Moreover, there are points q ∈ ∂−B such that every (three-dimensional) Cartesian-flat plane that is
acoustically causal at q and contains the two-dimensional subspace Tq∂−B (which would look one-dimensional
if drawn in Fig. 1A, due to our suppression of a spatial dimension), fails to lie below B, even locally near q. Let us
informally refer to these phenomena as “absence of strict convexity,” where here, “convexity” informally refers to
“upwards bending,” and “strict convexity” – though not featured Fig. 1A – would refer to “upwards bending in all
directions.” The absence of strict convexity poses serious technical difficulties:

In the absence of symmetry and strict convexity, the entirety of the crease ∂−B has never before been
fully constructed for any open set of shock-forming solutions to any hyperbolic PDE. In particular, this
aspect of our main results is new even in the case of irrotational and isentropic solutions.

The rough time functions (n)τ and corresponding rough foliations allow us to derive, through a fully constructive
approach, the structure of the singular boundary, even if it is not strictly convex. Instead of strict convexity, we rely
on acoustical transversal convexity (which we refer to as transversal convexity for short), which allows us to handle,
for example, perturbations of symmetric solutions, where strict convexity of the singular boundary can fail due
to the approximate symmetry. Roughly, transversal convexity is a form of convexity only in a particular direction,
specifically in a direction that is transversal to the level-sets of the eikonal function u. Note that transversal
convexity refers to the structure of B viewed as an embedded sub-manifold of geometric coordinate space (as
opposed to Cartesian coordinate space). In the solution regime under study, transversal convexity is captured
by our data-assumption (11.18) on the inverse foliation density µ, which we are able to propagate throughout the
evolution (see (18.5)). The singular boundary B in Fig. 2A enjoys transversal convexity (roughly, B is “parabolic
in the u direction” at fixed (x2,x3) near ∂−B). One could check that in the solution regime under study, the
transversal convexity of B in geometric coordinates also implies, in the Cartesian coordinate picture, the convexity
of the x1-parameterized curves in B along which (x2,x3) are fixed; while we do not directly need this “Cartesian
transversal convexity” in our analysis, we have exhibited the “upwards bending8 of B in the x1-direction” in Fig. 1A.
Our assumption of transversal convexity is close to optimal in the sense that without it, the qualitative character
of the singular boundary can dramatically change, even for plane-symmetric solutions; see Sect. 1.6 for further
discussion. We also highlight that transversal convexity was used by Christodoulou in his resolution [25] of the
restricted shock development problem, which we describe below.

8In 1 + 1 dimensions, under transversal convexity, the embedding of the singular boundary in Cartesian coordinate space can be modeled by the
u-parameterized curve t = u2 , x1 = u2 + u3 , for u ≤ 0. Near the origin (which models the crease) in (t,x1)-space, this singular boundary-modeling
curve is asymptotic to the graph of t = (x1)2 + (x1)3/2 for x1 small and positive, which bends upwards (c.f. the singular boundary in Fig. 1A) and has

regularity C1, 12 (c.f. the regularity of Υ (B[0,n0]) stated in Theorem 1.4).
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• (Degenerate wave and elliptic-hyperbolic estimates on curved domains). To close the high order L2 estimates,
we must adapt a variety of hyperbolic energy estimates and “top-order” elliptic estimates for the vorticity, entropy,
and geometry to the precise shape of ∂−B, B, and C, which are not known in advance. The shock singularity
introduces degeneracies into these estimates, and when we control the top-order derivatives of the vorticity
and entropy using elliptic estimates, our handling of these degeneracies requires our observation of special
cancellations within delicately constructed “elliptic-hyperbolic” identities. To exhibit the cancellations, we rely on
the full nonlinear structure of the geometric formulation of compressible Euler flow provided by Theorem 2.15.
In constructing the elliptic-hyperbolic identities (see Sect. 21), we rely on the framework we developed in [4].
However, for the purposes of the present paper, we had to substantially upgrade that framework to accommodate
the structure of the singularity. The key new object that we use to derive the elliptic-hyperbolic identities is a
well-constructed characteristic current, defined in Def. 21.10.

1.4. The two open problems resolved by Theorem 1.4 and connections to the shock development problem. In his
breakthrough 2007 monograph [24], Christodoulou gave a sharp description of the stable formation of shock singularities,
starting from open sets of smooth initial data, in solutions to the 3D irrotational and isentropic relativistic Euler equations.
Together with Miao, he later extended his results to the 3D compressible Euler equations [28], again for irrotational and
isentropic solutions. These results revealed a large subset of the maximal classical development, including a portion of
the boundary.

In the wake of [24], there have been many exciting developments on the formation of shock singularities and the
subsequent evolution of the solution as a weak solution, after the shock; see Sect. 1.9 for further discussion. However, two
fundamental problems have remained open:

1. (The full structure of bounded portions of the maximal classical development). As is explained on [24, Pages
929, 968–969], Christodoulou’s approach yields a union of developments of the initial data, where each of his
developments can be foliated by portions of Cartesian-flat9 spacelike hypersurfaces and portions of characteristic
hypersurfaces. By varying the “angle of tilt” of these Cartesian-flat hypersurfaces and varying the initial data of the
characteristic hypersurfaces, one obtains (see [24, Pages 929, 968–969]) “a larger part” of the maximal development.
While this approach yields a sharp description of some portion of the maximal development, the precise portion
that it reveals is not made explicit through the construction. Moreover, from Fig. 1A, one can infer that for some
solutions, there are portions of the boundary (in particular, portions of ∂−B) that are not accessible through
Cartesian-flat spacelike foliations. This is connected to the lack of strict convexity of the singular boundary, as we
discussed in Sect. 1.3; see also Fig. 6 and, in Sect. 1.6, our discussion of the points b1 and b2 featured in the figure.
Hence, the following problem is glaring:

Can one derive the full structure of the maximal development, at least in some region of spacetime that
includes a neighborhood of the boundary that contains an entire connected component of the crease?

While mathematically rich in itself, this problem is important for two other fundamental reasons: I) The break-
through result [38] shows that in general, one cannot ensure uniqueness of the maximal development until one
constructs it and proves that it enjoys some crucial structural properties. For quasilinear hyperbolic PDEs, the
question of uniqueness of the maximal development is global in nature. However, the results we derive in the
present article and the companion [3] exhibit a localized version of the crucial property that the maximal develop-
ment “lies on one side of its boundary.” In [38], the authors showed, roughly speaking, that if this property holds
globally, then the maximal development is unique. II) As is explained in [25], the full structure of a neighborhood
of the boundary of the maximal development is an essential ingredient for properly setting up the aforementioned
shock development problem.

2. (Removing the irrotationality and isentropicity assumptions). Assuming a positive resolution to the first
problem, a second one of clear physical importance stands out:

Can one extend the result away from the irrotational and isentropic class of solutions, that is, to handle
solutions with non-zero vorticity and dynamic entropy?

It is of fundamental importance to understand such “general solutions” because vorticity and entropy will form in
the weak solution (see, e.g., [25]), i.e., “after the first shock,” even if the initial data are irrotational, isentropic, and
C∞. That is, if one aims towards developing a global-in-space-and-time theory that accommodates the formation
of shocks and their subsequent interactions, vorticity and entropy are an unavoidable aspect of the dynamics.

9By a “Cartesian-flat” hypersurface, we mean a plane with respect to the standard Minkowski-rectangular coordinates on R
1+3 .
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In the present paper and its companion [3], we resolve both problems for the 3D compressible Euler equations (1.1a)–
(1.1c). In the notation of Fig. 1A, starting from smooth data on Σ0, we construct the classical solution in the region lying
in between Σ0 and10 C ∪∂−B ∪B. More precisely, our results apply to open sets of smooth data satisfying assumptions
described below (see, for example, Theorem 1.4), and we control the solution in bounded regions of spacetime that contain
all11 of ∂−B and a full neighborhood of it in C and B. For convenience, in the present paper, we have studied the solution
only in a single, “spatially local” region. However, our approach could be used as a building block to study the solution
across space, at least in regions where the solution exhibits the property of acoustical transversal convexity, mentioned in
Sect. 1.3.

Σ0

(x2,x3) ∈ T2

t

x1 ∈R

T̆0,0

=

∂−B

B
(0)̃Σ

[−U1,U2]
0

T̆−τ,0 X̆0

(0)̃Σ
[−U1,U2]
τ

(0)W̆

(0)W̆

(A) Rough foliations adapted to the crease

Σ0

(x2,x3) ∈ T2

t

x1 ∈R

T̆0,−n

B

T̆−τ,−n

(n)̃Σ
[−U1,U2]
0

X̆−n

(n)̃Σ
[−U1,U2]
τ

(n)W̆

(n)W̆

(B) Rough foliations adapted to a non-crease torus T̆0,−n ⊂ B

Figure 4. Rough foliations adapted to the singular boundary, depicted in Cartesian coordinate space

In the present paper, we follow the solution up to the singular portion of the boundary, denoted by B in Figs. 1A and
4A, where some first-order partial derivatives of the density and velocity blow up. We again emphasize that B contains its
past boundary, ∂−B, which is the aforementioned crease. In [3], we construct the Cauchy horizon, denoted by C in Fig. 1A,
which is an acoustically null hypersurface such that no fluid singularity forms along it, but it is nonetheless a boundary of
the maximal classical development because its causal past intersects the singularity. As we mentioned earlier, our analysis
in the present paper fundamentally relies on a new family of acoustically spacelike rough foliations that are precisely and
dynamically adapted to the shape of B, which is not known in advance. The foliations are level-sets of a one-parameter
family of rough time functions {(n)τ}n∈[0,n0], where n0 > 0 is a constant depending on the initial data. Each (n)τ is
defined on a portion of the maximal classical development union its boundary and has a range [τ0,0] for some constant
τ0 < 0 depending on the initial data. Moreover, (n)τ has the crucial property that its zero level-set {(n)τ = 0} is tangent
to B and intersects it in a sub-manifold. More precisely, B ∩ {(n)τ = 0} = T̆0,−n is a torus with spacetime co-dimension
2 such that the tori T̆0,−n foliate a neighborhood of ∂−B in B, i.e.,

⋃
n∈[0,n0] T̆0,−n is a neighborhood of ∂−B in B. In

particular, the crease ∂−B is equal to T̆0,0. In Fig. 4A, we exhibit two level-sets of (0)τ, where the top one contains the
crease. In Fig. 4B, for some n > 0, we exhibit two level-sets of (n)τ, where the top one contains the torus T̆0,−n.

10This union is not disjoint, for the crease ∂−B is a past boundary of both of the closed sets C and B.
11More precisely, we construct an entire connected component of ∂−B.
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Σ0

(x2,x3) ∈ T2

t
x1 ∈R ∂−B

B

K

C

L

Figure 5. A localized subset of the maximal classical development and the shock hypersurface in
Cartesian coordinate space

We already highlight that the hypersurfaces X̆0 and X̆−n in Fig. 4B play a crucial role in our construction of (0)τ and
(n)τ respectively. In particular, by construction, (0)τ and (n)τ solve transport equations with initial data given on X̆0 and
X̆−n respectively; see Sect. 4.2.1 for the details. The surfaces X̆0 and X̆−n are transversal to B and intersect B in the tori
T̆0,0 and T̆0,−n respectively. While the transversality of X̆0 and X̆−n to B is crucial for our analysis, the causal structure
of X̆0 and X̆−n (i.e., whether they are acoustically timelike, spacelike or null) is not important because we do not have
to derive any energy estimates for the fluid along X̆0 or X̆−n. In particular, X̆0 and X̆−n can be acoustically timelike,
spacelike, or null.

In this paper and [3], our approach relies on giving a complete description of the dynamics that in particular shows
what blows up and what remains regular and yields a sharp description of the structure and regularity of B, ∂−B, and C.
To handle the presence of vorticity and entropy, we develop modified versions of the integral identities that we discovered
in [4], adapted here to the precise structure of B. More precisely, in the present paper, we rely on a new family of “elliptic-
hyperbolic” integral identities that are adapted to the rough foliations and the structure of B, and we develop new analytic
techniques to handle the following difficulty, which permeates the paper: the singular boundary is a degenerate acoustically
null hypersurface, which leads to severe degeneracies in the estimates for the fluid variables, especially in the top-order
energy estimates for the vorticity and entropy. See Prop. 33.2 and Remark 33.3 for detailed information on the structure
of the singular boundary, including its causal structure and its differential-topological properties as a subset of Cartesian
coordinate space.

In the solution regime that we treat in our main results, the crease ∂−B has the structure of a co-dimension 2
g-spacelike sub-manifold; see Fig. 5. These structures are essential for properly setting up the shock development problem
using the known techniques [25]. In fact, without these structures, it is not even clear whether the shock development
problem is well-posed. In particular, the shock hypersurface (with boundary), denoted by “K” in Fig. 5, emanates from
∂−B and is tangent to B at ∂−B. Roughly, K is the hypersurface of discontinuity for the weak solution that develops
to the future of the crease. K is not part of the constructions we provide in this paper, nor is it part of the maximal
classical development. In fact, in the region between K and B which we have shaded in Fig. 5, the classical and weak
solutions disagree; see Sect. 1.6 for further discussion of these issues. We again highlight one of the key difficulties in the
problem: B is ruled by acoustically null curves with tangent vectors denoted by “L” in Fig. 5. This leads to rather severe
degeneracies in the analysis because, as is well-known, the coercive quantities that can be used to control the solution
become degenerate along null hypersurfaces. Here, the notion of null is with respect to the acoustical metric g, the
solution-dependent Lorentzian metric (see (2.15a)) that captures the intrinsic geometry of sound waves in the flow. See
below for extended discussion of these fundamental issues.
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1.5. Abbreviated statement of the main results. The full statement of our main results is quite lengthy, due to the
intricate geometric structures and the highly tensorial nature of the singularity. In Theorem 1.4 we provide an abbreviated,
slightly informal statement of the main results. In Theorems 31.1 and 34.1, we provide full statements of the main results.

We first provide two pictures illustrating the region that we study in Theorems 1.4 and 34.1. In Fig. 6, we display the
region in geometric coordinates (t,u,x2,x3). In Fig. 7, we display the region in Cartesian coordinates (t,x1,x2,x3), where
in the labels, Υ (t,u,x2,x3) = (t,x1,x2,x3) is the change of variables map between the two coordinate systems.

Remark 1.3 (Notation involving Υ ). In most of the article, we consider sets such as the singular boundary B to be
subsets of geometric coordinate space Rt ×Ru ×T2, and we denote the image of these sets in Cartesian coordinate space
Rt ×Rx1 ×T2 by explicitly indicating the change of variables map Υ , e.g., by Υ (B). We use this notation in particular
in Fig. 7. However, in many of the other figures that depict regions in Cartesian coordinate space, such as Figs. 1 and 4,
we have suppressed the map Υ so as to not clutter the figure.

Σ0

(x2,x3) ∈ T2

t
u ∈R

MLeft
MSingular

MRight

(Interesting)Σ
[−U1,U2]
τ0

(Interesting)Σ
[−U1,U2]
0

T̆−τ,0

T̆−τ,−n0

T̆0,0

T̆0,−n0

B[0,n0]

X̆
[τ0,0]
0

X̆
[τ0,0]
−n0

(0)W̆

(0)W̆
(0)W̆

(0)W̆

(n0)W̆

(n0)W̆

(n0)W̆

(n0)W̆

b1

b2

C

Figure 6. The regionMInteresting =MLeft ∪MSingular ∪MRight in geometric coordinate space

Theorem 1.4 (Abbreviated statement of the main results).

• Fix any of the “admissible” background (shock-forming) simple isentropic plane-symmetric solutions that we con-
struct in Appendix A, where we define “admissible” in Def. A.7; for each background solution, only a single Riemann
invariant12 is non-vanishing, and we denote it by RPS

(+). For each such background solution, there exist numbers

τ0 < 0, n0 > 0, U1 > 0, U0 > U1, and U2 > 0 such that the data of RPS
(+) is compactly supported

13 in the

Cauchy hypersurface portion14 Σ
[−U1,U2]
0 =

{
(0,x1,x2,x3) | − x1 ∈ [−U1,U2], (x2,x3) ∈ T2

}
in Cartesian coordi-

nate space Rt ×Rx1 ×T2.

12By our definition (A.1) of Riemann invariants, the fluid state RPS
(+) = 0 corresponds to a fluid with a non-zero constant density ϱ̄ > 0.

13We made the assumption that the initial data of the background Riemann invariant RPS
(+) are compactly supported only for convenience; this

assumption could be eliminated without much additional effort. In any case, the perturbed solutions that we study do not have to be compactly
supported, though we only study them in a spatially compact region.

14The minus sign in front of the x1 in the expression for Σ
[−U1 ,U2]
0 is due to the initial condition for u stated in (3.1).
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Σ0

Cauchy stability region

(x2,x3) ∈ T2

t
x1 ∈R

Υ (MLeft)

Υ (T̆τ0,−n0
)

Υ ((Interesting)Σ
[−U1,U2]
τ0 )

Υ ((Interesting)Σ
[−U1,U2]
0 )

Υ (MRight)

Υ (T̆−τ0,0)

Υ (T̆0,0)

Υ (T̆0,−n0
)

Υ (X̆[τ0,0]
0 )

Υ (X̆[τ0,0]
−n0 )

Υ (MSingular)

Υ (B[0,n0])

Figure 7. Υ (MInteresting), i.e., the image of the region MInteresting from Fig. 6 mapped into Cartesian
coordinate space under Υ

• Let Ntop ≥ 24 be an integer.

• Assume that the data-norm ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

defined in (11.4), which measures the HNtop+1(Σ[−U1,U2]
0 )-closeness of the

perturbed data to the background data, is sufficiently small. Note that the perturbed data do not have to be
compactly supported.

Then the following conclusions hold, where the roles of τ0 and n0 are described below.

Classical existence in the Cauchy stability region. The perturbed solution exists classically with respect to the Cartesian
coordinates and remains uniformly bounded in the “Cauchy stability region” trapped in between the flat hypersurface

portion Σ
[−U1,U2]
0 and the curved hypersurface portion (Interesting)Σ

[−U1,U2]
τ0 , where (Interesting)Σ

[−U1,U2]
τ0 is a portion of the

τ0-level-set of the time function
(Interesting)τ, described below. We will not further discuss the behavior of the solution in the

Cauchy stability region, noting only that it is depicted in Fig. 7.

Acoustic geometry and regular behavior in the geometric coordinates. There exists an eikonal function u solving

the eikonal equation (g−1)αβ∂αu∂βu = 0 such that the geometric coordinates (t,u,x2,x3) form a global coordinate
system on the compact subsetMInteresting =MLeft∪MSingular∪MRight depicted in Fig. 6. The figure is a subset of geometric
coordinate space Rt ×Ru ×T2, andMInteresting ⊂ {(t,u,x2,x3) ∈R×R×T2 | −U1 ≤ u ≤U2}. The acoustical metric
g is the fluid-solution-dependent Lorentzian metric (see (2.15a)) that captures the intrinsic geometry of sound waves in the
flow. The level-sets of u, which we denote by Pu and which are depicted as subsets of Cartesian coordinate space in Fig. 1B,
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are characteristic surfaces for the system (1.1a)–(1.1c). The fluid blowup is not visible in the geometric coordinates: the fluid
solution and its up-to-mid-order partial derivatives in the geometric coordinate system remain bounded onMInteresting.

The singularity is caused by the infinite density of the characteristics. With respect to the Cartesian coordinates,
there is singularity formation, described below, that coincides with the vanishing of the inverse foliation density

µ
def
= − 1

(g−1)αβ∂αt∂βu
. The vanishing of µ signifies the infinite density of the level-sets of u (viewed as a function of

the Cartesian coordinates). WithinMInteresting, this singular behavior occurs precisely along the singular boundary portion

B[0,n0] depicted in Fig. 6.

Behavior of the change of variables map. The change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) is a homeomor-
phism fromMInteresting onto its image in Cartesian coordinate space. Its Jacobian determinant is ≈ −µ, and since µ > 0
onMInteresting\B[0,n0], the map is a diffeomorphism onMInteresting\B[0,n0].

The shock singularity in the Cartesian differential structure. Let Σt denote the standard flat hypersurface of constant

Cartesian time. There exists a Σt-tangent vectorfield X of Euclidean length
√∑3

a=1(Xa)2 ≈ 1 and a constant C′ > 0
such that the following occurs. Within the compact subset Υ (MInteresting) = Υ (MLeft ∪MSingular ∪MRight) of Cartesian
coordinate space depicted in Fig. 7, we have |Xa∂av1| ≥ C′

µ and |Xa∂aϱ| ≥ C′
µ . Hence, these two quantities blow up

precisely on the singular boundary portion Υ (B[0,n0]), described below, where µ vanishes. The solution is smooth in

Υ
(
MInteresting\B[0,n0]

)
, and for α = 0,1,2,3, i = 1,2,3, and A = 2,3, the fluid quantities ϱ, vi , s, curlvi , ∂is, and

gabY a(A)∂αv
b remain bounded on all of Υ (MInteresting), where Y(2) and Y(3) are the vectorfields from (1.15), and they are

tangent to Pu∩Σt . Moreover, the up-to-mid-order derivatives of these quantities with respect to the Pu-tangent vectorfields
{L,Y(2),Y(3)} from (1.15) also remain bounded on all of Υ (MInteresting).

The structure of B[0,n0] and ∂−B[0,n0]. The singular boundary B[0,n0], viewed as a subset of geometric coordinate space

Rt ×Ru ×T2, is contained in the top boundary ofMInteresting and is a subset of the level-set {µ = 0}, specifically, a portion
that can be realized as the limit asm ↓ 0 of portions of the level-sets {(t,u,x2,x3) | µ(t,u,x2,x3) = m} that are either null
or spacelike with respect to the acoustical metric g. B[0,n0] is an embedded 3-dimensional sub-manifold-with-boundary
of geometric coordinate space Rt ×Ru ×T2. Moreover, we can decompose B[0,n0] =

⋃
n∈[0,n0] T̆0,−n, where each T̆0,−n is

a C1,1, 2-dimensional, spacelike sub-manifold of geometric coordinate space Rt ×Ru ×T2 that is a graph over T2 such
that µXµ ≡ −n along T̆0,−n. In particular, µXµ is well-defined and non-zero on T̆0,−n when n > 0, even though µ = 0
along T̆0,−n. The torus T̆0,0, which we refer to as the crease and also denote by ∂−B[0,n0], is the past boundary of B[0,n0].

The structure of Υ (B[0,n0]) and Υ (∂−B[0,n0]). The change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) is a homeo-

morphism from the singular boundary portion B[0,n0] in geometric coordinate space onto its image Υ (B[0,n0]) in Cartesian
coordinate space. Moreover, Υ is a diffeomorphism from B[0,n0]\∂−B[0,n0] onto its image Υ (B[0,n0]\∂−B[0,n0]). The im-
age set Υ (B[0,n0]) is an embedded 3-dimensional sub-manifold-with-boundary in Cartesian coordinate space that has
regularity15 C1, 12 with respect to the Cartesian coordinates. In addition, Υ (B[0,n0]\∂−B[0,n0]) is a null hypersurface with
respect to the acoustical metric g on Υ (MInteresting) in the following sense: Υ (B[0,n0]\∂−B[0,n0]) is ruled, in a degenerate
sense explained in Remark 33.3, by integral curves of the g-null vectorfield L = Lα∂α on Υ (MInteresting). Furthermore,
for n ∈ [0,n0], the images Υ (T̆0,−n) of the tori T̆0,−n, including the crease ∂−B[0,n0] = T̆0,0, are 2-dimensional, C1,1,
g-spacelike sub-manifolds of Cartesian coordinate space Rt ×Rx1 ×T2 that are graphs over T2.

Rough time functions reveal the structure of B[0,n0] and the tori foliating it. There exists a one-parameter family of

rough time functions {(n)τ}n∈[0,n0], each with range [τ0,0], such that the level-sets {(n)τ = τ} with τ ∈ [τ0,0) do not
intersect B[0,n0], while {(n)τ = 0} ∩ B[0,n0] = T̆0,−n is a two-dimensional submanifold that is diffeomorophic to T

2. That
is, each (n)τ reveals the structure of the torus T̆0,−n in B[0,n0], and T̆0,−n ⊂ {(n)τ = 0}. Moreover, each (n)τ is one degree less
differentiable with respect to the geometric coordinates than the fluid, and the tori T̆0,−n are two degrees less differentiable
(viewed as submanifolds of Rt ×Ru ×T2) than the fluid.

15The C1, 12 embedding of Υ (B[0,n0]) is provided by Prop. 33.2; it is the map (z,x2,x3)→ Υ ◦S(
√
z,x2,x3) from the proposition. .



16 Lecture notes on: The emergence of the singular boundary

In addition, there exists a rough time function (Interesting)τ with range [τ0,0], whose level-sets foliate MInteresting.
(Interesting)τ is C1,1 with respect to the geometric coordinates - and not more regular; see Remark 32.10. Two of its

level-sets intersected with {u ∈ [−U1,U2]}, namely (Interesting)Σ
[−U1,U2]
0 and (Interesting)Σ

[−U1,U2]
τ0 , are depicted in Fig. 6.

Finally, B[0,n0] ⊂ {(Interesting)τ = 0}.

Remark 1.5 (Remarks on our initial data assumptions). In our main results, we have chosen to assume the smallness

of the norm ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

defined in (11.4) because this immediately allows us to conclude that our results hold for open

sets of solutions whose initial data that are HNtop+1-close to the data of a background solution. However, the main
assumptions on the data that we use in our PDE analysis are actually stated in Sect. 11, in terms of data-size parameters
that satisfy assumptions stated in Sect. 10. All these assumptions follow as consequences of the smallness of the norm

∆̊
Ntop+1

Σ
[−U0 ,U2]
0

. That is, the proof of our main results would go through under only the assumptions stated in Sect. 11 and the

parameter-size assumptions stated in Sect. 10, modulo the remarks we make at the beginning of Sect. 27.4.

1.6. Remarks on the main results and methods. Before proceeding, we make a series of remarks about our main
results and our proof framework, with an emphasis on the new methods we introduce in this paper, how they connect to
methods developed in other papers, and how they connect to open problems.

• (Use of acoustic geometry to detect the singularity and to “hide it” by unfolding the characteristics). As in
Christodoulou’s breakthrough work [24] on irrotational and isentropic shock formation, our analysis fundamentally
relies on nonlinear geometric optics (which we also loosely refer to as “the acoustic geometry”), implemented
via an eikonal function u, which solves the eikonal equation (g−1)αβ∂αu∂βu = 0. The acoustical metric g is
a Lorentzian metric whose Cartesian components gαβ are functions of the fluid variables; see (2.15a) for the
precise formula. The level-sets Pu of u are null hypersurfaces (also known as “characteristics” or “characteristic
hypersurfaces”), and they correspond to the propagation of sound waves. Infinite density of the level-sets of u
(viewed as a function of the Cartesian coordinates) signifies the formation of a shock, and in the regime under
study, it coincides with the blowup of first-order partial derivatives of v and ϱ in directions transversal to the
Pu . As is shown in Fig. 1B, these phenomena occur along the entire singular boundary. Moreover, with the help of
u, we can construct a “geometric coordinate system” (t,u,x2,x3), relative to which the solution remains rather
smooth. This is crucial for our derivation of PDE estimates up to top-order.

• (The structure of the singular boundary and the crease). We prove that in the solution regime under study,
relative to a differential structure on spacetime tied to the eikonal function, the singular boundary B has the
structure of a 3D sub-manifold-with-boundary; see Fig. 5. Its past boundary ∂−B is the crease, which we prove
is a 2D acoustically spacelike sub-manifold, where our notion of “spacelike” is relative to g. These structures are
stable, and their availability is fundamental for our approach. These structures also have important implications
for the shock development problem, described below.

• (Prior works). There are many prior works on shock formation for compressible Euler solutions, including
Riemann’s famous work [64] in one spatial dimension. The one-dimensional theory [33] is in a quite advanced state
compared to the case of multi-dimensions. Nonetheless, in multi-dimensions, there has been dramatic progress
over the last several decades, starting with Alinhac’s foundational works on quasilinear wave equations [7, 8, 10, 11]
and Christodoulou’s breakthrough monograph on the irrotational and isentropic relativistic Euler equations [24];
see Sect. 1.9 for a discussion of some additional key developments in the history of the subject. While these results
have led to a revolution in our understanding of multi-dimensional shock formation, they all were limited in one or
more of the following ways: i) they treated only irrotational and isentropic solutions; ii) the methods allowed one
only to follow the solution to the constant-Cartesian-time hypersurface of first blowup; iii) the methods applied
only to fully non-degenerate singularities (see below for their definition) which, as it turns out, corresponds to
understanding the blowup at the unique first (relative to Cartesian time) point that is contained inside a strictly
convex crease; iv) the methods yielded a description only of some implicit portion of the boundary of the
maximal development of the data and in particular yielded only the portion of the crease that is tangent to some
flat spacelike hypersurface Σ such that a neighborhood of the crease lies in its future. A key point is that without
strict convexity, there can be points in the crease such that no open neighborhood of them is accessible through
such an approach. In particular, for the solutions we treat in our main results, the full structure of the crease is
not accessible through any of these approaches; see Fig. 5.
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• (Relevance for the shock development problem). The crease and its sub-manifold structure are crucial ingredi-
ents needed to set up the shock development problem, which, as we mentioned earlier, is the problem of describing
the transition of the solution from classical to weak, past the initial singularity. It turns out that the crease is
part of the maximal classical development and, once one constructs the weak solution, it will also be part of
the weak solution; see [25, Section 1.5] for a detailed discussion of the connection between the maximal classical
development and the weak solution. Away from symmetry, the shock development problem is an outstanding
open problem. In Christodoulou’s approach to studying shock developments under the simplifying assumption
that the vorticity and entropy are vanishing16 across the shock hypersurface [25], the rest of the singular boundary
is also important because it plays the role of a mathematical barrier in the construction of the weak solution.
However, aside from the crease, the singular boundary is not part of the weak solution. More precisely, in general,
there is a portion of the maximal classical development that does not agree with the weak solution because the
classical development does not account for the shock hypersurface. The shock hypersurface, which we denote by
K in Fig. 5, is not part of the constructions of this paper, and we mention it to highlight that the weak solution
– once it is constructed – will disagree with the classical solution in the region in between B and K; we have
shaded the region of disagreement in Fig. 5. We also highlight that K is supersonic relative to the acoustical metric
in the maximal classical development, and that K is “allowed” to emerge from the crease only if one imposes a
weak formulation of the flow, i.e., there is no such thing as “K” in the classical formulation.

• (The Cauchy horizon). In our forthcoming paper, we will describe the emergence of a Cauchy horizon from
the crease. The Cauchy horizon, denoted by C in Fig. 5, is a g-null hypersurface with past boundary equal to
the crease, and it is also a crucial ingredient in the setting up the shock development problem. Like the crease,
the Cauchy horizon is part of the maximal classical development and the weak solution (once one constructs it).
However, in that paper, we will show that the solution remains smooth up to the Cauchy horizon (away from the
crease, that is), which is in stark contrast to what happens along the singular boundary.

• (Solution regimes other than perturbations of simple isentropic plane-waves). Simple isentropic plane-
waves, mentioned already in Theorem 1.4, are compressible Euler solutions such that R(+) = R(+)(t,x1) and

R(−) = v2 = v3 ≡ 0, where the “almost17 Riemann invariants” R(±) are defined in Def. 2.5. Although for
definiteness, we have focused on general small perturbations of such solutions, the techniques we develop here
are robust and can be applied to other solution regimes of physical interest, such as the regime corresponding
to small, spatially-decaying perturbations18 of non-vacuum constant fluid states in R

1+3, where dispersive effects
play a fundamental role in the dynamics.

• (Building blocks that can accommodate degeneracies). We have focused our attention on perturbations of
simple isentropic plane-symmetric waves because such solutions are of physical interest and, from the point of
view of analysis, they are challenging to study because they exhibit degeneracies tied to lack of strict convexity (as
we mentioned above) of their singular boundaries. This is the first paper to fully grapple with these degeneracies
and as such, our results are new even in the sub-class of irrotational and isentropic solutions. The presence of
these degeneracies forced us to develop techniques that we anticipate can be used, in view of finite speed of
propagation, as building blocks to study the global structure of much more general shock-forming solutions across
space.

• (New, solution-dependent foliations are needed). To access the entire crease/singular boundary, in general,
one cannot exclusively rely on arguments based on analysis on regions bounded by the characteristic surfaces
Pu , surfaces Σt of constant Cartesian time, or, for that matter, any other family of surfaces that are “pre-
specified” in the sense that they are explicitly parameterized with respect to the Cartesian coordinates (e.g., one
can not generally use “tilted” spacelike hypersurfaces that are planes with respect to the Cartesian coordinates).
In particular, the crease is typically not contained in a fixed Pu or Σt ; see Fig. 1A. Hence, one of our key new
ideas in the paper is to replace the surfaces Σt with better ones. That is, we construct foliations by spacelike
hypersurfaces that are precisely adapted to the shape of the singular boundary (though we also fundamentally rely
on foliations by the Pu ). We construct these foliations by “flowing out” (see below), along the integral curves of

16The irrotational and isentropic weak solutions constructed by Christodoulou in [25] are not solutions to the compressible Euler equations because
they do not respect the jump in entropy and vorticity that must occur across the shock hypersurface. Instead, they are solutions to a closely related
hyperbolic PDE system that is equivalent to the compressible Euler equations for classical isentropic and irrotational classical solutions.

17For isentropic plane-symmetric solutions, R(±) are Riemann invariants.
18In this regime, the dispersive tendency of sound waves competes against the transport phenomena associated to vorticity and entropy, possibly

leading to exceptionally complicated long-time dynamics.
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a “generating vectorfield” that is transversal to Pu , from co-dimension 2 topological tori that are adapted to the
anticipated shape of the singularity. In Fig. 4A, the generating vectorfield is denoted by (0)W̆ , and crucially, it is
also transversal to the hypersurface X̆0, which is foliated by the tori, two of which are denoted by T̆0,0 and T̆−τ,0.
Similarly, in Fig. 4B, the generating vectorfield is denoted by (n)W̆ , and it is also transversal to the hypersurface
X̆−n, which is foliated by the tori, two of which are denoted by T̆0,−n and T̆−τ,−n. While there have been many
other works on the formation of shocks without symmetry assumptions, described in Sect. 1.7, those works have
relied on a “background” time function (typically the Cartesian time function t) and the corresponding foliations.
Note that the PDE analysis of compressible Euler flow, which inevitably involves some kind of energy estimates
with respect to the spacelike foliations, necessarily halts when the spacelike foliations first intersect the singular
boundary, because singularities form at the intersection points. This limits the portion of the singular boundary
that can be detected through background foliations.

• (Remarks on the simpler fully non-degenerate sub-regime). Despite the previous point, we note that there is a
sub-regime in which background time functions can be used to detect the structure of the crease (though perhaps
not a full neighborhood of it in the singular boundary): the regime in which the crease and singular boundary are
acoustically strictly convex (see below and Sect. 1.3). In Fig. 8, we depict an acoustically strictly convex singular
boundary.

Σ0

(x2,x3) ∈ T2

t
u ∈R∂−B

B

blowest

(A) An acoustically strictly convex crease and singular boundary in
geometric coordinate space

Σ0

(x2,x3) ∈ T2

t
x1 ∈R

∂−B

B

blowest

(B) The same crease and singular boundary in Cartesian coordinate
space

Figure 8. Acoustically strictly convex crease and singular boundary

We emphasize that symmetric solutions and their general perturbations fall outside of the acoustically strictly
convex regime. Away from symmetry, the acoustically strictly convex regime was first studied by Alinhac [7,8, 10, 11]
in the context of shock-forming solutions to quasilinear wave equations, where he followed the solution to the
constant-Cartesian-time hypersurface of first blowup. In particular, due to the strict convexity of the crease, the
singular set within the constant-Cartesian-time hypersurface of first blowup is an isolated point, denoted by blowest
in Fig. 8, and the isolated nature of this point was fundamental for his approach. We refer to such singularities as
fully non-degenerate; see Sect. 1.9.3 for further discussion.

• (Acoustical transversal convexity) Here and throughout, by an “acoustically strictly convex” hypersurface B,
we mean that relative to a system of geometric coordinates (t,u,x2,x3) tied to an acoustic eikonal function
u, the tangent planes to B lie below B; see Fig. 8A for an example of such a surface. The key point is that
acoustical strict convexity is absent in the singular boundaries of open sets of physically relevant shock-forming
solutions, including perturbations of isentropic plane-symmetric simple waves. To prove our main results, we rely
on acoustical transversal convexity (we will refer to it as “transversal convexity” for short), which is substantially
weaker than strict convexity and it is close to optimal in the following sense: without transversal convexity, the
crease could fail to have the structure of a 2D sub-manifold, which would drastically alter the qualitative character
of the singular boundary. We highlight that transversal convexity can be ensured along a portion of the singular
boundary containing the crease by making appropriate open assumption on the initial data. In the present paper,
we ensure transversal convexity via the data-assumptions stated in (11.18). By an “acoustically transversally convex”
hypersurface B, we mean that for each q ∈ B, relative to the geometric coordinates (t,u,x2,x3), there exists a
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line – as opposed to the full tangent plane – that is tangent to B at q such that i) the line lies below19 B and
ii) the line is transversal to the level-sets of u. In the context of Fig. 6, lack of strict convexity is exhibited by

the observation that at b1, the straight line that is tangent to T̆0,0 (this line is not drawn in the figure) lies above
B[0,n0], and similarly, at b2, the straight line that is tangent to T̆0,−n0

lies above B[0,n0]. In Fig. 6, our notion of

transversal convexity is exhibited, for example, by the fact that along the curve C in B[0,n0] joining b1 and b2,

the tangent lines to the curve (which are not drawn) lie below B[0,n0].
• (Rough time functions). Our new foliations are level-sets of an n-indexed family of “rough time functions,”

denoted by (n)τ, where n is a non-negative real parameter. The (n)τ solve a n-dependent transport equation
(see (4.4a)) with coefficients and initial data (see (4.4b)) determined by the acoustic geometry (i.e., the eikonal
function u and its derivatives) and the up-to-first-order derivatives of the fluid solution. Moreover, we choose
the initial data surface for (n)τ to be a level-set of a first derivative of the acoustic geometry, more precisely, the
−n level-set of a first derivative of the inverse foliation density in a direction transversal to the characteristics.
More precisely, each level-set of (n)τ is the solution a transport equation with (constant) initial data given on a
topological torus that itself is equal to the intersection of a level-set of µ (recall that µ is the inverse foliation
density of the characteristics) with a level-set of a transversal derivative of µ. In Fig. 4, we denote the initial
data-hypersurfaces for the transport equations by X̆0 and X̆−n, we denote some tori in the data-hypersurfaces
by T̆−τ,0, T̆0,0, T̆−τ,−n, and T̆0,−n, and we denote the vectorfields that transport (0)τ and (n)τ respectively by
(0)W̆ and (n)W̆ . These vectorfields are tangent to the level-sets of (0)τ and (n)τ respectively, and they are also
tangent to the singular boundary along the tori T̆0,0 and T̆0,−n respectively. We emphasize that this construction
is quite delicate and that it is crucial that we consider only the case n ≥ 0 in order to ensure that (n)τ has a
g-timelike normal or g-null normal; if we had tried to allow for n < 0, then near the crease, the level sets of (n)τ
would have had a g-timelike portion, which is not accessible through PDE analysis. For related discussion, see also
the point above Remark 1.1 and the discussion in Sect. 1.3 on the “fictitious portion” of the singular boundary. In
total, our construction of (n)τ is “dynamic” and “precisely solution-adapted,” and we achieve it through a bootstrap
argument. The singular boundary is provably one degree less differentiable than the fluid solution, and the same
is true for our rough time functions. Moreover, the tori (such as T̆−τ,−n) are two degrees less differentiable. To
handle this fundamental difficulty, we work with multiple coordinate systems, as we describe in the next point.

• (Three distinct coordinate systems). There is no known approach to studying multi-dimensional shock formation
that relies only on commuting the equations with the Cartesian coordinate partial derivative vectorfields. Because of
the roughness of the time functions (n)τ, we cannot close our top-order energy estimates using only commutation
vectorfields that are adapted20 to their level-sets; such an approach would lead to the loss of a derivative. Hence,
as in other works on shocks, we construct appropriate commutators with the help of the eikonal function u. In
total, our study of the flow relies on understanding the behavior of the fluid in three coordinate systems as well
as carefully controlling the relationships – which degenerate near the singular boundary – between the coordinate
systems:
1. The standard Cartesian coordinates (t,x1,x2,x3), relative to which the compressible Euler equations are
initially formulated and relative to which the singularity is visible.

2. The geometric coordinates (t,u,x2,x3) (where u is the eikonal function), for constructing suitable commutator
and multiplier vectorfields that are adapted to the singularity and have sufficient regularity, and relative to
which the solution remains rather smooth; see Sect. (1.10.12).

3. The adapted rough coordinates ((n)τ,u,x2,x3), where the level-sets of (n)τ are precisely adapted to the shape
of the singular boundary.

• (Elliptic-hyperbolic estimates for the vorticity and entropy). It is difficult to control the top-order derivatives
of the vorticity and entropy on regions that are adapted to the shape of the singular boundary. In particular,
the analytic framework we use, which is based on the formulation of compressible Euler flow provided by
Theorem 2.15, requires that we prove that the vorticity and entropy gradient are exactly as differentiable as the
velocity and density, all the way up to the singular boundary. To this end, we develop an upgraded version of
the “elliptic-hyperbolic” integral identities from [4]. The upgraded version, which we implement with the help of a
new characteristic current, allows us to handle severe degeneracies that arise near the crease. One key degeneracy

19Our approach to studying the singular boundary is local, and thus, in our main results, we only need the tangent lines to locally lie below it.
20However, for some crucial low-derivative-level estimates, we do use commutators that are adapted to the level-sets of (n)τ.
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is that the level-sets of our time functions (n)τ become asymptotically null near the crease, i.e., for n small and
positive; see Figs. 1A and 4B. We refer to Sect. 21 for our derivation of the elliptic-hyperbolic identities.

• (Transversal convexity). As we have mentioned, our analysis relies on an open data-assumption that we call
acoustical transversal convexity (which we refer to as transversal convexity for short); we refer to (11.18) for the
precise, technical data-estimates that capture transversal convexity. In studying the flow, we are able to propagate
the transversal convexity all the way up to the singular boundary, which in particular ensures that the level-sets
{µ = 0} and {X̆µ = 0} on RHS (1.5) (which defines the crease) intersect transversally, As we mentioned already
in Sect. 1.6, our assumption of transversal convexity is weaker than the assumption that the graph of {µ = 0},
viewed as a subset of geometric coordinate space, is strictly convex, and our weaker assumption is what allows
us, for example, to handle perturbations of symmetric solutions. Equivalently, under our approach, transversal
convexity allows us to understand the structure of the crease and the singular boundary for singularities that are
more general than the fully non-degenerate ones featured in Fig. 8, including the perturbations of simple isentropic
plane-waves that we treat in detail in our main theorems, as is depicted in Fig. 1A.

Our transversal convexity assumption is close to optimal in the sense that without it, the qualitative character
of the singular boundary can dramatically change, e.g., without transversal convexity, the crease could fail to have
the structure of a 2D sub-manifold, and then one could not even properly set up the shock development problem
using the known approach [25]; see the next point. The qualitative change of the structure of the crease in the
absence of transversal convexity can readily be seen in the context of the simple isentropic plane-symmetric
solutions that we study in Appendix A. More precisely, using the explicit formulas provided by Cor. A.3, one
can construct simple isentropic plane-symmetric fluid initial data such that transversal convexity fails and such
that the crease {µ = 0} ∩ {X̆µ = 0}, viewed as subset of 1 + 3-dimensional geometric coordinate space, fails to
have the structure of a 2D sub-manifold. For example, one can any consider smooth initial data such that the
data-term d

duH[R̊PS
(+)(u)] on RHS (A.23b) achieves its negative minimum along a closed interval I of u-values.

It is then easy to see, using (A.23b), (A.24), and the fact that X̆ = ∂
∂u for simple isentropic plane-symmetric

solutions, that X̆µ = 0 at all points in ΣTShock where µ vanishes, where TShock is the Cartesian time of first

blowup. In particular, the level-sets {µ = 0} and {X̆µ = 0} coincide on the interval of u values I within ΣTShock ,
signifying a dramatic failure of transversal convexity. Moreover, using the characterization (1.5) of the crease, we
see that the crease, viewed as a subset of 1 + 3-dimensional geometric coordinate space, is the following set:{
(t,u,x2,x3) | t = TShock,u ∈ I, (x2,x3) ∈ T2

}
, which is a 3D sub-manifold-with-boundary (in particular, it is not

a 2D sub-manifold).
• (Homeomorphism property of the change of variables map). Finally, we highlight that – thanks to the

transversal convexity – we are able to prove that the change of variables map Υ (t,u,x2,x3) def= (t,x1,x2,x3)
from geometric to Cartesian coordinates is a homeomorphism all the way up to the singular boundary, and it is
a diffeomorphism away from the singular boundary; see Prop. 33.1. In particular, Υ is a bijection on the region
MInteresting depicted in Fig. 6, and the level-sets of u never actually intersect MInteresting (even along the singular

boundary portion B[0,n0]!), despite the fact that the density of the level-sets of u in Cartesian coordinate space
becomes infinite along the singular boundary. Under transversal convexity, the map u → −u3 provides a crude
scalar caricature of the degenerate behavior of the x1 Cartesian coordinate along a constant Cartesian time slice Σt
that happens to be tangent to the crease. These phenomena are not just a mathematical curiosity; the bijective
property of Υ up to and including the singular boundary is crucial for formulating the shock development problem,
and this property can dramatically fail without transversal convexity. As in the previous point, this difficulty can
readily be seen in the context of the simple isentropic plane-symmetric solutions that we study in Appendix A. For
example, in the example discussed in the previous point, using that ∂

∂u x
1 = −µ in plane symmetry, one finds that

x1 = x1(t,u,x2,x3) is constant along the entire crease
{
(t,u,x2,x3) | t = TShock,u ∈ I, (x2,x3) ∈ T2

}
, thereby

exhibiting a dramatic failure of the injectivity of Υ . In the Cartesian coordinate space picture in 1 + 1 dimensions
(i.e., ignoring the x2 and x3 directions), the shock formation in this example corresponds to a continuum of
characteristic curves all intersecting in a single point in Cartesian coordinate space. This is in stark contrast to
the behavior of the characteristic hypersurfaces on the singular boundary in the transversally convex regime, as
we show in Prop. 33.2 and Fig. 14.
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1.7. Works building up towards Theorem 1.4. In this section, we describe some key prior works that developed some of
the technology we use here. While we have already mentioned some of them, here we provide additional details. We refer
to Sect. 1.9 for a more extensive (though far from comprehensive) discussion of the history of works on shock formation.

1.7.1. Christodoulou’s framework from [24]. Our proof of Theorem 1.4 relies on the framework of nonlinear geometric optics
developed by Christodoulou [24] in his groundbreaking proof of stable shock formation for the irrotational and isentropic
relativistic Euler equations in three spatial dimensions. In this setting, the equations reduce to a scalar quasilinear wave
equation for a potential function Φ :

(g−1)αβ(∂∂∂Φ)∂α∂βΦ = 0. (1.6)

In (1.6), gαβ is the acoustical metric, a Lorentzian metric whose rectangular component functions gαβ are nonlinear

functions of ∂∂∂Φ
def= (∂tΦ ,∂1Φ ,∂2Φ ,∂3Φ) depending on the equation of state: gαβ = gαβ(∂∂∂Φ). To implement nonlinear

geometric optics, Christodoulou constructed an eikonal function u, that is, a solution to the eikonal equation

(g−1)αβ(∂∂∂Φ)∂αu∂βu = 0. (1.7)

The level-sets of u, denoted by Pu , are characteristic for equation (1.6). Notice that the principal coefficients on LHS (1.7)
depend on ∂∂∂Φ and thus the evolution of u is coupled to that of Φ , signifying dynamic nature of the geometry and the
quasilinear nature of the flow. In [24], Christodoulou used u to construct a system of geometric coordinates (t,u,ϑ1,ϑ2)
on spacetime such that the solution remains rather smooth relative to these coordinates. The formation of the singularity
can be recovered as a degeneracy between the geometric coordinates and the standard ones, (t,x1,x2,x3). The degeneracy
is signified by the vanishing of the inverse foliation density µ, defined by:

µ
def= − 1

(g−1)αβ(∂∂∂Φ)∂αt∂βu
. (1.8)

In the region of classical existence, one has µ > 0, and when µ→ 0, the density of the Pu in (t,x1,x2,x3)-coordinate
space becomes infinite, signifying the “piling up” of the characteristics. In Fig. 1B, we show three distinct characteristic
hypersurfaces piling up along the singular boundary, along which µ vanishes. The hard part of the proof is to derive
energy estimates in regions where µ is small. We refer readers to Sect. 1.9 for further discussion on Christodoulou’s
framework.

1.7.2. Wave equations beyond fluid mechanics. The wave equations studied by Christodoulou in [24] were Euler–Lagrange
equations that were invariant with respect to the Poincaré group. In [69], we extended the results of [24] to apply to all
wave equations of type (1.6) and of type:

□g(Ψ )Ψ = Q(∂∂∂Ψ ,∂∂∂Ψ ) (1.9)

that fail to satisfy Klainerman’s null condition [44], where □g(Ψ ) is the covariant wave operator of g(Ψ ) (see Def. 2.13)
and Q is a null form relative to g (see Def. 2.14). The null form structure on RHS (1.9) is crucial for showing that in the
context of shock formation, Q(∂∂∂Ψ ,∂∂∂Ψ ) is an error term that has a negligible effect on the dynamics.

1.7.3. Nearly simple plane-symmetric waves. In [73], the second author and his collaborators extended the methods of
[24] and [69] to prove stable shock formation for a large class of quasilinear wave equations on the spacetime R ×Σ,
where Σ = R ×T was the two-dimensional spatial manifold. The initial data we treated were analogs of the data from
Theorem 1.4. More precisely, the data were (asymmetric) perturbations of simple plane-symmetric waves, which are
solutions that depend only on (t,x1) ∈R×R and which feature a wave moving only in one direction21 (say to the right).
As in the relativistic case, for irrotational and isentropic solutions to the 2D compressible Euler equations, the dynamics
reduces to a quasilinear wave equation of type (1.6). Hence, as a special case, the results of [73] yielded stable shock
formation for nearly simple and isentropic plane-symmetric solutions to the 2D irrotational and isentropic compressible
Euler equations.

21In plane symmetry, one can study the flow by constructing Riemann invariants, in which case simple plane-symmetric waves would feature only
a single non-zero Riemann invariant. See Appendix A, in which we use Riemann invariants to construct the background solutions whose perturbations
we study in our main results.
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1.7.4. A new formulation of the flow and stable shock formation in the presence of vorticity and entropy. In [51], the second
author and Luk developed a new formulation of barotropic22 compressible Euler flow with remarkable regularity and null
structures, which in many regimes allows one to study the flow as if it was a perturbation of the quasilinear wave equation
(1.9). In [72], the second author derived a similar new formulation for all equations of state in which the pressure is a
function of the density and entropy, thus allowing one to incorporate thermodynamic effects into the framework of [24].
In particular, the equations of [72] include a system of transport-div-curl equations for the vorticity and entropy, which
allows one to propagate a gain of one derivative for these quantities relative to standard estimates. In this article, we use
the equations of [72] to prove our main results, and the gain in regularity is crucial for our approach. In Theorem 2.15,
we recall the new formulation of the flow derived in [72]. In [37], we derived a similar new formulation for the relativistic
Euler equations.

In [50], the second author and Luk used the equations of [51] and the technology of [24, 69, 73] to prove the first stable
shock formation result for the compressible Euler equations with vorticity. In 2D , the authors treated open sets of initial
data with vorticity that are close to the data of an irrotational simple plane-wave solution. The main theorem yielded the
full structure of the set of blowup-points within the constant-time hypersurface ΣTShock of first blowup; in the context of
Fig. 1A, the authors understood the structure of ΣTShock ∩B.

In [52], the second author and Luk used the equations of [72] to extend the results of [50] to the 3D case in the
presence of vorticity and entropy. The proof was much more difficult than the 2D case because the regularity theory
for the vorticity and entropy relied on elliptic estimates on constant-Cartesian-time hypersurfaces Σt , which are difficult
to derive near the shock. In particular, the authors used the elliptic estimates to handle the vorticity stretching term
in the equations, which, as is well-known, vanishes for 2D barotropic solutions, i.e., in the 2D barotropic case, (1.11b)
simplifies to BΩ = 0. These elliptic estimates relied on the transport-div-curl equations for the vorticity and entropy
that we derived in [72] (i.e., equations (1.11c)–(1.11d)), and the approach yielded elliptic estimates only along complete, flat
hypersurfaces of constant time. As in the 2D case, this approach yielded the full structure of the set of blowup-points
within the constant-time hypersurface ΣTShock of first blowup, i.e., in the context of Fig. 1A, the singular boundary portion
ΣTShock ∩ B. As we have already mentioned, in order to study the flow beyond the Cartesian-flat hypersurface ΣTShock
and to understand a larger portion of B, one needs additional ingredients, including the identities that we describe in
Sect. 1.7.5.

1.7.5. Remarkable localized integral identities. In [4], we derived new localized, geometric integral identities for solutions
to the 3D compressible Euler equations. The identities allow us to derive elliptic estimates for the vorticity and entropy
not just on regions bounded by constant-Cartesian-time hypersurfaces Σt (as described above), but rather on arbitrary
spacetime regions that are bounded by spacelike or null hypersurfaces. We use this crucial ingredient in the present
paper to derive top-order vorticity and entropy estimates up to the singular boundary.

1.8. A different approach. Very recently, Shkoller–Vicol [66] have introduced an important new method for making
progress on the open problems described in Sect. 1.4. For some open sets of initially smooth, shock-forming solutions
of the 2D isentropic Euler equations with spatial topology T

2, they construct a small portion of the crease ∂−B, the
singular boundary B and the Cauchy horizon C, which they call “curve23 of pre-shocks”, “downstream surface”, and
“upstream surface”, respectively.

Their work uses Arbitrary-Lagrangian-Eulerian (ALE) coordinates, which are closely related to the acoustical geometric
coordinates used in the current paper. Roughly ALE coordinates are equivalent to working with24 Υ −1, where the change
of variables map Υ was introduced at the beginning of Sect. 1.5. Importantly, the paper [66] introduces a new tool in
the study of shock formation that is more efficient with respect to regularity. More precisely, the authors differentiate
the equations one time with a Cartesian derivative before differentiating with geometric coordinates, which allows them
to close the energy estimates for the acoustic geometry without having to use Alinhac’s Nash–Moser estimates or the
kind of renormalizations that have previously been employed in the context of Christodoulou’s geometric energy method;
see Sect. 1.9.4 for further discussion. While the approach of first differentiating some solution variables one time with
a Cartesian derivative has previously been employed in the study of multidimensional shock formation [50, 70], [66] is
the first result to use this approach for the shock-forming variables. To implement their approach, the authors rely on
a novel, quasilinear version of Riemann invariants for the once-differentiated solution variables, as well as well as some
well-designed integration by parts that take into account the precise structure of the equations satisfied by the quasilinear

22Barotropic equations of state are such that the pressure p can be expressed as a function of the density ϱ, i.e., with no dependence on s.
23Note that in 1 + 2 dimensions, the co-dimension two nature of the ∂−B implies that it is one dimensional.
24Alinhac also worked with Υ −1 in his works [7, 8, 10, 11] on shock formation for quasilinear wave equations.
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Riemann invariants. We also point out that the elliptic-hyperbolic estimates described in Sect. ?? were not needed in [66],
in part due to the absence of vorticity stretching in 2D and their isentropicity assumptions. It would be interesting to
discover if the gain in regularity for the transport variables that we rely on in the general 3D case can be derived through
the Riemann invariant method introduced in [66].

We now describe the structure and portion of the crease, singular boundary, and Cauchy horizon constructed in [66].
The portion of B constructed in [66] is strictly convex in the sense explained above in Sects. 1.3 and 1.6 and depicted in
Fig. 8B; see also [66, Figure 4 (Center Panel), Section 6.6]. This is a consequence of the authors’ “non-degeneracy condition”
[66, Page 8], which is equivalent to the fully non-degenerate singularities described in Sect. 1.6. With ΣTShock denoting the
constant-Cartesian-time hypersurface of first blowup present in this regime, the portions of ∂−B, B, C constructed in [66]
are contained in T

2 × [TShock,TShock +O(ϵ)], where ϵ is small, the initial gradient of the shock-forming variable is of size
1
ϵ , and these submanifolds have convexity that is lower-bounded by a positive ϵ-independent constant; see [66, Sect. 4.1]
and [66, Condition (v), Page 29]. It would be interesting to adapt the approach of [66] to obtain more of the boundary
of the maximal development, e.g., the full structure of a connected component of the crease. We also highlight that it
remains an open problem to derive the full maximal development (across space and time) for shock-forming solutions.

1.9. Additional history and results tied to shocks and singularities. A fundamental issue, discovered by Riemann
[64] in the context of one spatial dimension, is that initially smooth compressible Euler solutions can develop shock
singularities in finite time. Roughly, shocks are singularities such that ρ, v, s remain bounded, but some first derivative
of ρ and v blows up. Riemann’s analysis relied on his discovery of Riemann invariants for isentropic solutions in
1D . Relative to Riemann invariants, the equations reduce to a quasilinear system for two transport equations with
distinct characteristic directions; see Appendix A. The proof of the blowup of the solution’s first derivatives then follows
from differentiating the equations to obtain a Riccati-type structure, much like in the model case of Burgers’ equation
∂tΨ +Ψ ∂xΨ = 0.

1.9.1. The advanced state of the 1D theory and the key difference with multi-dimensions. In 1D , for a large class of
quasilinear hyperbolic systems (such as strictly hyperbolic systems), there is an advanced theory capable of describing
the global behavior of solutions, including the formation of shocks and the subsequent interactions of the shock waves.
We refer readers to the compendium [33] for a history of the subject and a comprehensive introduction to the main 1D
techniques.

A principal reason for the advanced state of the 1D theory is that the equations are well-posed for initial data in
appropriate bounded variation (BV) spaces. The state of affairs is dramatically different in multi-dimensions; Rauch’s
fundamental work [62] showed that in multi-dimensions, quasilinear hyperbolic systems are typically ill-posed for data
in BV spaces. In fact, the only known well-posedness results in multi-dimensions are for initial data in L2-type Sobolev
spaces. For this reason, in multi-dimensions, one is forced to derive energy estimates, which can be incredibly difficult
in regions containing singularities; this is the main reason why the theory of multi-dimensional shock waves is so much
less developed compared to the 1D case.

We also highlight that for the relativistic Euler equations in 1D , we recently provided [2] a complete description
of a localized subset of the maximal development for some initially smooth, isentropic plane-symmetric shock-forming
solutions that enjoy the acoustical transversal convexity described in Sect. 1.3. In particular, we showed that a singular
boundary and a Cauchy horizon emerge from the first singularity. See also [66, Appendix A] for an analogous result for
the compressible Euler equations in 1D .

1.9.2. The first blowup-result in multi-dimensions without symmetry: proof by contradiction. Providing a constructive proof
of shock formation in higher dimensions turns out to be a very hard problem. In a nutshell, the reason is that away
from 1D , it seems necessary to carefully track the evolution of characteristic hypersurfaces, which is much more difficult
compared to the 1D case. The characteristic geometry (e.g., the eikonal function u in the context of the present article)
is much more difficult to construct and control, and, crucially, all proofs of even local well-posedness rely on energy
estimates in L2-based Sobolev spaces, which are difficult to derive near singularities. In [67], Sideris proved an influential,
non-constructive stable blowup-result in 3D , the first one for multi-dimensional compressible Euler flow. He assumed
that the equation of state is barotropic (see Footnote 22) and that it satisfies a convexity assumption. His proof applied to
a large set of data, but it did not reveal the nature of the blowup; his arguments relied on virial-type identities, and he
showed blowup through a contradiction-argument.
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1.9.3. Alinhac’s constructive proof of the formation of isolated singularities. The first constructive results on shock forma-
tion in multidimensions were by Alinhac, who used nonlinear geometric optics (i.e., he constructed characteristic surfaces)
and Nash–Moser estimates to prove stable small-data shock formation for a class of quasilinear wave equations of the
form:

(g−1)αβ(∂∂∂Φ)∂α∂βΦ = 0, (1.10)

whenever they fail to satisfy the first25 null condition in 2D [7, 8], whenever they fail to satisfy the second null condition
in 2D [10], and whenever they fail to satisfy the null condition in 3D [10], where the 3D null condition was identified
by Klainerman in [44]; see also Alinhac’s lecture notes for an overview of his approach [11]. He used the Nash–Moser
estimates to avoid derivative loss in his control of the regularity of the characteristic surfaces. His proof applied to open
sets of fully non-degenerate initial data, which he showed lead to the formation of fully non-degenerate singularities in
which ∂∂∂2Φ blows up while Φ and ∂∂∂Φ remain bounded. Roughly, Alinhac’s fully non-degenerate initial data were such
that the singular boundary has the strictly convex structure depicted in Fig. 8, and his approach allowed him to follow
the solution up to the lowest point on the singular boundary, but not further. By a “fully non-degenerate” singularity,
we mean that the singularity is an isolated point in the constant-Cartesian-type hypersurface of first blowup. In Fig. 8,
we denote this lowest point by “blowest.” Alinhac’s framework has also been applied to other wave equations; see, for
example, [34–36].

1.9.4. Christodoulou’s breakthrough on irrotational, isentropic shock formation. In [24], Christodoulou proved a stable shock
formation result for open sets of irrotational and isentropic initial solutions to the relativistic Euler equations in three
spatial dimensions. In this context, one can study the flow with the help of a potential function Φ , and relativistic
Euler flow reduces to a quasilinear wave equation of type (1.10). Aside from a single exceptional equation of state
corresponding to the graph of a timelike minimal surface in Minkowski space, all wave equations of irrotational and
isentropic relativistic fluid mechanics fail to satisfy the null condition, i.e., the basic mechanism driving shock formation
is present in all equations but one. The data that Christodoulou treated were compact perturbations of non-vacuum
constant state data, and his shock formation results revealed the instability of these states (due to shock formation in
perturbed solutions) under irrotational and isentropic perturbations. To study the solution, Christodoulou used a refined
version of nonlinear geometric optics, based on techniques that he co-developed with Klainerman in their proof of the
stability of the Minkowski space [23]. Specifically, Christodoulou constructed an eikonal function u, i.e., a solution to the
eikonal equation (g−1)αβ(∂∂∂Φ)∂αu∂βu = 0, and he showed that the wave equation solution’s first Cartesian derivatives,
∂∂∂Φ , remain quite smooth relative to the geometric coordinates. The level-sets Pu of u are characteristic hypersurfaces
for the wave equation. The surfaces depend on the solution itself, reflecting the quasilinear nature of the flow.

As we mentioned already, as in the present paper, in Christodoulou’s framework, the formation of the shock corresponds
to the vanishing of the inverse foliation density µ. In the region of classical existence, one has µ > 0, and when µ→ 0,
the density of the Pu in Cartesian coordinate space becomes infinite, signifying the piling up of the characteristics. The
blowup of ∂∂∂2Φ is a consequence of the degeneracy between the Cartesian and a system26 of “geometric coordinates”
(t,u,ϑ1,ϑ2), where we schematically represent the degeneracy caused by the vanishing of µ as follows: ∂∂∂ ∼ 1

µ
∂
∂u ; the

blowup of ∂∂∂2Φ then follows from this relation, from proving that µ→ 0 in finite time, and from proving a lower of the
form

∣∣∣ ∂
∂u∂Φ

∣∣∣ ≳ 1.
Importantly, Christodoulou’s proof relied on geometric energy estimates relative to foliations of spacetime by the Pu

and flat Cartesian time slices Σt , rather than Nash–Moser estimates. To control the geometry without derivative loss,
he relied on techniques and renormalized quantities that have their roots in [26, 45]. Crucially, Christodoulou’s geometric
approach allowed him to prove shock formation for a larger class of singularities than the fully non-degenerate ones
treated by Alinhac. He was able to show that blowup occurs at one or more points, even for solutions whose singular
boundaries do not have to enjoy the strict convexity displayed in Fig. 8. However, in the absence of strict convexity, the
full structure of the maximal development was not revealed. Interestingly, the work [24] also yielded a sharp conditional
global existence result, which showed that irrotational, isentropic near-constant-state solutions are global unless a shock
forms.

25In 2D , for small-data solutions to (1.10) to be global, two null conditions must be satisfied, one tied to the structure of the quadratic nonlinearities
and the second tied to the structure of the cubic nonlinearities. These 2D null conditions and their relevance for small-data global existence were
discovered by Alinhac [9].

26In [24], the “angular” coordinate functions ϑ1 and ϑ2 were constructed so as to be constant along the integral curves of the null generator L. In
contrast, in the present paper, in the role of the “angular” coordinate functions, we use the standard Cartesian coordinates x2 and x3 , which are not
typically constant along the integral curves of L. This minor difference turns out to have no substantial effect on the analysis.
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1.9.5. Shock-formation works that built upon Christodoulou’s framework. Many authors have used Christodoulou’s ap-
proach to prove stable shock formation for various quasilinear hyperbolic PDEs. For example, there are stable shock
formation results for:

• A larger class of wave equations [59, 69].
• Solution regimes that are different than the small, compactly supported data regime: [41, 59].
• Solutions that exist classically precisely on a past-infinite half-slab [58].
• Various systems involving multiple speeds of propagation, some with symmetry [12, 29], and some without [70, 71].

1.9.6. Shock formation in the presence of vorticity and entropy. The aforementioned paper [50] was to first to prove stable
shock formation for open sets of 2D compressible Euler solutions with vorticity under an arbitrary27 barotropic equation
of state. The initial data were not required to be fully non-degenerate, i.e., transversal convexity did not play a role in
the proof of blowup. The main theorem followed the solution to the constant-time hypersurface of first blowup, and it
gave a complete description of what blows up and what does not, as well as a precise description of the set of singular
points at the time of first blowup, i.e., in the context of Fig. 1A, a complete description of ΣTShock ∩B. Since the geometric
setup relied on the methods of [24], the singularities were allowed to be more general than the fully non-degenerate ones
described in Sect. 1.9.3.

The recent work [52] extended [50] to the case of the 3D compressible Euler equations under an arbitrary (Footnote 27
applies here as well) equation of state with vorticity and entropy. As in [50], stable shock formation was proved in [52]
without transversal convexity, although additional information on the Hölder regularity of the solution with respect to the
Cartesian coordinates was derived28 in a sub-regime of solutions that do have transversal convexity.

1.9.7. A new approach to proving the formation of fully-non-degenerate shock singularities via self-similarity. In [16, 17],
the authors developed an interesting new approach for proving the formation of shock singularities in 3D compressible
Euler solutions under an adiabatic equation of state without symmetry, and with vorticity (and also entropy in [17]). The
approach allows one to follow the solution to the time of first blowup, and the singularities produced are isolated within
the constant-time hypersurfaces of first blowup. That is, in the context of Fig. 8, the approach allows one to follow the
solution up to the point blowest. Such singularities are analogs of the non-degenerate singularities that Alinhac studied
[7, 8, 10, 11] in the case of quasilinear wave equations. The framework of [16, 17] relied on modulation parameters to show
that for open sets of smooth data with large gradients, a singularity develops in a short time, and it is a perturbation of
a self-similar Burgers’-type shock.

The aforementioned 3D works were preceded by the work [18] in 2D azimuthal symmetry with vorticity. In the recent
work [15], in the same symmetry class, the authors constructed shock-forming solutions whose cusp-like spatial behavior
(with respect to the standard coordinates) is non-generic; such solutions are unstable. In the language of the present
paper, such solutions do not exhibit the quantitative transversal convexity (18.5) that we exploit in our main theorem.

1.9.8. Self-similar blowup for non-hyperbolic PDEs. Notably, there are non-hyperbolic PDES with solutions that exhibit
self-similar blowup modeled on a self-similar Burgers’-type shock. Examples include the Euler–Poison system [61], Burgers’
equation with transverse viscosity [32], the Burgers–Hilbert equations [76], the fractal Burgers equation [46], and various
dispersive or dissipative perturbations of the Burgers equation [60]; see also [30, 31]. It would be interesting to investigate
the extent to which the set of singular points can be understood.

1.9.9. Implosion singularities. The recent breakthrough work [57] in spherical symmetry showed that for the compressible
Euler equations and the compressible Navier–Stokes equations, under adiabatic equations of state p = ϱγ with γ > 1,
outside of a countable set of γ-values, there exist C∞ initial data with density tending to 0 at spatial infinity such that the
corresponding solution’s density blows up at the center of symmetry in finite time. In fact, there are infinitely many such
singularity-forming solutions, collectively exhibiting a discrete sequence of blowup-rates. These “implosion singularities”
are much more severe than shocks. The methods of [57] suggest that the implosion singularity might enjoy co-dimension
stability under perturbations of the initial data without symmetry. In [13], the results of [57] were extended to all γ > 1,
and in the case γ = 7

5 , implosion singularity formation was shown for Navier–Stokes solutions for some initial data with
a non-zero limiting density at spatial infinity. See also the recent paper [19] for a proof of implosion singularity formation
for some solutions with spatial topology R

3 or T3 without symmetry assumptions.

27As in our main results, the Chaplygin gas equation of state is exceptional and is not known to lead to shock formation.
28With transversal convexity, the solution was shown to enjoy C1/3-Hölder regularity with respect to the Cartesian coordinates up to the singularity,

while not enjoying C(1/3)+ -Hölder regularity. Providing a more detailed treatment of this sub-regime was inspired by Hölder regularity results derived
in [16–18] for some solutions with fully non-degenerate singularities.
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1.9.10. Rarefaction waves. In [5, 6], Alinhac used a Nash–Moser iteration scheme to prove local existence and uniqueness
of rarefaction wave solutions for a large class of multi-dimensional hyperbolic systems that includes scalar conservation
laws and the compressible Euler equations as special cases. The solutions are multi-dimensional analogs of solutions to
the well-known Riemann problem in 1D , in which the initial data are piecewise smooth and discontinuous, and the initial
discontinuity is immediately smoothed out by the flow. The recent works [53, 54] have sharpened Alinhac’s results for
the 2D isentropic compressible Euler equations for a family of irrotational data. Specifically, in [53, 54], for discontinuous
irrotational data that are (asymmetric) perturbations of plane-symmetric data for a corresponding 1D Riemann problem,
the authors proved that the corresponding 2D irrotational and isentropic rarefaction solution is a perturbation of the
standard 1D rarefaction wave solution to the Riemann problem. The approach of [53, 54] circumvents loss of derivatives
in the corresponding linearized problem, which allows the authors to avoid Alinhac’s Nash–Moser estimates. [53, 54] also
provides a sharp description of the characteristic geometry in the problem.

1.9.11. Inviscid limits. A physically important and mathematically interesting problem is to study the relationship between
the formation of shock singularities in classical solutions to hyperbolic PDEs and the behavior of classical solutions when
a small amount of viscosity is added to the equations. Of particular interest is to understand the zero-viscosity limiting
behavior of classical solutions. The recent paper [21], which concerns Burgers’ equation in 1D and its viscous analog, is
the only work to date that yields rigorous information about the zero-viscosity limit of classical solutions all the way up
until the time of first singularity formation for the inviscid solution. See also the earlier work [20], which uses formal
asymptotic expansions to connect the behavior of viscous solutions to the inviscid one near the shock. The main results of
[21] show that the 1D viscous Burgers’ equation solution can be decomposed into a singular piece and a smoother piece,
and that the viscous solution converges to the singular piece in ∥ · ∥L∞ as the viscosity vanishes (the L∞ norm is shown
to be bounded from above by the viscosity parameter to a positive power). Here, the ∥ ·∥L∞ norm is over the entire region
of classical existence of the inviscid solution, i.e., the L∞-convergence holds all the way until the time of first blowup for
the solution to the inviscid Burgers’ equation. The results of [21] apply for non-degenerate initial data, where the notion of
non-degeneracy in [21] is essentially equivalent to the transversal convexity assumption satisfied by the solutions featured
in our main theorems. An important open problem is to extend the results of [21] to the compressible Euler equations
(where the corresponding viscous model is the compressible Navier–Stokes equations) and to multiple spatial dimensions.

1.9.12. Progress on the shock development problem. In Majda’s celebrated works [55, 56], he proved linear stability and
local well-posedness results for a class of weak solutions to the 3D compressible Euler equations arising from a set of
discontinuous initial data. More precisely, he assumed that the data on R

3 were piecewise smooth and jumped across
a smooth two-dimensional hypersurface such that the jumps are consistent with well-known Rankine–Hugoniot jump
conditions. He also assumed the data satisfy a certain “stability condition.” His main result was the construction of a
local, unique weak solution in a subset of R1+3, and a corresponding three-dimensional shock hypersurface, across which
the solution jumps in accordance with the Rankine–Hugoniot jump conditions. This is known as the shock front problem.

An important problem, distinct from the shock front problem, is to determine whether/how Majda’s discontinuous
initial conditions can develop from an initially smooth solution. That is, one would like to describe the transition of
compressible Euler solutions from being smooth, to developing a “first singularity” – which in the language of the present
paper is the crease – and finally to becoming a weak solution that develops a shock hypersurface (emanating from the
crease), across which the solution jumps. This is known as the shock development problem. In Fig. 5, we denote the shock
hypersurface by “K,” and we show its emergence from the crease ∂−B. We stress that Majda’s works did not study the
flow in a neighborhood of a crease ∂−B, but rather started from initial conditions on a flat hypersurface Σt0 such that
Σt0 ∩K, which is a co-dimension one hypersurface in Σt0 across which the data jump, is already assumed to exist. A
crucial issue in the study of the shock development problem is that the jump conditions imply that initially irrotational
and isentropic smooth solutions will develop dynamic entropy and non-trivial vorticity as the solution jumps across the
shock hypersurface. This means that it is not possible to solve the true shock development problem in the class of
irrotational and isentropic solutions. The full problem in 3D without symmetry assumptions remains open, but there has
been inspiring progress in recent years:

• In [47], under a convexity assumption on the nonlinearity, Lebaud solved the shock formation and shock develop-
ment problem for the p-system in 1D , which is a 2×2 hyperbolic system that admits a pair of Riemann invariants.
She assumed that before the shock, one of the Riemann invariants is constant (so that the pre-shock dynamics
are that of a simple wave), and she made a non-degeneracy assumption on the initial data that is an analog of
the transversal convexity we exploit in our main results. In [22], the authors proved a similar result, but without
assuming that one of the Riemann invariants is constant before the shock. In [43], the authors proved a related
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result for scalar conservation laws, their main new contribution being that they treated initial data satisfying a
weaker non-degeneracy assumption.

• In [27], Christodoulou–Lisibach used Riemann invariants and a pair of eikonal functions (one “ingoing” and the
other “outgoing”) to solve the shock development problem for spherically symmetric, barotropic solutions to the
relativistic Euler equations. Their proof worked for all equations of state and for solution regimes such that the
determinism condition holds. Roughly, this condition posits that the shock hypersurface that emerges from the
singularity should be: i) supersonic (i.e., spacelike) with respect to the acoustical metric corresponding to the pre-
shock state of the solution (which, in the literature, is often called the “state ahead of the shock”), and ii) subsonic
(i.e., timelike) with respect to the acoustical metric corresponding to the post-shock state of the solution (which,
in the literature, is often called the “state behind the shock”). Such solutions are considered to be the physical
ones.29 Mathematically, the problem comprised a system of quasilinear transport equations for a piecewise smooth
solution coupled to the free boundary problem of tracking the location of the shock hypersurface, which emanates
from the crease. They solved the problem through an iteration scheme that relied on the assumption that the
crease exhibits transversal convexity and the availability of estimates that stem from already having access to the
maximal development (which Christodoulou constructed in [24]). Relative to geometric coordinates analogous to the
ones that we use in our main results, the data were assumed to be smooth along the crease and Cauchy horizon,
and this allowed them to use Taylor expansions to approximate the expected location of the shock hypersurface
and the behavior of the solution along it; these Taylor expansions form a crucial ingredient in controlling the
iterates.

• In his breakthrough monograph [25], Christodoulou extended the methods from [27] and solved the “restricted”
shock development problem without symmetry assumptions for the compressible Euler equations and relativistic
Euler equations in an arbitrary number of spatial dimensions. The word “restricted” means that he studied only
irrotational and isentropic solutions, and that he ignored the jump in entropy and vorticity across the shock
hypersurface, thereby producing a weak solution to a hyperbolic PDE system that approximates the real one.
Christodoulou assumed that along the crease, the solution satisfies the same kind of transversal convexity that
the solutions produced by our main results enjoy. In particular, this class of singularities is more general than
the fully non-degenerate ones treated by Alinhac, as we discussed in Sect. 1.9.3. The main new difficulty in [25]
is deriving energy estimates for the solution and the acoustic geometry. In particular, relative to a system of
geometric coordinates, the high order energies exhibit degenerate behavior, much like the high order energies in
the present paper.

• In [42], Huicheng–Lu solved the shock development problem for a class of first-order, scalar, divergence-form
hyperbolic equations in 2D , starting from initial singularities that are fully non-degenerate, i.e., such that the
crease is strictly convex, as in Fig. 8.

• In [14], Buckmaster–Drivas–Shkoller–Vicol extended the methods from [16–18] to solve the shock development
problem for the 2D compressible Euler equations in azimuthal symmetry with vorticity and entropy under the
adiabatic equations of state p = 1

γϱ
γ exp(s) for initial singularities that are fully non-degenerate with respect to

variations in the radial and angular variable. In particular, [14] provides the first solution to a compressible Euler
shock development problem with vorticity. As in [27], the problem comprised transport equations coupled to the
issue of tracking the location of the free boundary, and it was solved via an iteration scheme based on Taylor
expansions relative to a coordinate system in which the solution is rather smooth. A new feature compared to [27]
is that there is another characteristic direction in [14], corresponding to the transporting of vorticity and entropy
by the material derivative vectorfield.

We also highlight that recently, there have been other interesting works on weak solutions to the compressible Euler
equations in 1D without entropy. In [48], Lisibach proved local existence for the shock reflection (off of a wall) problem
in plane-symmetry. In [49], he studied the interaction of two shocks in plane-symmetry and proved local existence of a
weak solution near the interaction point. See also [75], in which Wang proved the same result in spherical symmetry.

1.10. Ideas behind the proof of the main results. In this section, we provide a more detailed overview of some key
ideas behind the proof of our main results.

29In particular, in [27], it was shown that in the full shock development problem without symmetry, there is a regime in which the determinism
condition is equivalent to the entropy increasing via a jump across the shock hypersurface.
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Figure 9. data-hypersurfaces in geometric coordinate space

1.10.1. Almost Riemann invariants. To study perturbations of simple isentropic plane-symmetric waves, we find it con-
venient to replace the scalar functions ρ (where ρ is the logarithmic density from Def. 2.4) and v1 with the “almost30

Riemann invariants” (see Def. 2.5) R(+), R(−) which carry the same information.

Here and in the rest of the paper, Ψ⃗
def= (R(+),R(−),v

2,v3, s) are the fluid “wave-variables” and gαβ = gαβ(Ψ⃗ ) denotes
the acoustical metric (see definition (2.15a)), which drives the propagation of sound waves.

1.10.2. “Late-time” assumptions on the data for perturbations of simple isentropic plane-waves. We consider the “bona
fide” initial data to be the data specified along a portion of the flat spacelike hypersurface Σ0 and a portion of a null

hypersurface, denoted by P
[0, 4

δ̊∗
]

−U1
in Fig. 9 (i.e., we are studying the Cauchy problem for spacelike-characteristic data),

where the parameter δ̊∗ > 0 (see (11.6)) depends on the data and is such that the Cartesian time of first blowup is
approximately δ̊−1

∗ . However, the structures we need to detect the singular boundary appear only late in the evolution,
and we therefore find it convenient to state our data-assumptions on a “late” hypersurface portion of constant rough

time, denoted by (n)̃Σ
[−U1,U2]
τ0 in Fig. 9, that will end up being close to the singular boundary B[0,n0]. That is, we find

it convenient to state the assumptions on the spacelike level-sets (n)̃Σ
[−U1,U2]
τ0

def= {(n)τ = τ0} ∩ {−U1 ≤ u ≤ U2} of the
rough time functions, which we describe in detail in Sect. 1.10.7. In Sect. 11, we state all of these data-assumptions. In
Appendix B, we use Cauchy stability arguments to show that these assumptions are satisfied by perturbations of the bona
fide data on Σ0 corresponding to a class of shock-forming simple isentropic plane-wave solutions. In Appendix A, we use
standard arguments to construct these simple isentropic plane-wave solutions.

30For plane-symmetric isentropic solutions, R(+) , R(−) are Riemann invariants, but away from symmetry, they are not.
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1.10.3. The geometric div-curl-transport formulation of the flow. To derive estimates for the fluid variables, we fundamen-
tally rely on a geometric reformulation of the flow, which was derived in [72] and which we restate below in Theorem 2.15.
To aid our discussion in the remainder of the introduction, here we recall the formulation in schematic form, with
unimportant lower order terms omitted:

□g(Ψ⃗ )Ψ = (C,D) +Q(∂∂∂Ψ⃗ ,∂∂∂Ψ⃗ ) + (Ω,S) ·∂∂∂Ψ⃗ , (1.11a)

B(Ω,S) = (Ω,S) ·∂∂∂Ψ⃗ , (1.11b)

B(C,D) = Q(∂∂∂Ψ⃗ ,∂Ω) +Q(∂∂∂Ψ⃗ ,∂S) + S ·Q(∂∂∂Ψ⃗ ,∂∂∂Ψ⃗ ) + S · S ·∂∂∂Ψ⃗ , (1.11c)

(divΩ,curlS) = ∂Ψ⃗ . (1.11d)

In (1.11a)–(1.11d), Ω = (curlv)i

exp(ρ) is the specific vorticity (here, ρ is the logarithmic density, defined in Sect. 2.3.1) and S i = ∂is
is the entropy gradient vectorfield. The modified fluid variables C and D are defined in Def. 2.7 and satisfy C ∼ curlΩ
and D ∼ divS , where “∼” denotes equality up to lower order (in the sense of regularity) factors and terms. Moreover,

□g(Ψ⃗ )f is the covariant wave operator of g(Ψ⃗ ) acting on the scalar function f (see Def. 2.13), ∂∂∂f = (∂tf ,∂1,∂2f ,∂3f )
is the array of Cartesian coordinate spacetime partial derivatives of f , and ∂f = (∂1,∂2f ,∂3f ) is the array of Cartesian
spatial partial derivatives of f . The “Q” are null forms relative to g (see Def. 2.14); see Sect. 1.10.11 for a discussion of the
crucial role they play in the proof.

We highlight that when deriving top-order L2 estimates for the specific vorticity and entropy gradient, we crucially
rely on the transport-div-curl equations (1.11c)–(1.11d) to propagate sufficient regularity for the source terms (C,D) on
RHS (1.11a); see Sect. 27 for the details. That is, even though these terms formally satisfy C ∼ curlΩ and D ∼ divS , we
cannot control (C,D) using only the transport equation (1.11b). The reason is that (1.11b) has a source term depending on

∂∂∂Ψ⃗ , and thus, by estimating only the transport equation, we could prove only that curlΩ, divS are as regular as ∂∂∂2Ψ⃗ ,
which would be insufficient regularity for treating curlΩ and divS as source terms in the wave equation (1.11b).

1.10.4. Three kinds of coordinate systems. The proof of our main results is based on understanding the behavior of the
solution relative to three coordinate systems as well as understanding the degenerate (near the shock) transformation
properties of the coordinate systems.

1. (The Cartesian coordinates (t,x1,x2,x3)). These are the fundamental coordinates relative to which the compress-
ible Euler equations (1.1a)–(1.1c) are posed. In the solution regime under study, the singularity along B coincides
with the blowup of |∂1R(+)|, where R(+) is the “almost Riemann invariant” introduced in Def. 2.5.

2. (The geometric coordinates (t,u,x2,x3)). As in the other works described in Sect. 1.7, u is an eikonal function,
that is, a solution to the eikonal equation:

(g−1)αβ∂αu∂βu = 0, (1.12)

where g = g(Ψ⃗ ) is the acoustical metric, a fluid-dependent Lorentzian metric that governs the propagation of
sounds waves; see definition (2.15a). Its level-sets Pu are characteristic for the compressible Euler equations (1.1a)–
(1.1c), and its gradient vectorfield −(g−1)αβ∂βu is parallel to the vectorfield L appearing throughout the article. In
this paper, we refer to the Pu as “characteristics,” “null hypersurfaces,” “acoustically null hypersurfaces,” or “g-null
hypersurfaces.” We refer to (t,u,x2,x3) as the “geometric coordinates.” We prove that the solution remains rather
smooth relative to the geometric coordinates. However, our high order geometric energies can blow up as the
shock forms (i.e., on B), which introduces severe technical difficulties into the PDE analysis. This is tied to the
crucial fact that the geometric coordinates are not diffeomorphic to the Cartesian ones up to B; see Prop. 33.1.

3. • (The adapted rough coordinates ((n)τ,u,x2,x3)). These are a new ingredient, fundamental for our main
results. The rough time functions (n)τ are a one-parameter family of time coordinates, indexed by n ∈ [0,n0],
where n0 > 0 is a real number depending on the solution regime under study. The rough adapted coordinates
((n)τ,u,x2,x3) are the corresponding one-parameter family of coordinate systems. The key virtue of the
(n)τ is that their level-sets are good spacelike hypersurfaces in geometric coordinate space that, unlike the
constant-Cartesian-time hypersurfaces Σt , are adapted to the shape of B. The price one pays is that the (n)τ

have limited regularity (see Sect. 1.10.7) and that when n > 0 is small, the level sets of (n)τ can be “almost null”
near ∂−B, leading to degeneracies in the PDE estimates; see Fig. 4B. The (n)τ are constructed (see Sect. 4) so
that their range is [τ0,0] for some constant τ0 < 0, such that the fluid data are “known” on the level-set
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{(n)τ = τ0} (see Sect. 1.10.2), and such that {(n)τ = 0} intersects B precisely in one embedded, spacelike,
two-dimensional torus, denoted by T̆0,−n. The union of the n-indexed tori foliates B; see Fig. 4.

• (The adapted rough coordinates ((Interesting)τ,u,x2,x3)). With the help of the family of coordinate systems
{((n)τ,u,x2,x3)}n∈[0,n0], we construct another rough time function, denoted by (Interesting)τ, whose level sets

foliate a region MInteresting containing the entire singular boundary portion under study. (Interesting)τ is a
C1,1 function of the geometric coordinates (t,u,x2,x3), and this is its optimal regularity regardless of the
smoothness of the data (see Remark 32.10). In particular, the singular boundary portion under study is a
sub-manifold-with-boundary that is contained in the level-set {(Interesting)τ = 0}; see Fig. 6, which displays

MInteresting as well as two level-sets of (Interesting)τ, denoted by (Interesting)Σ
[−U1,U2]
0 and (Interesting)Σ

[−U1,U2]
τ0 .

1.10.5. The vanishing of µ signifies the singularity formation. As in [24], the formation of the shock singularity is precisely
characterized by the vanishing of the inverse foliation density µ, defined in (1.8), where in the present context, g is the
acoustical metric. We recall that the vanishing of µ signifies the infinite density of the characteristics; see Fig. 1B, where
µ vanishes along B and the characteristics pile up there. The blowup of some Cartesian partial derivative of the almost
Riemann invariant R(+) then follows from proving a bound of the schematic form µ|XR(+)| ≳ 1 in a neighborhood of
the points where µ vanishes, where X is a vectorfield that is transversal to the Pu , that is L∞ close to the Cartesian
partial derivative vectorfield ∂1, and that has Euclidean length approximately equal to 1. This is essentially the same
blowup-mechanism as in the irrotational and isentropic case, as we described in Sect. 1.9.4. Here we highlight that the

vectorfield X̆
def= µX , which is a geometric replacement for the partial derivative vectorfield ∂

∂u (in the geometric coordinate
system), can be used to derive regular estimates for the solution’s transversal derivatives: all fluid quantities and geometric
tensors Q that we use to study the solution satisfy |X̆Q| ≲ 1 up to the singularity; the µ-weight in the definition of X̆
precisely cancels out the singular behavior of |XQ| as µ ↓ 0. See Sect. 1.10.9 for further discussion.

1.10.6. The causal structure of the singular boundary. The discussion in Sect. 1.10.5 suggests that the singular boundary
should be the entire hypersurface {µ = 0}. However, as we already discussed in Sect. 1.3, this is not true, for only a subset
of {µ = 0} is part of the maximal development. One reason is that formally, for the solutions under study, {µ = 0} is
the limit of hypersurfaces {µ = m} as m ↓ 0, and for m > 0, these hypersurfaces have a spacelike part, a null part, and
timelike part. For m > 0, our analysis yields access to the portions of {µ = m} that are g-spacelike or g-null, but not
necessarily the g-timelike portion. Hence, the portion of {µ = 0} that makes up the singular boundary can be viewed as
the limit as m ↓ 0, of the portion of {µ = m} that is g-spacelike or g-null. From a careful analysis of the causal structure
of the hypersurfaces {µ = m}, which we provide in Lemma 32.6, we find that the accessible portion of {µ = 0} that
arises in the limit m ↓ 0 is {µ = 0} ∩ {X̆µ ≤ 0}, where the vectorfield X̆ is the same one described in Sect. 1.10.5. More
precisely, our results are local in spacetime, and our main theorem yields the structure of the singular boundary portion
{µ = 0} ∩ {−n0 ≤ X̆µ ≤ 0}, which we denote by B[0,n0] in Fig. 6. We also recall (see Sect. 1.3) that the complementary
set {µ = 0} ∩ {X̆µ > 0} is a “fictitious portion” that is not part of the maximal development (and hence cannot be
constructed uniquely from the initial data). From a different perspective, in the context of Fig. 1A, the fictitious portion
{µ = 0} ∩ {X̆µ > 0} is “cut off” by the Cauchy horizon C , i.e., in the maximal classical globally hyperbolic development,
C develops “before” {µ = 0} ∩ {X̆µ > 0} has a chance to form.

In view of the above discussion, in our main theorem, we construct the singular boundary portion B[0,n0] def=⋃
n∈[0,n0]{µ = 0}∩{X̆µ = −n}; see Fig. 6. Our aforementioned transversal convexity assumption on the initial data, which

we are able to propagate throughout the evolution (see (18.5)), ensures that the hypersurfaces {µ = 0} and {X̆µ = −n}
intersect transversally in embedded, two-dimensional g-spacelike tori that we denote by T̆0,−n. In particular, we show
that B[0,n0] is an embedded three-dimensional sub-manifold-with-boundary that is foliated by the tori T̆0,−n. Its past
boundary, denoted by ∂−B[0,n0], is the torus T̆0,0, a set that we have also been referring to as the crease.

We next highlight that the crease plays a distinguished role in the shock development problem described in Sect. 1.9.12.
Once that problem is solved, in the weak solution, the hypersurface of discontinuity K will emanate from the crease; see
Fig. 5. In particular, the crease is a crucial component of the “data” for the shock development problem.

1.10.7. The one-parameter family of rough time functions {(n)τ}n∈[0,n0]. We follow the solution up to the singular boundary

portion B[0,n0] =
⋃

n∈[0,n0] T̆0,−n by constructing a one-parameter family of time functions {(n)τ}n∈[0,n0] and controlling

the solution on the near-zero level-sets of each (n)τ. The (n)τ are constructed such that their range is [τ0,0] for some
small parameter τ0 < 0 and such that T̆0,−n ⊂ {(n)τ = 0}. We construct (n)τ by setting it equal to µ on the hypersurface
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{X̆µ = −n} and then transporting it along the flow of a well-constructed vectorfield that is transversal to {X̆µ = −n}. Our
construction ensures that the level-sets of (n)τ are g-spacelike in the region of classical existence, that they are tangent
to B[0,n0], and that they lie below B[0,n0]. In Fig. 4B, we denote the hypersurface {X̆µ = −n} by X̆−n and we denote the
well-constructed transversal vectorfield by (n)W̆ . See Sect. 4 for the details on the construction of (n)τ.

A key feature of our construction is that for τ ∈ [τ0,0], we have:

min
{(n)τ=τ}

µ = −τ, (1.13)

and the minimum value is achieved precisely along the set T̆−τ,−n = {(n)τ = τ} ∩ {X̆µ = −n}. Thus, for m ∈ [0,−τ0],
we have T̆m,−n = {µ = m} ∩ {X̆µ = −n}. Our high order energy estimates feature crucial factors of 1/µ, and by (1.13),
in adapted rough coordinates ((n)τ,u,x2,x3), such factors are bounded in magnitude on {(n)τ = τ} by ≤ 1

|τ| . Thus, our

energy estimates on the level-sets of (n)τ feature difficult factors of 1
|τ| , which leads to singular estimates at the high

derivative levels. While related difficulties were present in all the works that we cited above on shock formation without
symmetry assumptions, the estimate (1.13) allows for a simplified approach to handling the degeneracy; it directly connects
the degeneracy to a coordinate function. We refer to Sect. 29.7.1 for our detailed analysis of the factors of 1

|τ| and the way
they affect our energy estimates, and to Sect. 1.10.12 for an overview of these estimates.

We emphasize the following key point:

The rough time functions (n)τ are precisely adapted to the structure of the singularity and, in particular, are
not more regular than µ. Since it turns out that µ is one degree less differentiable31 than the fluid variables

Ψ⃗ , we cannot use commutation vectorfields adapted to the level-sets of (n)τ to control the solution up
to top-order; that approach would lead to derivative loss. For this reason, as in other works on shock
formation, we use the eikonal function u to construct32 commutation vectorfields that allow us to control
the solution.

Finally, we point out that it is not too difficult to construct the (n)τ; the difficult part of the analysis is controlling the
fluid solution and the acoustical geometry all the way up the hypersurface {(n)τ = 0}.

1.10.8. The bootstrap assumptions. To prove our main results, we fix n ∈ [0,n0] and make an elaborate set of bootstrap
assumptions on the slab [τ0,τBoot)× [−U1,U2]×T2 corresponding to the adapted rough coordinates ((n)τ,u,x2,x3) (the
corresponding region in geometric coordinate space is denoted by (n)M[τ0,τ),[−U1,U2] in the bulk of the paper). More
precisely, on the slab, our bootstrap assumptions describe the following:

• The behavior of µ, including the key property of transversal convexity; see Sect. 12.2.1.
• The rough time function (n)τ; see Sect. 12.2.2.
• The properties of various change of variables maps; see Sect. 12.2.3.
• The structure and locations of various embedded sub-manifolds; see Sect. 12.2.4.
• The size of the Cartesian coordinates t and x1 on the slab; see Sect. 12.2.5.
• The “soft” regularity properties of various quantities on the closure of the slab; see Sect. 12.2.6.
• The L∞-size of the fluid variables and their Pu-tangential derivatives up to mid-order; see Sect. 12.3.1.
• The L∞-size of the transversal and mixed tangential-transversal derivatives of the fluid variables and the acoustic

geometry; see Sect. 12.3.2.

• The size of our L2-type energies and null-fluxes for the wave-variables Ψ⃗ up to top-order; see Sect. 24.3.

Our primary analytic tasks in the paper are to derive strict improvements of the bootstrap assumptions by making suitable
assumptions on the data. Once this has been accomplished, a standard continuity argument, provided by Prop. 31.2 and
the proof of Theorem 31.1, implies that the solution exists classically on the maximal slab [τ0,0)× [−U1,U2]×T2 and
satisfies the bootstrap assumptions there. Hence, Theorem 31.1 yields the main results at fixed n, which in turn form the
main ingredients in the proof of the central theorem on the singular boundary, Theorem 34.1. In Sect. 12.5, we provide a
road map, indicating the spots in the article where we derive improvements of the bootstrap assumptions.

31In particular, in view of the transport equation (3.44), we see that µ cannot be more regular than the source term X̆Ψ⃗ . This is optimal, as can
already be seen in plane-symmetry via the explicit formula (A.24).

32It does not seem possible to adequately control the solution by commuting the equations with the standard Cartesian partial derivatives ∂α ; the
Cartesian vectorfields are not adapted to the singularity, and that approach would lead to singular error terms that we have no obvious means to control.
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Figure 10. The commutation vectorfields in Cartesian coordinates

1.10.9. Regular estimates with respect to the geometric coordinates on the rough foliations. A key idea of the proof, going
back to [24], is to prove that the solution remains rather smooth relative to the geometric coordinates (t,u,x2,x3).
We implement this by following the approach of [24, 50, 52, 73] and using the eikonal function to construct a set of
commutation vectorfields:

Z
def= {L,X̆,Y(2),Y(3)} (1.14)

that are adapted to the characteristics; see Fig. 10 for a picture of these vectorfields (with one spatial dimension suppressed),
and see Sect. 3 for our detailed construction of the elements of Z . In (1.14) and throughout, L is a g-null vectorfield (i.e.,
g(L,L) = 0) that is proportional to the (geodesic) gradient vectorfield (g−1)αβ∂αu∂β , normalized by Lt = 1, and tangent
to the characteristics Pu . Y(2),Y(3) are geometric replacements for ∂2 and ∂3 that span the tangent space of the acoustic

tori ℓt,u
def= Pu ∩Σt . The vectorfields {L,Y(2),Y(3)} span the tangent space of Pu at each of its points. X̆ is tangent to

the flat Cartesian hypersurface Σt , g-orthogonal to ℓt,u , and normalized33 by X̆u = 1. Note that X̆ is transversal to the
characteristics. This is important because all the degeneracies in the problem of shock formation are tied to the behavior
of transversal derivatives. We also note that, in accordance with the discussion in Sect.,1.10.5, we have X̆ = µX , where
g(X,X) = 1; see Lemma 3.9.

As in [52], we use the full set of commutators Z to derive L∞ and Hölder estimates for solutions, while for deriving
energy estimates, we only need to use the following Pu-tangent subset:

P
def= {L,Y(2),Y(3)}. (1.15)

In particular, our results show that, based on our assumptions on the data, the up-to-fourth order derivatives of Ψ⃗ , Ω, and
S with respect to the elements of Z are bounded in L∞. This is equivalent to the L∞-boundedness of the up-to-fourth
order derivatives of these quantities with respect to the geometric coordinate partial derivatives. Similar results hold for
the up-to-third order derivatives of C and D, and due to our assumptions on the data, all fluid variables enjoy additional
regularity in directions tangent to the characteristics Pu . Similar results – though at different regularity levels – also hold
for the rough time functions (n)τ and various embeddings of various sub-manifolds into geometric or Cartesian coordinate

space, such as the hypersurfaces X̆−n
def= {X̆µ = −n} and the µ-adapted tori T̆m,−n

def= {µ = m} ∩ {X̆µ = −n}.

33In this paper, this normalization condition is equivalent to g(X̆, X̆) = µ2 .
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To derive the L∞ and Hölder estimates, we make “fundamental” L∞ bootstrap assumptions for the fluid wave-
variables and their P-derivatives up to mid-order, as we described in Sect. 1.10.8. By combining our fundamental
bootstrap assumptions with some auxiliary ones, we commute all relevant equations with the elements of Z and treat
them as transport equations with derivative-losing source terms. This allows us to derive L∞ and Hölder estimates for
the solution’s transversal and mixed transversal-tangential derivatives and to control the embeddings mentioned in the
previous paragraph. We carry out this analysis in Sects.14–17. In Sect. 18, we derive related, but much sharper, pointwise
estimates for µ at the low derivative levels, which in particular yield the crucial estimate (1.13). Near the end of the paper,
we use our energy estimates and Sobolev embedding to improve the fundamental bootstrap assumptions; see Sect. 30.

Finally, we will briefly discuss the regularity of the Cartesian components of the elements of Z . They have regularity
at the schematic level ∂∂∂u, and it turns out that by using renormalizations (which we refer to a “modified quantities”)

and elliptic estimates on co-dimension 2 hypersurfaces (specifically, the rough tori (n)̃ℓτ,u
def= {(n)τ = τ} ∩ Pu ), which are

techniques that originated in [24, 26, 45], we can show that the elements of Z have just enough regularity to allow us to
derive energy estimates up to top-order. We construct the modified quantities in Sect. 19, we derive the elliptic estimates
in Sect. 28, and we derive the “final” L2 estimates involving these quantities Sect. 29.

1.10.10. Smooth geometry versus rough geometry and elliptic estimates for χ. Although regularity considerations force us to
commute the equations with elements of Z and P (e.g., the adapted rough coordinate partial derivative vectorfields do
not have sufficient regularity for commuting the equations up to top-order), in order to detect the precise structure of the
singular boundary, we must derive estimates on the rough hypersurfaces {(n)τ = τ}, the characteristics Pu , and the rough

tori (n)̃ℓτ,u
def= {(n)τ = τ} ∩Pu . For this reason, throughout the analysis, we have to control the geometry of these surfaces

(e.g., the Gauss curvature of (n)̃ℓτ,u ) by quantitatively relating it to the elements of Z and P and their derivatives.
A particularly noteworthy manifestation of this issue is the following: we must control the top-order derivatives of the
null second fundamental form χ = 1

2L/Lg/ , where g/ is the Riemannian metric induced by g on ℓt,u = Σt ∩ Pu . Here,
L/Lg/ denotes Lie differentiation with respect to L followed by g-orthogonal projection onto ℓt,u . Note that the “acoustic
torus” ℓt,u is not adapted (or necessarily fully contained in) the rough spacetime regions under study. Even though χ
is ℓt,u-tangent, to avoid derivative loss in the top-order estimates on the rough spacetime regions, we have to derive

elliptic estimates for χ on the rough tori (n)̃ℓτ,u . To close these elliptic estimates, we must suitably relate χ to a tensor

on (n)̃ℓτ,u and control the Gauss curvature of (n)̃ℓτ,u (viewed as a subset of spacetime equipped with the metric g), all
while being mindful about crucial factors of µ, whose vanishing signifies the shock singularity. This delicate analysis is
located in Sect. 28, where we construct two distinct frames on Pu , one adapted to the acoustic tori ℓt,u and one adapted

to the rough tori (n)̃ℓτ,u , and we control the relationship between the two frames as a key step in obtaining the elliptic
estimates.

1.10.11. Derivative-quadratic terms and null forms. As in many of the aforementioned works on shock formation, in the
present paper, we crucially rely on the fact that all the derivative-quadratic inhomogeneous terms in the system (1.11a)–(1.11d)
are null forms relative to g. From the point of view of analysis, the crucial point is that when expanded relative to (say)

the commutator frame (1.14), the µ-weighted34 null forms satisfy, schematically, µQ(∂∂∂Ψ⃗ ,∂∂∂Ψ⃗ ) = X̆Ψ⃗ · P Ψ⃗ +µP Ψ⃗ · P Ψ⃗ ,
where P schematically denotes elements of the Pu-tangent subset (1.15); see Lemma 9.3 for a more detailed statement

concerning the precise null forms we encounter in our analysis. In particular, in the expansion of µQ(∂∂∂Ψ⃗ ,∂∂∂Ψ⃗ ), terms
proportional to X̆Ψ⃗ · X̆Ψ⃗ are completely absent. This is crucial because, if present, signature considerations would imply

that such terms would have to be accompanied by a factor of µ−1 (i.e., the term would be proportional to µ−1X̆Ψ⃗ · X̆Ψ⃗ ),
and the factor of µ−1 (which blows up as µ→ 0) would have obstructed our philosophy of deriving regular estimates for
the solution’s Z-derivatives. Similar remarks apply to all the other null forms in (1.11a)–(1.11d).

The upshot is the following: all of the derivative-quadratic terms in the system (1.11a)–(1.11d) that drive the formation
of the shock are “hidden” in the definition of the covariant wave operator □g(Ψ⃗ ) on LHS (1.11a) and become visible when

one expands □g(Ψ⃗ )Ψ relative to the Cartesian coordinates (say, via the formula (2.20)). The virtue of working with □g(Ψ⃗ )
is that there is an advanced machinery for deriving geometric commutator and multiplier energy estimates for such
operators.

34In our analysis, we introduce a µ weight into various equations and estimates.
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Figure 11. Regions in geometric coordinate space on which we derive estimates

1.10.12. Geometric wave and transport energy estimates on the rough foliations, with singular high order behavior. To derive
L2 estimates up to top-order, we commute equations35 (1.11a)–(1.11d) with the elements of P (see (1.15)) and derive energy
and elliptic estimates on regions of the form (n)M[τ0,τ],[−U1,u], which are bounded by rough hypersurfaces (i.e., level sets
of the rough time function) on the top and bottom and null hypersurfaces on the sides; see Fig 11.

Our elliptic estimates, which are localized in spacetime, come in two flavors: those for the acoustic geometry, as
we mentioned in Sect. 1.10.10, and “elliptic-hyperbolic” estimates for some of the fluid variables. The localized elliptic-
hyperbolic estimates for the fluid variables are a difficult new feature of the present work, and we discuss them in
Sect. 1.10.13; here we discuss the energy estimates for the wave equations (1.11a), which in reality are coupled to the elliptic
estimates. More precisely, for solutions Ψ to (1.11a), we construct coercive energies E[Ψ ](τ,u) on rough hypersurface

portions (n)̃Σ
[−U1,u]
τ and null fluxes F [Ψ ](τ,u) on null hypersurface portions (n)P [τ0,τ)

u (see Def. 4.11 for definitions of
these portions), and we derive suitable energy identities by using a well-known framework based on the energy-momentum
tensor for wave equations and the well-chosen multiplier vectorfield T̆ = (1 + 2µ)L + 2X̆ ; see Prop. 20.9. We note in
passing that we derive similar energy estimates for the transport equations (1.11b)–(1.11c), and we will not discuss them in
this introduction, aside from mentioning that the g-timelike property g(B,B) = −1 (see Lemma 3.9) is crucial for those
estimates, as it ensures that B is transversal to the characteristics.

As we mentioned in Sect. 1.10.9, to control the top-order derivatives of the acoustic geometry without derivative
loss, we rely on renormalizations, which we implement by constructing appropriate “modified quantities,” originating in
[24, 26, 45, 69]; see Sect. 19. As in other works on shock waves without symmetry, this renormalization leads to top-order
energy identities for the wave-variables Ψ involving singular terms. Our rough foliations are constructed so that the
singular terms are bounded by factors of 1

|τ| , and the resulting top-order energy-flux inequalities can be caricatured as

35More precisely, to avoid uncontrollable error terms, we weight these equations by a factor of µ before commuting.
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follows:

E[PNtopΨ ](τ,u) +F [PNtopΨ ](τ,u) +K[PNtopΨ ](τ,u)

≤ Cϵ̊2 + A

∫ τ

τ0

1
|τ′ |

E[PNtopΨ ](τ′ ,u)dτ′ + · · · ,
(1.16)

where LHS (1.16) is the sum of the top-order energy E, the null flux F , and the following coercive spacetime integral (see
Defs. 20.7–20.8 for the precise definitions), where g/ is the Riemannian metric induced by g on ℓt,u = Σt ∩Pu :

K[PNtopΨ ](τ,u) def= −
∫

(τ′ ,u′ ,x2,x3)∈[τ0,τ)×[−U1,u]×T2
1[−Uj,Uj](u

′)((n)̃Lµ)|d/ PNtopΨ |2g/ dx2dx3du′dτ′ . (1.17)

In (1.16), ϵ̊ ≥ 0 is the small size of the perturbation of the initial data away from a background plane-symmetric solution,
τ0 < 0 denotes the initial rough time (at which the data perturbation is assumed to be small), and τ ∈ [τ0,0]. Moreover,
A > 0 is a universal constant (which we have placed in a box to highlight its importance) that is independent of
the equation of state, and · · · denotes similar36 or easier error terms or terms that can be handled with the help of the
elliptic-hyperbolic estimates described in Sect. 1.10.13. In the spacetime integral K[PNtopΨ ](τ,u) on LHS (1.16), |d/ PNtopΨ |2g/
denotes the square norm of the derivatives of PNtopΨ in directions tangent to the acoustic tori ℓt′ ,u′ = Σt′ ∩Pu′ , while
1−Uj,Uj](u′) is the characteristic function of a small interval [−Uj,Uj] of u-values near the crease, and the factor
(n)̃Lµ is a null derivative of µ that is quantitatively negative in this interval. Hence, in view of the minus sign in (1.17), we
see that the overall sign of the spacetime integral on LHS (1.16) is positive, and this integral is crucially used in the proof to
absorb some of the error terms in “· · · ” on RHS (1.16). We also note in passing that some of the error terms in “· · · ” are
non-singular terms that can be handled with the help of the null fluxes F [PNtopΨ ](τ,u), and that some of these terms,
when treated with Grönwall’s inequality in u, allow for the possibility of exponential growth in u, which is permissible
within the scope of our approach (u is confined to a compact set). The key point is that by applying Grönwall’s inequality
to (1.16), we deduce (ignoring the “· · · ” terms here) the following singular (as τ ↑ 0) top-order energy estimate:

E[PNtopΨ ](τ,u) +F [PNtopΨ ](τ,u) +K[PNtopΨ ](τ,u) ≲ ϵ̊2|τ|−A. (1.18)

Thus, even though we have used geometrically defined commutators to try to turn the problem of shock formation
into a “regular” problem, a remnant of the singularity survives37 at the top-derivative level, i.e, our “unfolding” of the
characteristics does not completely “hide” the singularity. This calls into question the basic philosophy of the approach.

However, two crucial structural features of the problem rescue the situation. First, the universal constant A – and
hence the singular factor |τ|−A on RHS (1.18) – is independent of Ntop. This means that we can choose Ntop to be large
without increasing the top-order singularity strength. Second, below top-order, one can avoid using the renormalization
procedure to control the acoustic geometry. This leads to the loss of one derivative in the energy estimate hierarchy, but
the loss of one derivative is permissible below top-order. The price one pays is that this procedure couples the below-
top-order estimates to the singular top-order ones. At one derivative below the top-order, the corresponding energy-null
flux inequality can be caricatured38 as follows:

E[PNtop−1Ψ ](τ,u) +F [PNtop−1Ψ ](τ,u) +K[PNtop−1Ψ ](τ,u)

≤ Cϵ̊2 +C
∫ τ

τ′=τ0

1
|τ′ |1/2

E
1/2[PNtop−1Ψ ](τ′ ,u)

∫ τ′

τ′′=τ0

1
|τ′′ |1/2

E
1/2[PNtopΨ ](τ′′ ,u)dτ′′dτ′ + · · · .

(1.19)

By applying Grönwall’s inequality to (1.19) and accounting for the singular top-order behavior stated in (1.18), we deduce
that:

E[PNtop−1Ψ ](τ,u) +F [PNtop−1Ψ ](τ,u) +K[PNtop−1Ψ ](τ,u) ≲ ϵ̊2|τ|−(A−2). (1.20)

36In reality, in the energy estimates, there are other difficult error terms that have to be handled with integration by parts with respect to 1
L(n)τ

L,

and these lead to difficult singular boundary terms that we control in Lemma 29.12.
37These singular top-order estimates are solely a product of our need to derive energy estimates, and in particular, this difficulty does not arise in

1D , where one can use transport estimates to close the problem.
38In reality, the top-order and below-top-order energy estimates are highly coupled and have to be derived simultaneously through an intricate

version of Grönwall’s lemma, which we provide in Sect. 29.7.1.
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(1.20) shows that if we descend one derivative level below top-order, then the energy becomes less singular by a factor of
|τ|2. As in [24, 50, 52, 69], one can continue the descent, proving that:

E[PNtop−2Ψ ](τ,u) +F [PNtop−2Ψ ](τ,u) +K[PNtop−2Ψ ](τ,u) ≲ ϵ̊2|τ|−(A−4), (1.21)

· · · , and finally arriving at the non-singular estimate:

E[PNtop−A2 Ψ ](τ,u) +F [PNtop−A2 Ψ ](τ,u) +K[PNtop−A2 Ψ ](τ,u) ≲ ϵ̊2. (1.22)

The crucial non-singular energy estimate (1.22) is what allows us to show, via Sobolev embedding, that the solution is
bounded with respect to the geometric coordinates (t,u,x2,x3) at derivative levels ≈Ntop − A

2 and below.
Finally, we note that a related energy estimate hierarchy holds for the other fluid variables (including Ω, S , C, D) and

the acoustic geometry (including quantities such as µ and χ), and that in practice, all these estimates are coupled (though
in certain spots in our bootstrap argument, we exploit weak coupling, which allows us to derive some estimates before
deriving others). We refer to Sect. 24 for detailed statements of the full hierarchy of energy estimates.

1.10.13. Localized elliptic-hyperbolic fluid variable estimates via the characteristic current. As we mentioned earlier, to
close the top-order energy estimates for the vorticity and entropy on the rough domains (n)M[τ0,τ],[−U1,u′] = {τ0 ≤ (n)τ ≤
τ} ∩ {−U1 ≤ u ≤ u′}, we cannot rely exclusively on the transport equation (1.11b); that approach would lead to the loss
of a derivative in our scheme. Instead, we use the full structure of the transport-div-curl system (1.11b)–(1.11d). We also
have to show that the corresponding estimates, which are singular, are compatible with the blowup-rates of the high order
wave and transport energies, described in Sect. 1.10.12. We used a version of this approach in [52], where we followed the
solution precisely to the constant-Cartesian-time hypersurface of first blowup. The elliptic estimates in [52] were much
simpler because we derived them only on the flat hypersurfaces Σt , whose geometry is trivial, and because we did not
try to derive the localized structure of the singular boundary; this allowed us to close the proof by deriving the elliptic
estimates only across all of space, thereby (also exploiting the assumption of compactly supported data in [52]) avoiding
the difficult spatial boundary terms that we encounter in the present work.

To derive the desired estimates, we use the technology of [4], which allows one to combine the Euclidean div-curl
system (1.11c)–(1.11d) with the transport equations (1.11b) to derive “elliptic-hyperbolic identities.” These identities yield
spacetime integrals that provide – up to error integrals that must be controlled – a sufficient amount of Sobolev regularity
on any spacetime region that is globally hyperbolic with respect to g (in particular, on (n)M[τ0,τ),[−U1,u′]). See Prop. 21.14
for the precise elliptic-hyperbolic identity that we use to close the top-order estimates.

Compared to [4], there are three new aspects of our elliptic-hyperbolic identities and estimates:

• The elliptic-hyperbolic identities depend, roughly, on certain curvature components of the boundaries of the
domain. Some of these components become very singular as µ→ 0, and we need to ensure that the singularity
strength is compatible with the blowup-rates of the high order wave and transport energies. In Prop. 23.4, we
provide pointwise estimates guaranteeing that indeed, all of the error terms in the identities are controllable within
the scope of our approach.

• We derive a new version of the identities from [4] based on applying the divergence theorem to a well-constructed
characteristic current J α , which is tangent to the characteristic hypersurfaces Pu ; see Def. 21.10. Because of
the Pu-tangency, when we apply the divergence theorem to J α on (n)M[τ0,τ],[−U1,u′], there are no boundary
integrals along the lateral boundaries Pu . This allows us to completely avoid error integrals on Pu that feature
the top-order derivatives of µ; the point is that it is not possible to derive top-order L2 estimates for µ on Pu
because it satisfies a transport equation Lµ = · · · , where L is tangent to the Pu . We also highlight that, unlike the
currents in [4], our characteristic current here does not involve the future-directed normal (n)N̂ to the constant-

rough-time hypersurfaces (n)̃Σ
[−U1,u

′]
τ . Avoiding (n)N̂ -dependent terms is advantageous because the derivatives of

(n)N̂ become very singular as µ→ 0, and it is not at all clear that such terms would have been compatible the
blowup-rates of the high order wave and transport energies.

• Our first attempt at deriving elliptic-hyperbolic identities yields error integrals along the top boundary portion
(n)̃Σ

[−U1,u
′]

τ that contain dangerous terms with insufficient regularity. It turns out that the dangerous terms can be
handled via a subtle and technical argument, captured in divergence-form in Lemma 21.13. Roughly, by integrating

by parts on (n)̃Σ
[−U1,u

′]
τ and using the structure of the dangerous terms and the compressible Euler equations,

we can replace the dangerous terms with controllable ones. However, this procedure leads to co-dimension-two
boundary integrals on the rough tori (n)̃ℓτ,u′ and

(n)̃ℓτ,−U1
which, from the point of view of regularity, have the

status of top-order terms; the presence of these co-dimension-two integrals is a major difference from [52], where
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we integrated across all of space. The key point is that, as in [4], the rough tori boundary integrals are either
controlled by the data or enter with a good sign, which is crucial for closing the top-order regularity theory; see
the tori integrals in the identity (21.63).

1.11. Outline of the remainder of the paper.

• In Sect. 2, we define the fluid variables that we use in our analysis and recall the geometric formulation of the
flow derived in [72].

• In Sects. 3–6, we derive basic properties and identities (not yet estimates) tied to the eikonal function u, the rough
time function (n)τ, the corresponding geometries, and changes of variables between various coordinate systems
and vectorfields.

• In Sect. 7, we construct the “ingoing” g-null vectorfield L, which is transversal to the characteristics Pu and
complements the g-null vectorfield L, which generates the Pu . We use L in Sect. 21, when we derive the “elliptic-
hyperbolic” identities that we will use to control the top-order derivatives of Ω and S . We clarify that, while
we use L to construct various tensors and derive identities, we do not use it to derive estimates, i.e., we do not
“integrate in the L direction.”

• In Sect. 8, we define various norms, area forms, and volume forms. We also introduce notation for various strings
of commutation vectorfields.

• In Sect. 9, we introduce schematic notation and derive various identities in schematic form. These will be used
throughout the remainder of the paper.

• In Sects. 10–11, we list various parameters corresponding to the solutions under study and state our assumptions
on the initial data.

• In Sect. 12, we state all our bootstrap assumptions – except for the energy bootstrap assumptions.
• In Sect. 13, we use the bootstrap assumptions to derive preliminary pointwise, commutator, and differential operator

comparison estimates.

• In Sect. 14, we use the bootstrap assumptions to analyze the data-hypersurface X̆
[τ0,τBoot)
−n for the rough time

function (n)τ, which solves the transport (n)W̆ (n)τ = 0 with data prescribed on X̆
[τ0,τBoot)
−n . We also derive basic

properties of the flow map of (n)W̆ .
• In Sect. 15, we use the bootstrap assumptions to derive estimates for (n)τ. We also show that various quantities

extend to the closure of the bootstrap region as elements of various Hölder spaces. Finally, we study the properties
of the map (n)Φ(τ,u,x2,x3) = (µ, X̆µ,x2,x3), which is important for understanding the structure of the singular
boundary.

• In Sect. 16, we use the bootstrap assumptions to control the flow map of the g-null vectorfield (n)̃L = 1
L(n)τ

L, which
is the principal operator in many of the transport equations that we will later study.

• In Sect. 17, we derive L∞ estimates that yield improvements of many of our quantitative bootstrap assumptions.
• In Sect. 18, we derive sharp estimates for µ. These are crucial for the energy estimates and for understanding

the structure of the singular boundary. We also study the homeomorphism and diffeomorphism properties of
the change of variables map (t,u,x2,x3) → (t,x1,x2,x3). Finally, we derive pointwise estimates for various
geometric quantities that are tied to the rough acoustic geometry.

• In Sect. 19, we construct the modified quantities that we use to control the acoustic geometry in L2 without
derivative loss.

• In Sect.20, we construct some basic ingredients needed for the hyperbolic energy estimates. In particular, we
define energies and null-fluxes, derive energy–null-flux identities for solutions to wave equations and transport
equations, and exhibit the coerciveness of the energies and null fluxes.

• In Sect. 21, we derive the “elliptic-hyperbolic” identities that we will use to control the top-order derivatives of Ω
and S .

• In Sect. 22, we commute the wave equations satisfied by the wave-variables Ψ⃗ = (R(+),R(−),v
2,v3, s) up to

top-order and derive pointwise estimates for the inhomogeneous terms. These are a preliminary ingredient in our
L2 analysis of the inhomogeneous terms.

• In Sect. 23, we provide an analog of Sect. 22 for the transport-variables. That is, we commute the transport
equations satisfied by Ω, S , C, and D up to top-order and derive pointwise estimates for the inhomogeneous
terms. The estimates in this section are preliminary ingredients for our derivation of energy and elliptic estimates.
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• In Sect. 24, we state all of our a priori energy estimates. We also state bootstrap assumptions for the energies of

the “wave-variables” Ψ⃗
def= (R(+),R(−),v

2,v3, s). The proof of the energy estimates occupies a substantial portion
of the remainder of the paper, all the way through Sect. 29.

• In Sect. 25, we derive preliminary L2 estimates for the below-top-order derivatives of the eikonal function quantities

µ, Li , χ, and trg/χ. We also derive preliminary L2 for Ψ⃗ that lose one derivative.
• In Sect. 26, we use the wave energy bootstrap assumptions to derive below-top-order energy estimates for Ω, S ,
C, and D.

• In Sect. 27, we use the elliptic-hyperbolic identities of Sect. 21, the wave energy bootstrap assumptions, and the
below-top-order energy estimates of Sect. 26 to derive the top-order “elliptic-hyperbolic” energy estimates Ω, S , C,
and D.

• In Sect. 28, we derive general elliptic estimates on the rough tori, which we will use in Sect. 29.3 to control the
top-order derivatives of the acoustic geometry along the rough foliations.

• In Sect. 29, we derive up-to-top-order energy estimates for the wave-variables and the acoustic geometry. This
completes the proof of the energy estimates stated in Sect. 24 and in particular yields a strict improvement of our
wave energy bootstrap assumptions.

• In Sect. 30, we use the energy estimates and Sobolev embeddings to derive L∞ estimates that yield strict improve-
ments of the remaining quantitative bootstrap assumptions. This closes the bootstrap argument and completes
our proof of a priori estimates.

• In Sect. 31, we use the a priori estimates and a continuation principle to show that we can extend the solution
all the way up to the level-set {(n)τ = 0}, which contains the two-dimensional torus T̆0,−n, which in turn is
contained in the singular boundary. We provide these results as Theorem 31.1, which is the first main theorem of
the paper. This theorem provides a development of the data containing the portion of the singular boundary that
is “accessible” via the foliation of spacetime by the level-sets of (n)τ.

• In Sect. 32, we study the union of the developments as n varies, and we define an interesting sub-region,
MInteresting, which contains a portion of the singular boundary, namely B[0,n0], and its past boundary ∂−B[0,n0] =
T̆0,0, the crease. We also construct a new rough time function (Interesting)τ, whose level-sets foliate MInteresting.
Finally, we derive various quantitative and qualitative properties of various geometric objects tied to MInteresting

and (Interesting)τ.
• In Sect. 33, we study the homeomorphism and diffeomorphism properties of the change of variables map

Υ (t,u,x2,x3) = (t,x1,x2,x3) on MInteresting. We also exhibit the properties of Υ (B[0,n0]), i.e., the embed-
ding of the singular boundary in Cartesian coordinate space.

• In Sect. 34, we state and prove Theorem 34.1, which is the main result of the paper. The theorem shows
that MInteresting contains the portion B[0,n0] of the singular boundary and the crease, and it gives a detailed
description of the solution in the different coordinate systems as well as the change of variables maps. The
theorem is essentially a conglomeration of results derived earlier in the paper.

2. Basic setup, compressible Euler flow, and its geometric reformulation

In this section, we first introduce some basic notational conventions and definitions. We then provide a standard
first-order quasilinear hyperbolic formulation of compressible Euler flow. Next, we define a series of additional fluid
variables and geometric tensors associated to the flow. Finally, we recall the new formulation of the flow derived in [72].
More precisely, we use a slightly modified version of the formulation in [72] that is adapted to the nearly plane-symmetric
solutions featured in our main results. The only difference with [72] is that here, we replace the density and velocity
component v1 with our “almost Riemann invariants” R(+) and R(−), which are useful for capturing smallness in the
regime under study. In total, the new formulation comprises covariant wave equations, which govern the propagation of
sound waves, coupled to systems of transport-div-curl systems, which drive the evolution of the vorticity and entropy.

2.1. Basic notation and conventions. The precise definitions of some of the concepts referred to here are provided later
in the article.

• (Cartesian coordinates) Our analysis takes place on subsets of the spacetime manifolds R×Σ, where Σ def= R×T2 is

the spatial manifold. We fix a standard Cartesian coordinate system {xα}α=0,1,2,3 on R×Σ, where t def= x0 ∈R is the
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time coordinate and (x1,x2,x3) ∈ Σ are the spatial coordinates (where (x2,x3) are standard coordinates39 on T
2).

By a plane-symmetric solution, we mean one whose fluid variables are independent of (x2,x3) in this coordinate

system. We sometimes refer to t as the “Cartesian time function.” Σt′
def= {(t,x1,x2,x3) ∈ R ×R ×T2| t = t′}

denotes the standard flat hypersurface of constant Cartesian time.

• (Cartesian coordinate partial derivatives) We use the notation {∂α}α=0,1,2,3 (or ∂t
def= ∂0) to denote the Cartesian

coordinate partial derivative vectorfields.
• (Lowercase Greek index conventions) Lowercase Greek spacetime indices α, β, etc. correspond to the Cartesian

coordinate spacetime coordinates and vary over 0,1,2,3. All lowercase Greek indices are lowered and raised with
the acoustical metric g (see definition (2.15a)) and its inverse g−1, and not with the Minkowski metric. Throughout
the article, if ξ is a type

(m
n

)
spacetime tensorfield, then unless we indicate otherwise, in our identities and

estimates,
{
ξ
α1···αm
β1···βn

}
α1,···αm,β1,··· ,βn=0,1,2,3

denotes its components with respect to the Cartesian coordinates.

This is important because some of our identities and estimates hold only with respect to the Cartesian coordinates.
• (Lowercase Latin index conventions) Lowercase Latin spatial indices a, b, etc. correspond to the Cartesian spatial

coordinates and vary over 1,2,3. Much like in the previous point, if ξ is a type
(m
n

)
Σt-tangent tensorfield (see

Def. 3.3), then unless we indicate otherwise, in our identities and estimates,
{
ξ
a1···am
b1···bn

}
a1,··· ,am,b1,··· ,bn=1,2,3

denotes

its components with respect to the Cartesian spatial coordinates.
• (Uppercase Latin index conventions) Uppercase Latin spatial indices A,B, etc. correspond to the coordinates

(x2,x3) on T
2 and vary over 2,3. In particular, if V is a vectorfield, and A ∈ {2,3}, then V A = V α∂αx

A, where
(x2,x3) are the standard Cartesian coordinates on T

2.
• (Tilded indices) We use tilded indices such as α̃ in the same way as their non-tilded counterparts.

• (Einstein summation) We use Einstein’s summation convention in that repeated indices are summed, e.g., LAXA
def=

L2X2 +L3X3.
• (Use of “·”) We sometimes use “·” to denote the natural contraction between two tensors. For example, if ξ

is a spacetime one-form and V is a spacetime vectorfield, then ξ · V def= ξαV
α . At other times, we use “·” to

schematically denote products, e.g., A1 ·A2 ·A3 is a trilinear form in A1,A2,A3.

• (Tensor contractions) If V and W are vectorfields, then VW
def= V αWα = gαβV αW β . If ξ is a one-form and

V is a vectorfield, then ξV
def= ξαV

α . We use similar notation when contracting higher-order tensorfields against

vectorfields. For example, if ξ is a type
(0
2
)
tensorfield and V and W are vectorfields, then ξVW

def= ξαβV
αW β .

• (Commutator of operators) If Q1 and Q2 are two operators, then [Q1,Q2] def= Q1Q2 −Q2Q1 denotes their
commutator.

• (Constants) We establish conventions for constants (such as “C”) in Sect. 10.3.

2.2. Basic differential operators. In our analysis, we will encounter many kinds of differential operators. Here, we
define some basic operators.

Definition 2.1 (Gradient one-form of a scalar function). If f is a scalar function, then df denotes the gradient one-form

associated to f , e.g., (df )α
def= df ·∂α = ∂αf .

Definition 2.2 (Vectorfield derivative of scalar functions). If V is a vectorfield and f is a scalar function, then V f
def=

V α∂αf = V ·df denotes the derivative of f in the direction V .

Definition 2.3 (Euclidean divergence and curl). div and curl respectively denote the Euclidean spatial divergence and
curl operators. That is, given a Σt-tangent vectorfield V = V a∂a, we define, relative to the Cartesian spatial coordinates,
divV and curlV to be the following scalar function and Σt-tangent vectorfield:

divV def= ∂aV
a, (curlV )i def= ϵiab∂aV

b, (2.1)

where ϵiab is the fully antisymmetric symbol normalized by ϵ123 = 1.

2.3. A first-order formulation involving the logarithmic density.

39While the coordinates x2,x3 on T
2 are only locally defined, the corresponding partial derivative vectorfields ∂2,∂3 can be extended so as to

form a global smooth frame on T
2 . Similar remarks apply to the one-forms dx2,dx3 These simple observations are relevant for this paper because

when we derive estimates, the coordinate functions x2,x3 themselves are never directly relevant; what matters are estimates for the components of
various tensorfields with respect to the frame {∂t ,∂1,∂2,∂3} and the basis dual co-frame {dt,dx1,dx2,dx3}, which are everywhere smooth.
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2.3.1. The logarithmic density, assumptions on the equation of state, and normalizations. We find it convenient to work
with the logarithmic density featured in the next definition, rather than the density. In the rest of the paper,

ϱ > 0 (2.2)

denotes a fixed constant “background density.”

Definition 2.4 (Logarithmic density). We define the logarithmic density ρ as follows:

ρ
def= ln(ϱ/ϱ) . (2.3)

In the rest of the paper, we view the speed of sound c (which is defined in (1.3)) to be a function of (ρ, s). Note that

by (1.3) and the chain rule, we have c(ρ, s) =
√

(ϱ)−1 exp(−ρ)p;ρ, where p;ρ
def= ∂p

∂ρ denotes the partial derivative of the

equation of state with respect to the logarithmic density at fixed s.

Notation 2.1 (Partial differentiation with respect to state-space variables). In accordance with the above notation, for

any scalar function f = f (ρ, s), we use the notation f;ρ
def= ∂f

∂ρ to denote the partial derivative of f with respect to the

logarithmic density at fixed s. Similarly, we denote the partial derivative of f with respect to s at fixed ρ by f;s
def= ∂f

∂s . We

also write f;ρ;s
def= ∂2f

∂s∂ρ , and we use similar notation for other higher partial derivatives of f with respect to ρ, s.

To ensure that shocks occur for solutions near static isentropic fluid states with constant density ϱ > 0, we assume
the following non-degeneracy condition:

c−1c;ρ + 1 , 0, (2.4)

where LHS (2.4) is defined to be the constant obtained by evaluating c−1c;ρ + 1 at ρ = s ≡ 0. Equation (2.4) ensures that
the null condition fails to hold for perturbations of the background solution ρ = s ≡ 0; see Sect. 3.13. Our main results
hold for all equations of state except for that of a Chaplygin gas, namely p = C0−C1 exp(−ρ), where C0 ≥ 0 and C1 > 0
are constants. This equation of state is degenerate in the following sense: c−1c;ρ + 1 ≡ 0.

By rescaling Cartesian time if necessary, we can assume the following convenient normalization condition:

c(ρ = 0, s = 0) = 1. (2.5)

2.3.2. A first-order formulation involving the logarithmic density. From definition (2.3), equations (1.1a)–(1.1c), and the chain
rule, it follows that relative to the standard Cartesian coordinates on R ×Σ, the compressible Euler equations can be
expressed as the following system in ρ, v, and s:

Bvi = −c2δia∂aρ− exp(−ρ)
p;s

ϱ
δia∂as, (2.6a)

Bρ = −divv, (2.6b)

Bs = 0. (2.6c)

2.4. The almost Riemann invariants. To study solutions close to simple isentropic plane-symmetric solutions, we find
it convenient to replace ρ and v1 with a pair of “almost Riemann invariants,” denoted by R(+) and R(−). In this

paper, simple isentropic plane-symmetric solutions are, by definition, such that R(+) is a function of only (t,x1) and

R(−) = s = v2 = v3 ≡ 0.

Definition 2.5 (The almost Riemann invariants). We define the almost Riemann invariants40 away from symmetry R(±)
as follows:

R(±)
def= v1 ±F(ρ, s), where F(ρ, s) def=

∫ ρ

0
c(ρ′ , s)dρ′ . (2.7)

Remark 2.6 (Clarification on our approach to estimating ρ and v1). We have introduced R(±) because they are
convenient for studying perturbations of simple isentropic plane-waves (for which only R(+) is non-vanishing); R(±)
allow us to capture various kinds of smallness of the perturbations. It is well-known that for isentropic plane-symmetric
solutions, one can use {R(+),R(−)} as the unknowns in place of {ρ,v1}; see Appendix A. Away from symmetry, a similar
remark also holds for our almost Riemann invariants, provided we take into account the entropy. Specifically, from

40Compare R(±) with the true Riemann invariants for the plane-symmetric solutions given by (A.1).



L. Abbrescia and J. Speck 41

(2.5) and definition (2.7), it follows that v1 = 1
2 (R(+) +R(−)), and that when ρ, v1, and s are sufficiently small (as is

captured by the smallness parameters α̊ and ϵ̊ that we introduce in Sect. 10), we have (via the implicit function theorem)
ρ = (R(+) −R(−)) · F̃(R(+) −R(−), s), where F̃ is a smooth function. This allows us to control ρ and v1 in terms of R(+),
R(−), and s. Throughout the article, we use this observation without explicitly pointing it out. In particular, even though

many of the equations that we study explicitly involve ρ and v1, it should be understood that we always estimate these
quantities in terms of the “wave-variables” R(+), R(−), and s, which are featured in the array (2.11a) defined below.

2.5. The higher order fluid variables. The “higher order” fluid variables in the next definition appear in Theorem 2.15,
which provides the formulation of compressible Euler flow that we use throughout our analysis.

Definition 2.7 (The higher order fluid variables).

1. We define the specific vorticity to be the Σt-tangent vectorfield whose Cartesian spatial components are:

Ωi def=
(curlv)i

exp(ρ)
=
ϵijkδ

jl∂lv
k

exp(ρ)
, (2.8)

where δjl is the Kronecker delta.
2. We define the entropy gradient to be the Σt-tangent vectorfield whose Cartesian spatial components are:

S i
def= δia∂as = ∂is. (2.9)

3. We define the modified fluid variables to be the Σt-tangent vectorfield C and the scalar function D whose
Cartesian spatial components are:

Ci def= exp(−ρ)(curlΩ)i + exp(−3ρ)c−2 p;s

ϱ
Sa∂av

i − exp(−3ρ)c−2 p;s

ϱ
(divv)S i , (2.10a)

D def= exp(−2ρ)divS − exp(−2ρ)Sa∂aρ. (2.10b)

2.6. Arrays of fluid variables and array norm notation. We provide the next definition for notational convenience.

Definition 2.8 (The fluid variable array Ψ⃗ and the partial array Ψ⃗ (Partial)). We define the array of wave41 variables as
follows:

Ψ⃗
def= (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4) def= (R(+),R(−),v

2,v3, s). (2.11a)

We define the partial array of wave-variables by:

Ψ⃗ (Partial)
def= (Ψ1,Ψ2,Ψ3,Ψ4) = (R(−),v

2,v3, s). (2.11b)

We view Ψ⃗ to be an array of scalar functions Ψι, where ι = 0, · · · ,4. We will not attribute any tensorial structure to
the labeling index ι besides simple contractions, denoted by ⋄, corresponding to the chain rule; see Def. 2.12.

In the next definition, we introduce notation for norms of arrays.

Definition 2.9 (Norm conventions with arrays).

• Given the fluid variable array Ψ⃗ from Def. 2.8, we define:

|Ψ⃗ | def= max
ι∈{0,··· ,4}

|Ψι|. (2.12)

For any norm ∥ · ∥ on scalar functions that appears in the paper, we set:

∥Ψ⃗ ∥ def= max
ι∈{0,··· ,4}

∥Ψι∥. (2.13)

We use a similar convention for Ω: |Ω| = maxa=1,2,3 |Ωa|, and similarly for Ψ⃗ (Partial), S , C, etc.
• We use the following convention when taking norms of more than one variable at a time:

∥(Ω,S)∥ def= max{∥Ω∥,∥S∥}. (2.14)

41These “wave-variables” solve wave equations; see Theorem 2.15.
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2.7. The acoustical metric and related geometric objects. In the following definition, we introduce the acoustical
metric and its inverse. This Lorentzian42 metric drives the propagation of sound waves and is necessary to reveal the full
geometry of the singular boundary.

Definition 2.10 (The acoustical metric). Relative to the Cartesian coordinates (t,x1,x2,x3), we define the acoustical
metric g and the inverse acoustical metric g−1 as follows, where the material derivative vectorfield B is defined in (1.2)
and the speed of sound c is defined in (1.3):

g = −dt ⊗dt + c−2
3∑
a=1

(dxa − vadt)⊗ (dxa − vadt), (2.15a)

g−1 = −B⊗B+ c2
3∑
a=1

∂a ⊗∂a. (2.15b)

Straightforward calculations yield that gαγ (g−1)γβ = δ
β
α , where δ

β
α is the Kronecker delta, i.e., g−1 is indeed the

inverse of g. In the remainder of the article, we silently lower and raise lowercase Greek indices with g and g−1, e.g.,
V α = (g−1)αβVβ .

In our forthcoming analysis, the undifferentiated quantities vi and c − 1 will be small, where we quantify their
smallness via the parameters α̊ and ϵ̊, which we introduce in Sect. 10. Hence, in view of (2.15a), we find it convenient to
introduce the following decomposition:

gαβ(Ψ⃗ ) =mαβ + g(Small)
αβ (Ψ⃗ ), (2.16)

where mαβ = diag(−1,1,1,1) is the Minkowski metric and g(Small)
αβ (Ψ⃗ ) is a smooth function of Ψ⃗ satisfying:

g(Small)
αβ (Ψ⃗ = 0) = 0. (2.17)

The scalar functions Gιαβ in the following definition will appear as coefficients in many of the equations that we study.

Definition 2.11 (Ψ⃗ -derivatives of g). Viewing the Cartesian component functions gαβ = gαβ(Ψ⃗ ) as functions of the
wave-variables, for α,β = 0,1,2,3 and ι = 0,1,2,3,4, we define:

Gιαβ(Ψ⃗ ) def=
∂
∂Ψι

gαβ(Ψ⃗ ), (2.18a)

G⃗αβ = G⃗αβ(Ψ⃗ ) def=
(
G0
αβ(Ψ⃗ ),G1

αβ(Ψ⃗ ),G2
αβ(Ψ⃗ ),G3

αβ(Ψ⃗ ),G4
αβ(Ψ⃗ )

)
. (2.18b)

For each fixed ι ∈ {0, · · · ,4}, we view {Gιαβ}α,β=0,··· ,3 to be the Cartesian components of the spacetime tensorfield

“Gι.” Similarly, we view {G⃗αβ}α,β=0,··· ,3 to be the Cartesian components of the array-valued spacetime tensorfield G⃗.

Definition 2.12 (Operators involving Ψ⃗ ). Let V1,V2 be vectorfields, and let D be a differential operator. We define:

DΨ⃗
def= (DΨ0,DΨ1,DΨ2,DΨ3,DΨ4), G⃗V1V2

⋄DΨ⃗
def=

4∑
ι=0

GιαβV
α
1 V

β
2 DΨι. (2.19)

2.8. Covariant wave operator and g-null forms. In this section, we provide some definitions that we need to state
Theorem 2.15, which provides the geometric formulation of compressible Euler flow that we use throughout our analysis.

We start by recalling the standard definition of the covariant wave operator □g.

Definition 2.13 (Covariant wave operator of the acoustical metric). The covariant wave operator □g of the acoustical

metric g = g(Ψ⃗ ) acts on scalar-valued functions ϕ as follows:43

□gϕ
def=

1√
|detg|

∂α
{√
|detg|(g−1)αβ∂βϕ

}
. (2.20)

We now recall the definition of a standard null form with respect to the acoustical metric (“g-null form” for short).

42By “Lorentzian,” we mean that viewed as a quadratic form, the symmetric 4× 4 matrix (gαβ )α,β=0,1,2,3 has signature (−,+,+,+).
43The formula (2.20) holds relative to arbitrary coordinates.
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Definition 2.14 (Standard g-Null forms). Let ϕ and ϕ̃ be scalar functions. We define Q(g)(∂ϕ,∂ϕ̃) to be the following
derivative-quadratic term:

Q(g)(∂ϕ,∂ϕ̃) def= (g−1)αβ∂αϕ∂βϕ̃. (2.21a)

For 0 ≤ α < β ≤ 3, we define Qαβ(∂ϕ,∂ϕ̃) to be the following derivative-quadratic term:

Qαβ(∂ϕ,∂ϕ̃) def= ∂αϕ∂βϕ̃ −∂βϕ∂αϕ̃. (2.21b)

In the rest of the paper, we use the terminology null form relative to g or g-null form to denote any linear combination
of the standard null forms (2.21a)–(2.21b) with (possibly solution dependent) coefficients that are controllable under the
scope of our approach.

2.9. The geometric wave-transport-divergence-curl formulation of the compressible Euler equations. Our main
results fundamentally rely on the following formulation of the compressible Euler equations, first derived in [72].

Theorem 2.15 (The geometric wave-transport-divergence-curl formulation of the compressible Euler equations). Let ϱ > 0
be any constant background density,44 and assume that (ρ,v1,v2,v3, s) is a solution to the compressible Euler equations
(2.6a)–(2.6c) in three spatial dimensions under an arbitrary equation of state p = p(ϱ,s) with positive sound speed c (see
(1.3)). Let B be the material derivative vectorfield defined in (1.2), let g be the acoustical metric from Def. 2.10, let □g be
the corresponding covariant wave operator from Def. 2.13, let R(±) be the almost Riemann invariants from Def. 2.5 (see
Remark 2.6 concerning their significance for this paper), let F = F(ρ, s) be the function from Def. 2.5, and let Ω, S , C,
and D be the higher order variables from Def. 2.7. Then the scalar-valued functions ρ, vi , R(±), s, Ω

i , S i , divΩ, Ci , D,
and (curlS)i , (i = 1,2,3), also solve the following equations, where ϵijk is the fully antisymmetric symbol normalized
by ϵ123 = 1, and the Cartesian component functions vi are treated as scalar-valued functions under covariant
differentiation on LHS (2.22a):

Covariant wave equations.

□g(Ψ⃗ )v
i = −c2 exp(2ρ)Ci +Qi

(v) +Li(v), (2.22a)

□g(Ψ⃗ )R(±) = −c2 exp(2ρ)C1 ±
{
F;sc

2 exp(2ρ)− cexp(ρ)
p;s

ϱ

}
D +Q(±) +L(±), (2.22b)

□g(Ψ⃗ )ρ = −exp(ρ)
p;s

ϱ
D +Q(ρ) +L(ρ), (2.22c)

□g(Ψ⃗ )s = c2 exp(2ρ)D +L(s). (2.22d)

Transport equations.

BΩi = Li(Ω), (2.23a)

Bs = 0, (2.23b)

BS i = Li(S). (2.23c)

Transport-divergence-curl system for the specific vorticity.

divΩ = L(divΩ), (2.24a)

BCi = Mi
(C) +Qi

(C) +Li(C). (2.24b)

Transport-divergence-curl system for the entropy gradient.

BD = M(D) +Q(D), (2.25a)

(curlS)i = 0. (2.25b)

44Recall that ρ depends on ϱ; see Def. 2.4.
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Above, the main terms Mi
(C) and M(D) in the transport equations for the modified fluid variables are the null forms

relative to g (see Def. 2.14) defined by:45

Mi
(C)

def
= −2δjkϵiab exp(−ρ)(∂av

j )∂bΩ
k + ϵajk exp(−ρ)(∂av

i)∂jΩ
k

+ exp(−3ρ)c−2 p;s

ϱ

{
(BSa)∂av

i − (Bvi)∂aS
a
}

+ exp(−3ρ)c−2 p;s

ϱ

{
(Bva)∂aS

i − (BS i)∂av
a
}
,

(2.26a)

M(D) = 2exp(−2ρ)
{
(∂av

a)∂bS
b − (∂aS

b)∂bv
a
}
+ exp(−ρ)δab(curlΩ)aSb. (2.26b)

Moreover, Qi
(v), Q(±), Q(ρ), Q

i
(C), and Q(D) are

46 the null forms relative to g defined by:

Qi
(v)

def
= −

{
1 + c−1c;ρ

}
(g−1)αβ(∂αρ)∂βv

i , (2.27a)

Q(±)
def
= Q1

(v) ∓ 2c;ρ(g−1)αβ∂αρ∂βρ± c
{
(∂av

a)(∂bv
b)− (∂av

b)∂bv
a
}
, (2.27b)

Q(ρ)
def
= −3c−1c;ρ(g−1)αβ(∂αρ)∂βρ+

{
(∂av

a)∂bv
b − (∂av

b)∂bv
a
}
, (2.27c)

Qi
(C)

def
= exp(−3ρ)c−2 p;s

ϱ
S i

{
(∂av

b)∂bv
a − (∂av

a)∂bv
b
}

+ exp(−3ρ)c−2 p;s

ϱ
Sb

{
(∂av

a)∂bv
i − (∂av

i)∂bv
a
}

+ 2exp(−3ρ)c−2 p;s

ϱ
Sa

{
(∂aρ)Bvi − (∂av

i)Bρ
}

+ 2exp(−3ρ)c−3c;ρ
p;s

ϱ
Sa

{
(∂aρ)Bvi − (∂av

i)Bρ
}

+ exp(−3ρ)c−2 p;s;ρ

ϱ
Sa

{
(∂av

i)Bρ− (∂aρ)Bvi
}

+ exp(−3ρ)c−2 p;s;ρ

ϱ
S i {(Bva)∂aρ− (Bρ)∂av

a}

+ 2exp(−3ρ)c−2 p;s

ϱ
S i {(Bρ)∂av

a − (Bva)∂aρ}

+ 2exp(−3ρ)c−3c;ρ
p;s

ϱ
S i {(Bρ)∂av

a − (Bva)∂aρ} ,

(2.27d)

Q(D)
def
= 2exp(−2ρ)Sa

{
(∂av

b)∂bρ− (∂aρ)∂bv
b
}
. (2.27e)

45Actually, the last the last term on RHS (2.26b) is not a null form, but rather a simpler harmless error term.
46The term Mi

(C) on RHS (2.24b) and the term M(D) on RHS (2.25a) are also null forms relative to g. We have isolated these two null forms with

different notation because they are more difficult to treat than Qi
(v) , Q(±) Q(ρ) , Q

i
(C) , and Q(D) ; to bound the top-order derivatives of the “M”

terms, we rely on the delicate “elliptic-hyperbolic” identities that we derive in Sect. 21.
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In addition, the terms Li(v), L(±), L(ρ), L(s), L
i
(Ω), L

i
(S), L(divΩ), and Li(C), which are at most linear in the derivatives of

the unknowns, are defined as follows:

Li(v)
def
= 2exp(ρ)ϵiab(Bv

a)Ωb −
p;s

ϱ
ϵiabΩ

aSb

− 1
2

exp(−ρ)
p;ρ;s

ϱ
Sa∂av

i

− 2exp(−ρ)c−1c;ρ
p;s

ϱ
(Bρ)S i + exp(−ρ)

p;s;ρ

ϱ
(Bρ)S i ,

(2.28a)

L(±)
def
= L1

(v) ∓
5
2
cexp(−ρ)

p;Sbρ

ϱ
Sa∂aρ± 2c2c;sS

a∂aρ

∓ cexp(−ρ)
p;s;s

ϱ
δabS

aSb ±F;sL(s),
(2.28b)

L(ρ)
def
= −5

2
exp(−ρ)

p;s;ρ

ϱ
Sa∂aρ− exp(−ρ)

p;s;s

ϱ
δabS

aSb, (2.28c)

L(s)
def
= c2Sa∂aρ− cc;ρS

a∂aρ− cc;sδabS
aSb, (2.28d)

Li(Ω)
def
= Ωa∂av

i − exp(−2ρ)c−2 p;s

ϱ
ϵiab(Bv

a)Sb, (2.28e)

Li(S)
def
= −Sa∂avi + ϵiab exp(ρ)ΩaSb, (2.28f)

L(divΩ)
def
= −Ωa∂aρ, (2.28g)

Li(C)
def
= 2exp(−3ρ)c−3c;s

p;s

ϱ
(Bvi)δabS

aSb

− 2exp(−3ρ)c−3c;s
p;s

ϱ
δabS

a(Bvb)S i

+ exp(−3ρ)c−2 p;s;s

ϱ
δab(Bv

a)SbS i

− exp(−3ρ)c−2 p;s;s

ϱ
(Bvi)δabS

aSb.

(2.28h)

Discussion of the proof. Theorem 2.15 was essentially proved as [72, Theorem 1], except that the wave equations (2.22b) for
R(±) were not derived there. In [52, Theorem 5.1], those wave equations were derived as a straightforward consequence of
[72, Theorem 1].

□

3. The acoustic geometry and the arrays γ and γ

In this section, we construct the acoustic geometry, reveal its basic properties, and provide the evolution equations
satisfied by various geometric tensors. Our approach is based on the one pioneered by Christodoulou [24] in his study of
irrotational and isentropic solutions. The fundamental object behind all the constructions is an acoustic eikonal function,
that is, a solution u to the acoustic eikonal equation. The eikonal function is fundamental for our approach because
our proof shows that the fluid solution remains rather smooth relative to the geometric coordinates (t,u,x2,x3). In
particular, later on, we will use u to construct suitable commutation and multiplier vectorfields out of the geometric
coordinates to control the solution and acoustic geometry up to top-order. This allows us, at least in some ways, to treat
the problem of shock formation as a long-time existence problem relative to the geometric coordinates. We also introduce
the solution variable arrays γ and γ, which contain the wave-variables and various components of the acoustic geometry.
We use these arrays throughout the paper to simplify the notation and to allow for convenient, schematic expressions. We
sometimes refer to γ and γ as the “controlling quantities” because all of the quantities that we analyze can, in principle,
be constructed out of them.

3.1. The eikonal function and inverse foliation density. In the following definition, we introduce the eikonal function
u and the inverse foliation density µ. The level-sets of u are the characteristic for the wave operator □g, while the inverse
(i.e., reciprocal) of the inverse foliation density measures the density of these characteristics. In particular, the vanishing
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of µ corresponds to the infinite density of the characteristics. Our main results show that in the regime under study, the
vanishing of µ coincides with the blowup of |∂1R(+)|.

Definition 3.1 (Eikonal function and inverse foliation density). The eikonal function u is the solution of the following
fully nonlinear hyperbolic initial value problem, where g is the acoustical metric defined in (2.15a) and the PDE is known
as the acoustic eikonal equation: 

(g−1)αβ∂αu∂βu = 0,
∂tu > 0,
u|Σ0

= −x1.

(3.1)

We define the inverse foliation density µ by:

µ
def= − 1

(g−1)αβ∂αt∂βu
> 0. (3.2)

3.2. Acoustical subsets of spacetime.

Definition 3.2 (Acoustical subsets of spacetime). We define the following “acoustical subsets” of spacetime:

Σt′
def= {(t,x1,x2,x3) ∈R×R×T2 | t = t′}, (3.3a)

Pu′
def= {(t,x1,x2,x3) ∈R×R×T2 | u(t,x1,x2,x3) = u′}, (3.3b)

ℓt′ ,u′
def= Σt′ ∩Pu′ = {(t,x1,x2,x3) ∈R×R×T2 | t = t′ , u(t,x1,x2,x3) = u′}. (3.3c)

Given real numbers u1 ≤ u2 and t1 ≤ t2, we define the following “truncated” subsets of spacetime:

Σ
[u1,u2]
t′

def= Σt′ ∩ {(t,x1,x2,x3) ∈R×R×T2 | u1 ≤ u(t,x1,x2,x3) ≤ u2}, (3.4a)

P [t1,t2]
u′

def= Pu′ ∩ {(t,x1,x2,x3) ∈R×R×T2 | t1 ≤ t ≤ t2}. (3.4b)

We refer to the Σt as “constant Cartesian-time hypersurfaces,” the Pu as “null hypersurfaces,” “acoustic characteristics,”
or “characteristics,” and the ℓt,u as “acoustic tori.” We emphasize that with the exception of the appendices, in this paper,
we will not derive estimates on Σt or the ℓt′ ,u′ . Instead, we will control the solution on the rough hypersurfaces and the
rough tori of Def. 4.11.

3.3. Projection tensorfields and related differential operators.

Definition 3.3 (Projection tensorfields and tangency to hypersurfaces).

1. We define the type
(1
1
)
Σt-projection tensorfield Π and the type

(1
1
)
ℓt,u-projection tensorfield Π/ as follows,

where δαβ denotes the Kronecker delta:

Π α
β

def= δαβ +BαBβ , (3.5a)

Π/ α
β

def= δαβ +BαBβ −XαXβ = δαβ −L
αδ0

β +XαLβ . (3.5b)

2. Given any type
(m
n

)
spacetime tensorfield ξ, we respectively define its g-orthogonal projection onto Σt , denoted

by Πξ, and its g-orthogonal projection onto ℓt,u , denoted by Π/ ξ, as follows:

(Πξ)α1···αm
β1···βn

def= Π
α1
α̃1
· · ·Π αm

α̃m
Π

β̃1
β1
· · ·Π β̃n

βn
ξ
α̃1···α̃m
β̃1···β̃n

, (3.6a)

(Π/ ξ)α1···αm
β1···βn

def= Π/ α1
α̃1
· · ·Π/ αm

α̃m
Π/

β̃1
β1
· · ·Π/ β̃n

βn
ξ
α̃1···α̃m
β̃1···β̃n

. (3.6b)

3. We say that a spacetime tensorfield ξ is Σt-tangent if Πξ = ξ. We say that a spacetime tensorfield ξ is
ℓt,u-tangent if Π/ ξ = ξ.

4. If ξ is a symmetric type
(0
2
)
-spacetime tensor and V is a vectorfield, then we define /ξV

def= Π/ (ξ ·V ), where ξ ·V
is the one-form with components (ξ ·V )α

def= ξαβV
β .

5. If ξ is a spacetime tensor, then we define /ξ = Π/ ξ. From 3 above, it follows that ξ is ℓt,u-tangent if and only if
/ξ = ξ .
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It is straightforward to check that ΠB = 0, while if V is Σt-tangent, then ΠV = V , i.e, in view of the properties of
B from Lemma 3.9, we see that Π is the g-orthogonal projection onto Σt . Similarly, Π/ L = Π/ X = Π/ B = 0, while if Y is
ℓt,u-tangent, then Π/ Y = Y .

3.4. First fundamental forms.

Definition 3.4 (First fundamental forms).

1. We define g , the first fundamental form of Σt relative to g, to be the symmetric type
(0
2
)
tensorfield Πg. Note that

g(Y ,Z) = g(Y ,Z) for all pairs (Y ,Z) of Σt-tangent vectorfields. We define the corresponding inverse first funda-
mental form g−1 to be the symmetric type

(2
0
)
tensorfield that is g-dual to g i.e., (g−1)αβ def= (g−1)αα̃(g−1)ββ̃gα̃β̃ .

Note that the restriction of g to Σt-tangent tensorfields is the Riemannian47 metric on Σt induced by g. In
particular, relative to the Cartesian spatial coordinates, we have:

gij = gij = c−2δij , (3.7)

where δij denotes the Kronecker delta, and to obtain the last equality in (3.7), we have used (2.15a).

2. We define g/ , the first fundamental form of the acoustic tori ℓt,u relative to g, to be the symmetric type
(0
2
)

tensorfield Π/ g. Note that g/(Y ,Z) = g(Y ,Z) for all pairs (Y ,Z) of ℓt,u-tangent vectorfields. Note that the
restriction of g/ to ℓt,u-tangent tensorfields is the Riemannian48 metric on ℓt,u induced by g. We define the

corresponding inverse first fundamental form g/−1 to be the symmetric type
(2
0
)
tensorfield that is g-dual to g/ i.e.,

(g/−1)αβ def= (g−1)αα̃(g−1)ββ̃g/α̃β̃ .

3.5. Geometric coordinates, metric duality, and related vectorfields.

3.5.1. Geometric coordinates.

Definition 3.5 (The geometric coordinates and their corresponding partial derivative vectorfields). We define the geometric
coordinate system to be (t,u,x2,x3). We define

{
∂
∂t ,

∂
∂u ,

∂
∂x2 ,

∂
∂x3

}
to be the coordinate partial derivative vectorfields in

the geometric coordinate system.

Remark 3.6 (Coordinate systems on ℓt,u and Pu ). Note that (x2,x3) form a coordinate system on the acoustic tori

ℓt,u and that
{
∂
∂x2 ,

∂
∂x3

}
span the tangent space of ℓt,u . Similarly, (t,x2,x3) form a coordinate system on the null

hypersurfaces Pu and
{
∂
∂t ,

∂
∂x2 ,

∂
∂x3

}
span the tangent space of Pu . We will silently use these basic facts throughout the

rest of the article.

Notation 3.1 (Conventions used with (x2,x3) and { ∂
∂x2 ,

∂
∂x3 }).

1. If V is a vectorfield, then for A = 2,3, V A def= V xA = V α∂αx
A. In particular, if V is ℓt,u-tangent, then

V = V A ∂
∂xA

, and V A are the components of V with respect to geometric coordinates (x2,x3) on ℓt,u .

2. If ξ is a one-form, then we denote its contraction with ∂
∂xA

by using the abbreviated notation ξA
def= ξ

(
∂
∂xA

)
=

ξα( ∂
∂xA

)α for A = 2,3.

3. We adopt a similar convention for contractions involving higher order tensorfields, e.g., g/AB = g/( ∂
∂xA

, ∂
∂xB

) for
A,B = 2,3.

4. We sum repeated uppercase Latin indices over A = 2,3, e.g., ξAA
def= ξ22 + ξ33.

3.5.2. Metric duality and musical notation.

Definition 3.7 (Metric duality and musical notation). If V is a spacetime vectorfield, then V♭ denotes the one-form that
is g-dual to V , i.e., (V♭)α = gαβV β . Consistent with the conventions of Sect. 2.1, we typically write Vα instead of (V♭)α .

If Y = Y B ∂
∂xB

is an ℓt,u-tangent vectorfield, then Y♭ denotes the ℓt,u-tangent one-form that is g/-dual to Y , i.e., for

A = 2,3, (Y♭)A = g/ABY
B. Since Y is ℓt,u-tangent, Y♭ can also be viewed as the dual of Y with respect to g, i.e.,

(Y♭)α
def= Y♭ · ∂α = g(Y ,∂α) = gαβY β . Similarly, if ξ is an ℓt,u-tangent one-form, then ξ♯ denotes the ℓt,u-tangent

vectorfield that is g/-dual to ξ, i.e., for A = 2,3, (ξ#)A = (g/−1)ABξB, where ξB = ξ · ∂
∂xB

. Similarly, if ξ is a symmetric

47It is Riemannian is because the g-normal to Σt is the g-timelike vectorfield B; see Lemma 3.9.
48It is Riemannian is because ℓt,u is a sub-manifold of the spacelike hypersurface Σt .
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type
(0
2
)
ℓt,u-tangent tensorfield, then ξ♯ denotes the type

(1
1
)
ℓt,u-tangent tensorfield obtained by raising one index of ξ

with g/−1, while ξ♯♯ denotes the type
(2
0
)
ℓt,u-tangent tensorfield obtained by raising both indices of ξ with g/−1.

3.5.3. The important acoustic vectorfields. The vectorfields in the next definition are fundamental for the rest of the paper.
We will use them to control the solution up to top-order.

Definition 3.8 (The important acoustic vectorfields).

1. We define the geodesic null vectorfield by:

Lα(Geo)
def= −(g−1)αβ∂βu, (3.8)

and the rescaled null vectorfield as follows, where µ is the inverse foliation density defined in (3.2):

L
def= µL(Geo). (3.9)

For i = 1,2,3, we define the scalar functions Li(Small) as follows, where throughout the paper, Li denotes the

Cartesian component Lxi :

L1
(Small)

def= L1 − 1, L2
(Small)

def= L2, L3
(Small)

def= L3. (3.10)

2. We define X to be the unique vectorfield that is Σt-tangent and g-orthogonal to the acoustic tori ℓt,u , and
normalized by:

g(L,X) = −1, (3.11)

and we define the rescaled vectorfield X̆ by:

X̆
def= µX. (3.12)

For i = 1,2,3, we define the scalar functions Xi(Small) as follows, where throughout the paper, Xi denotes the

Cartesian component Xxi :49

X1
(Small)

def= X1 + 1, X2
(Small)

def= X2, X3
(Small)

def= X3. (3.13)

3. We define Y(2), Y(3), to be the following ℓt,u-tangent vectorfields:

Y(2)
def= ∂2 − g(∂2,X)X, Y(3)

def= ∂3 − g(∂3,X)X. (3.14)

We also define Y(2;Small), Y(3;Small), to be the following vectorfields (which are not generally ℓt,u-tangent):

Y(2;Small)
def= Y(2) −∂2, Y(3;Small)

def= Y(3) −∂2. (3.15)

We similarly define the Cartesian component functions Y i(2),Y
i
(3;Small), analogously to (3.13).

4. We define the commutation vectorfields Z , the Pu-tangential subset P , and the ℓt,u-tangential subset Y as
follows:

Z
def= {L,X̆,Y(2),Y(3)}, P

def= {L,Y(2),Y(3)}, Y
def= {Y(2),Y(3)}. (3.16)

Lemma 5.5 shows that Z spans the tangent spaces of spacetime equipped with the differential structure corresponding
to the geometric coordinates (t,u,x2,x3). We sometimes refer to Z as the rescaled frame because the vectorfield X̆ = µX
degenerates with respect to the Cartesian differential structure as µ ↓ 0, i.e., X̆i = µXi tends to 0. Similarly, the lemma
shows that P spans the tangent spaces of the characteristics Pu and that Y spans the tangent spaces of the ℓt,u . To
derive L∞ and Hölder estimates, we commute various PDEs with elements of Z . To derive energy estimates, we will
commute various PDEs with the elements of P . For a handful of key estimates, we will refer to the set Y . We also
note that from definitions (3.6b) and (3.14), it is straightforward to check that Y(A) = Π/ ∂A, i.e., Y(A) is the g-orthogonal
projection of the Cartesian partial derivative vectorfield ∂A onto ℓt,u ; see also the first equality in (3.34a).

Throughout the paper, we will often silently use the identities featured in the following lemma.

Lemma 3.9 (Basic properties of the vectorfields). The follow results hold.

49For the solutions covered by our main results, the functions Li(Small) and X
i
(Small) will have magnitudes that are ≪ 1.
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1. The vectorfield L(Geo) is geodesic and g-null, i.e., with D denoting the Levi-Civita connection of g, we have:

g(L(Geo),L(Geo)) = 0, DL(Geo)
L(Geo) = 0. (3.17)

The rescaled vectorfield L is also g-null:

g(L,L) = 0, (3.18)

and it satisfies the following identity, where µ is the inverse foliation density defined in (3.2):

DLL =
(Lµ)
µ
L. (3.19)

2. L is g-orthogonal to the characteristics Pu , that is, for any vectorfield P tangent to Pu , we have:
g(L,P ) = 0. (3.20)

3. The following identities hold:

Lu = 0, Lt = L0 = 1, X̆u = 1, X̆t = X̆0 = 0, (3.21)

g(X,X) = 1, g(X̆, X̆) = µ2, g(L,X) = −1, g(L,X̆) = −µ. (3.22)

4. The material vectorfield B is future directed, g-orthogonal to Σt (and hence also to ℓt,u ), and it is of g-unit size:

g(B,B) = −1. (3.23)

Moreover, we have:

B = L+X, (3.24)

and relative to the Cartesian coordinates, we have:

Bα = −δ0
α , (3.25)

where δ
β
α is the Kronecker delta.

5. Finally, the following identities hold for i = 1,2,3 and A = 2,3:

Xi(Small) = −Li(Small) + vi , (3.26a)

Y i(A;Small) = −c−2XA(Small)X
i = −c−2(−LA(Small) + vA)(−Li + vi). (3.26b)

Proof. All aspects of the lemma except for (3.19) and (3.26b) follow from minor modifications of the proofs of [73, (2.12),
(2.13) and Lemma 2.1]. The identity (3.19) follows from definition (3.9), (3.17), and the Leibniz rule for the connection D.
The identity (3.26b) follows from definitions (3.13)–(3.14), the form (2.15a) of gαβ , and (3.26a). □

3.6. Differential operators associated with the projections and metrics.

Definition 3.10 (ℓt,u-differential). If ϕ is a scalar function, then we define d/ ϕ to be the following ℓt,u-tangent one-form:

d/ ϕ def= Π/ dϕ. (3.27)

Note that d/ Aϕ = d/ ϕ · ∂
∂xA

= ∂
∂xA

ϕ for A = 2,3 and that d/ αϕ = d/ ϕ ·∂α = Π/
β
α ∂βϕ for α = 0,1,2,3.

Definition 3.11 (Levi-Civita connections and associated differential operators).

1. We denote the Levi-Civita connection of g by D.
2. We denote the Levi-Civita connection of g/ by ∇/ . In particular, for ℓt,u-tangent tensorfields ξ, we have ∇/ ξ = Π/ Dξ.

3. If ξ is an ℓt,u-tangent one-form, then we define its ℓt,u-divergence to be the scalar function div/ ξ
def= g/−1 · ∇/ ξ.

Similarly, if Y is an ℓt,u-tangent vectorfield, then we define its ℓt,u-divergence to be the scalar function div/ Y
def=

g/−1 · ∇/ Y♭. where Y♭ is the ℓt,u-tangent one-form that is g-dual to Y .
4. If ξ is a symmetric type

(0
2
)
ℓt,u-tangent tensorfield, then we define its ℓt,u-divergence to be the ℓt,u-tangent

one-form with the following ℓt,u-components for A = 2,3: (div/ ξ)A
def= (g/−1)BC · ∇/ BξCA.

5. We denote the covariant wave operator of g by 2g
def= g−1 ·D2 = (g−1)αβDαDβ .

6. We denote the ℓt,u-Laplacian associated to g/ by ∆/
def= g/−1 · ∇/ 2 = (g/−1)AB∇/ A∇/ B.



50 Lecture notes on: The emergence of the singular boundary

Definition 3.12 (Projected Lie derivatives). Given a spacetime tensorfield ξ and a vectorfield Z , we define LZξ and L/Zξ
to respectively be the following Σt-tangent and ℓt,u-tangent tensorfields:

LZξ
def= ΠLZξ, L/Zξ

def= Π/ LZξ. (3.28)

We will use the following simple commutation lemma when deriving various equations.

Lemma 3.13 (Angular differential d/ commutes with L/ ). Let f be a scalar function and let Z ∈ Z (see definition (3.16)).
Then the following identity holds:

L/Zd/ f = d/ Zf . (3.29)

Proof. The same proof of [73, Lemma 2.10] holds. □

3.7. Controlling quantities γ and γ. In the next definition, we introduce the solution variable arrays γ and γ. They
allow us to provide simple, schematic formulas in contexts where precise structure is not important for the PDE analysis.

Definition 3.14 (The controlling quantities). We define γ and γ to be the following arrays of scalar functions:

γ
def= (Ψ⃗ ,L1

(Small),L
2
(Small),L

3
(Small)), (3.30a)

γ
def= (Ψ⃗ ,µ− 1,L1

(Small),L
2
(Small),L

3
(Small)). (3.30b)

For the solutions that we study in our main results, along the data-hypersurface Σ0, γ and γ are small in L∞.

3.8. Identities for the ℓt,u-projection tensorfield and the first fundamental forms. The following lemma provides
useful identities for the ℓt,u-projection tensorfield Π/ , the first fundamental form g/ of ℓt,u , and the first fundamental form
g of Σt .

Lemma 3.15 (Useful identities for the first fundamental forms). Recall thatΠ/ is the ℓt,u-projection tensorfield from Def. 3.3,
that g/ is the first fundamental form of ℓt,u from Def.3.4, and that g is the first fundamental form of Σt from Def.3.4. Let X
be the vectorfield defined in Def. 3.8. Then the following identities hold relative to the geometric coordinates (A,B = 2,3):

g/AB = c−2δAB + c−2X
AXB

(X1)2 , (3.31a)

(g/−1)AB = c2δAB −XAXB, (3.31b)

detg/ =
1

c2(X1)2 . (3.31c)

Moreover, the following identities hold relative to arbitrary coordinates:

gαβ = gαβ +BαBβ , (3.32a)

(g−1)αβ = (g−1)αβ +BαBβ . (3.32b)

Furthermore, the following identities hold relative to the Cartesian coordinates:

g = c−2
3∑
a=1

(dxa − vadt)⊗ (dxa − vadt), (3.33a)

g−1 = c2
3∑
a=1

∂a ⊗∂a. (3.33b)

In addition, the following identities hold relative to arbitrary coordinates:

g/αβ = gαβ −XαXβ = gαβ +BαBβ −XαXβ = gαβ +LαLβ +LαXβ +XαLβ , (3.34a)

(g/−1)αβ = (g−1)αβ −XαXβ = (g−1)αβ +BαBβ −XαXβ = (g−1)αβ +LαLβ +LαXβ +XαLβ , (3.34b)

Π/ α
β = gβγ (g/−1)αγ = g/βγ (g/−1)αγ . (3.34c)
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Finally, relative to the Cartesian coordinates, the following identities hold for α,β = 0,1,2,3:

(g/−1)0α = (g/−1)α0 = 0, (3.35a)

(g−1)0α = (g−1)α0 = 0, (3.35b)

Π/ 0
β = 0. (3.35c)

Proof. The identities (3.31a)–(3.31b) were proved in [52, Lemma 2.31]. The identity (3.31c) follows from (3.31a) and the
following identity:

c2 =
3∑
i=1

(Xi)2, (3.36)

which follows from (2.15a) and g(X,X) = 1 (see (3.22)).
(3.32a) follows from definition (3.5a) and the fact that g = Πg. (3.32b) follows from raising the indices in (3.32a) with

g−1.
Since ℓt,u ⊂ Σt , the first equality in (3.34a) follows from the fact that X is Σt-tangent, g-orthogonal to ℓt,u , and

normalized by g(X,X) = g(X,X) = 1. The second equality in (3.34a) follows from (3.32a). The last equality in (3.34a)
follows from (3.24). (3.34b) follows from raising the indices in (3.34a) with g−1.

The first equality in (3.34c) follows from definition (3.5b) and the second equality in (3.34b). The second equality in
(3.34c) follows from the second equality in (3.34a) and the fact that g/−1 vanishes when contracted against B or X .

(3.33b) follows from (2.15b) and (3.32b). (3.33a) follows from (3.33b) and (2.15a), which in particular implies that in
Cartesian coordinates, the g-dual of ∂a is c−2 {dxa − vadt}.

(3.35a) follows from (3.33b), the first equality in (3.34b), and the fact that X0 = 0, i.e., X is Σt-tangent. (3.35b) follows
from (3.33b). (3.35c) follows from (3.34c) and (3.35a). □

3.9. Traces of tensorfields. In our analysis, we will encounter various traces of tensorfields.

Definition 3.16 (Traces of tensorfields).

1. If ξ is a type
(0
2
)
spacetime tensorfield, then we define its g-trace as follows:

trgξ
def= (g−1)αβξαβ . (3.37a)

2. If ξ is a type
(0
2
)
spacetime tensorfield, then we define its g/-trace as follows:

trg/ξ
def= (g/−1)αβξαβ . (3.37b)

3.10. Pointwise norms and semi-norms of tensorfields. In the next definition, we define various pointwise norms and
semi-norms that we will use to measure the size of tensorfields.

Definition 3.17 (Pointwise norms).

1. If ξ is a type
(m
n

)
spacetime tensorfield such that gα1α̃1

· · ·gαmα̃m(g−1)β1β̃1 · · · (g−1)βnβ̃nξα1···αn
β1···βn ξ

α̃1···α̃m
β̃1···β̃n

≥ 0, then

we define |ξ|g ≥ 0 by:

|ξ|2g
def= gα1α̃1

· · ·gαmα̃m(g−1)β1β̃1 · · · (g−1)βnβ̃nξα1···αn
β1···βn ξ

α̃1···α̃m
β̃1···β̃n

. (3.38a)

2. If ξ is a type
(m
n

)
tensorfield, then we define |ξ|g/ ≥ 0 by:

|ξ|2g/
def= g/α1α̃1

· · ·g/αmα̃m(g/−1)β1β̃1 · · · (g/−1)βnβ̃nξα1···αn
β1···βn ξ

α̃1···α̃m
β̃1···β̃n

. (3.38b)

3. If ξ is a type
(m
n

)
tensorfield, then we define |ξ|g ≥ 0 by:

|ξ|2g
def= gα1α̃1

· · ·gαmα̃m(g−1)β1β̃1 · · · (g−1)βnβ̃nξα1···αn
β1···βn ξ

α̃1···α̃m
β̃1···β̃n

. (3.38c)

Remark 3.18 (Norms vs. semi-norms). | · |g is a pointwise norm on the space of g-spacelike tensorfields. | · |g is a
pointwise norm on the space of Σt-tangent tensorfields and a pointwise semi-norm on the space of all tensorfields. | · |g/
is a pointwise norm on the space of ℓt,u-tangent tensorfields and a pointwise semi-norm on the space of all tensorfields.

Similarly, the function | · |̃g/ from Def. 6.9 below is a pointwise norm on the space of (n)̃ℓτ,u-tangent tensorfields a
pointwise semi-norm on the space of all tensorfields.
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Remark 3.19 (Omitting the 0 component in Cartesian coordinates). In view of (3.25), Def. 3.3, definitions (3.38b)–(3.38c),
and (3.35a)–(3.35b), we see that if ξ is a type

(m
n

)
Σt-tangent tensorfield, then relative to the Cartesian coordinates, we

have:

|ξ|2g/ = g/a1ã1
· · ·g/amãm(g/−1)b1b̃1 · · · (g/−1)bnb̃nξa1···an

b1···bnξ
ã1···ãm
b̃1···̃bn

, (3.39)

|ξ|2g = ga1ã1
· · ·gamãm(g−1)b1b̃1 · · · (g−1)bnb̃nξa1···an

b1···bnξ
ã1···ãm
b̃1···̃bn

, (3.40)

i.e., we can omit all “0” components on RHSs (3.39)–(3.40).
Similarly, taking into account definition (3.6b) and (3.35c), we see that if V is a Σt-tangent vectorfield, then relative to

the Cartesian coordinates, we have Π/ α
β ∂αV

β = Π/ a
b ∂aV

b .
In the rest of the paper, we will use these basic facts without always explicitly mentioning them.

3.11. Second fundamental forms and the torsion. In this section, we provide the standard definitions of the second
fundamental form k of Σt , the null second fundamental form χ of ℓt,u , and the one-form ζ. These quantities will appear
in various PDEs throughout the article. It is well-known that there are many technical difficulties that have to be overcome
to obtain top-order energy estimates for trg/χ and χ. To achieve control, we will use the modified quantities defined in
Sect. 19 and elliptic estimates on the rough tori, which we derive in Sect. 28.

Definition 3.20 (The second fundamental forms k and χ, and the one-form ζ).

1. We define the second fundamental form k of Σt as follows:

k
def=

1
2
LBg. (3.41)

2. We define the null second fundamental form of ℓt,u as follows:

χ
def=

1
2
L/Lg/. (3.42)

3. We define ζ to be the ℓt,u-tangent one-form with the following components:

ζA
def= g(DAL,X). (3.43)

3.12. Transport equations for the eikonal function quantities. To control the eikonal function quantities µ and Li ,
we will use the following transport equations.

Lemma 3.21 (Transport equations satisfied by µ and Li ). The scalar functions µ and Li satisfy the following transport
equations (see Def. 2.12 regarding the notation):

Lµ =
1
2
G⃗LL ⋄ X̆Ψ⃗ −

1
2
µG⃗LL ⋄LΨ⃗ −µG⃗LX ⋄LΨ⃗ , (3.44)

LLi(Small) =
1
2

(G⃗LL ⋄LΨ⃗ )Xi − (G⃗/ #
L ⋄LΨ⃗ ) ·d/ xi +

1
2

(G⃗LL ⋄d/ #Ψ⃗ ) ·d/ xi . (3.45)

Proof. The same proof of [73, Lemma 2.12] holds. □

3.13. The factor driving the shock formation and formulas involving GLL. In the following lemma, we compute an

expression for the product 1
2 G⃗LL ⋄ X̆Ψ⃗ on the RHS of the evolution equation (3.44) for µ. For every smooth equation of

state besides that of a Chaplygin gas, there exist open sets of background densities ϱ > 0 such that the non-degeneracy

condition (2.4) holds. The identity (3.46) then shows that for solutions that are close to the trivial solution Ψ⃗ ≡ 0,
the expansion of 1

2 G⃗LL ⋄ X̆Ψ⃗ features a non-zero term proportional to X̆R(+); the presence of this term is crucial for
our main results, as it drives the formation of the shock, i.e., it drives µ to 0. In contrast, for the equation of state
p = C0−C1 exp(−ρ) of a Chaplygin gas, one can compute that c−1c;ρ +1 ≡ 0, and the non-degeneracy condition (2.4) is

therefore impossible. In this case, equation (3.46) shows that the product 1
2 G⃗LL ⋄ X̆Ψ⃗ does not depend on the solution’s

X̆ derivative, and hence our main results do not apply. We note that one can show that for irrotational and isentropic
solutions, the equation c−1c;ρ + 1 = 0 is equivalent to the statement that the quasilinear wave equation for a potential
function satisfies Klainerman’s null condition [44].
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Lemma 3.22 (Identity for the factor driving the shock formation). For solutions to the compressible Euler equations
(2.6a)–(2.6c), the following identity holds, where F(ρ, s) is the scalar function from (2.7):

1
2
G⃗LL ⋄ X̆Ψ⃗ = −1

2
c−1(c−1c;ρ + 1)

{
X̆R(+) − X̆R(−)

}
− 1

2
µc−1X1

{
LR(+) +LR(−)} −µc−2{X2Lv2 +X3Lv3

}
−µc−1c;sX

aSa +µc−1(c−1c;ρ + 1)F;sX
aSa.

(3.46)

Proof. This is the same as [50, Lemmas 2.45, 2.46], except for minor modifications incorporating the third dimension and
the entropy (via the c;s-dependent and F;s-dependent products). □

In the next lemma, we derive expressions for G2
LL and G3

LL. When deriving estimates, we will use the expressions to
track smallness.

Lemma 3.23 (Formulas for GALL). The following identities hold for A = 2,3:

GALL = 2c−2(vA −LA) = 2c−2XA = 2c−2XA(Small). (3.47)

Proof. The identities follow from the expression (2.15a) for the Cartesian component gαβ viewed as a function of

(R(+),R(−),v
2,v3, s), the identity GALL = ( ∂

∂vA
gαβ)LαLβ , and the identities L0 = 1 and LA +XA = vA, which follow

from Lemma 3.9 and (1.2). □

3.14. Useful geometric decompositions. In this section, we provide some geometric decompositions that we will use
throughout the article.

We start with the following alternate expressions for χ and k/ , which are useful for computations.

Lemma 3.24 (Alternate expressions for χ and k/ ). The second fundamental forms from Def. 3.20 satisfy the following
identities:

χAB = g
(
DAL,

∂

∂xB

)
, k/ AB = g

(
DAB,

∂

∂xB

)
. (3.48)

Proof. The same proof of [69, Lemma 3.61] holds in the present setting. □

We will use the following identities and decompositions when deriving estimates for χ, k/ , and ζ.

Lemma 3.25 (Useful identities and decompositions for χ, k/ , and ζ). Let χ, k, and ζ be the tensorfields from Def. 3.20.
Then the following50 identities hold:

χ = gabd/ L
a ⊗d/ xb +

1
2
G⃗/ ⋄LΨ⃗ +

1
2

d/ Ψ⃗
⋄
⊗ G⃗/ L −

1
2
G⃗/ L

⋄
⊗d/ Ψ⃗ , (3.49a)

trg/χ = gabg/
−1 ·

{
d/ La ⊗d/ xb

}
+

1
2
g/−1 · G⃗/ ⋄LΨ⃗ . (3.49b)

Moreover, we can decompose k/ and ζ into µ−1-singular and µ−1-regular pieces as follows:

ζ = ζ(Tan–Ψ⃗ ) +µ−1ζ(Trans–Ψ⃗ ), k/ = k/ (Tan–Ψ⃗ ) +µ−1k/ (Trans–Ψ⃗ ), (3.50a)

where:

k/ (Tan–Ψ⃗ ) def=
1
2
G⃗/ ⋄LΨ⃗ − 1

2
G⃗/ L

⋄
⊗d/ Ψ⃗ − 1

2
d/ Ψ⃗

⋄
⊗ G⃗/ L −

1
2
G⃗/ X

⋄
⊗d/ Ψ⃗ − 1

2
d/ Ψ⃗

⋄
⊗ G⃗/ X , (3.50b)

k/ (Trans–Ψ⃗ ) def=
1
2
µ−1G⃗/ ⋄ X̆Ψ⃗ , (3.50c)

ζ(Tan–Ψ⃗ ) def=
1
2
G⃗/ X ⋄LΨ⃗ −

1
2
G⃗LX ⋄d/ Ψ⃗ − 1

2
G⃗XX ⋄d/ Ψ⃗ , (3.50d)

ζ(Trans–Ψ⃗ ) def= −1
2
µ−1G⃗/ L ⋄ X̆Ψ⃗ . (3.50e)

Proof. The same proofs of [50, Lemmas 2.13, 2.15] holds with minor modifications accounting for the third spatial
dimension. □

50Here,
⋄
⊗ is defined by G⃗/ L

⋄
⊗d/ Ψ⃗ def=

∑4
ι=0 G⃗/

ι
L ⊗d/Ψι , and similarly for d/Ψ

⋄
⊗ G⃗/ L , G⃗/ X

⋄
⊗d/ Ψ⃗ , etc.
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In the next lemma, we decompose the µ-weighted covariant wave operator relative to the rescaled frame {L,X̆,Y(2),Y(3)}
and the second fundamental forms.

Lemma 3.26 (Frame decomposition of µ□g(Ψ⃗ )f ). Let f be a scalar function, and let □g(Ψ⃗ ) be the covariant wave operator

of the acoustical metric, as in Def. 2.13. Then the following identities hold:

µ□g(Ψ⃗ )f = −L(µLf + 2X̆f ) +µ∆/ f − (trg/χ)X̆f

−µtrg/k/ Lf − 2µζ# ·d/ f ,
(3.51a)

µ□g(Ψ⃗ )f = −(µL+ 2X̆)(Lf ) +µ∆/ f − (trg/χ)X̆f − (Lµ)Lf

−µtrg/k/ Lf + 2µζ# ·d/ f + 2(d/ #µ) ·d/ f .
(3.51b)

Proof. The same proof of [69, Proposition 5.4] holds with X̆ in the role of the vectorfield denoted by “R̆” there. □

4. Rough time functions, adapted rough coordinates, and rough subsets

The geometric coordinates (t,u,x2,x3) from Sect. 3 are fundamental for our construction of commutation and multi-
plier vectorfields. However, these coordinates, in particular the Cartesian time function t, are not adapted to the shape
of the singular boundary. For this reason, in this section, we construct a one-parameter family of rough time functions
{(n)τ}n∈[0,n0] that are adapted to structure of the singular boundary, where n0 > 0 is a constant depending on the initial

data on Σ0. We refer to ((n)τ,u,x2,x3) as adapted rough coordinates.
In our forthcoming PDE analysis, we will derive estimates on the level-sets of the (n)τ, which we will prove are

g-spacelike (see (6.20c)). We construct (n)τ by solving a well-chosen transport equation (see Def. 4.5) with data equal to
−µ on the “initial hypersurface" {X̆µ = −n}. Standard well-posedness and Cauchy stability results (see Appendices A and
B) imply that for perturbations of simple isentropic plane-symmetric solutions, our construction is well-defined on short
“rough time” intervals of the form [τ0,τBoot), where τ0 < 0 is a data-dependent constant (independent of n ∈ n0) and
τ0 < τBoot < 0 is a “bootstrap parameter.” Our main results will show that each (n)τ exists in a neighborhood of the
singular boundary and has range [τ0,0],

There are several subtleties tied to the analysis and regularity of (n)τ. In particular, our main results crucially rely on
our proofs that (n)τ is one degree more differentiable than the initial hypersurface {X̆µ = −n} and that near the singular
boundary, for m sufficiently small and positive, {X̆µ = −n} ∩ {µ = m} is an embedded two-dimensional, spacelike torus
with sufficient regularity. The proofs of these results and many supporting ones are located in Sects. 14–18.

Starting now, we consider a fixed n ∈ [0,n0]; see Sect. 10 for discussion of how n0 is tied to the initial
data. n will remain fixed until Sects. 32–34, where we prove our main results by exploiting all the time
functions (n)τ for n ∈ [0,n0]. All of our estimates will involve constants that can be chosen to be uniform
with respect to n over the interval [0,n0].

4.1. Basic constructions. We now introduce some basic ingredients that we will use to construct (n)τ.

4.1.1. The constant Uj > 0, the cut-off function φ, and the vectorfield (n)W̆ . Our constructions rely on the vectorfield (n)W̆
featured in the next definition, which is crucial for the rest of the paper. In what follows, Uj > 0 is a positive constant;
see Sect. 10 for further discussion of how the specific choice of Uj that we make in our main theorem is tied to the
initial data.

Definition 4.1 (The cut-off φ and the vectorfield (n)W̆ ). Let ψ : R→ [0,1] be a fixed C∞ cut-off function such that

ψ(u) = 1 when |u| ≤ 3
4 and ψ(u) = 0 when |u| ≥ 1. Let φ be the cut-off function defined by φ(u) def= ψ

(
u
Uj

)
. In

particular: 
φ(u) = 1, when |u| ≤ 3

4Uj,

0 ≤ φ(u) ≤ 1, when 3
4Uj ≤ |u| ≤Uj,

φ(u) = 0, when |u| ≥Uj.

(4.1)

For fixed n ≥ 0, we define the rough transversal vectorfield (n)W̆ as follows:

(n)W̆
def= X̆ +φ

n

Lµ
L. (4.2)

In our main results, we will have Lµ < 0 on the support of φ; see (18.8a).
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4.1.2. µ-adapted subsets. To follow the solution up to the singular boundary, we will analyze it on the following subsets
(and others as well), which are adapted to the shape of the singular boundary.

Definition 4.2 (Level-sets of µ and X̆µ and the µ-adapted tori T̆m,−n). Recall that X̆ is defined in (3.12). Given real
numbers m,n ≥ 0, we define:

M̆m
def=

{
(t,u,x2,x3) ∈R×R×T2 | µ(t,u,x2,x3) = m

}
∩ {|u| ≤Uj}, (4.3a)

X̆−n
def=

{
(t,u,x2,x3) ∈R×R×T2 | X̆µ(t,u,x2,x3) = −n

}
∩ {|u| ≤Uj}, (4.3b)

T̆m,−n
def= M̆m ∩ X̆−n. (4.3c)

Remark 4.3 (The values of m and n featured in our main results). Our main results concern solutions and values of
m ∈ [0,m0] and n ∈ [0,n0] such that: i) (n)W̆ is transversal to T̆m,−n; ii) T̆m,−n is a torus, specifically, a C1,1 graph over
T

2 in geometric coordinates.

Remark 4.4 (Differential structure with respect to the geometric coordinates). In the rest of the paper, we usually
implicitly consider M̆m, X̆−n, and T̆m,−n to be subsets of spacetime with the differential structure induced by the

geometric coordinates (t,u,x2,x3); this is already apparent from Def. 4.2. Similar remarks apply to the sets (n)̃ΣIτ,
(n)̃ℓτ,u ,

(n)P Iu , (n)MI,J , M̆
I
m, and X̆

I
−n defined below.

4.2. Rough time functions, the parameter τ0, and adapted rough coordinates. We now provide the transport equation
initial value problem whose solution is the rough time function.

4.2.1. Rough time functions and the parameter τ0.

Definition 4.5 (The rough time function (n)τ). Let m0 > 0 be a real number and let mBoot ∈ [0,m0] (see Sect. 10 for
further discussion of how the specific choice of m0 that we make in our main theorem is tied to the initial data). Let
(n)W̆ = X̆ + φ n

LµL be the vectorfield defined in (4.2), and let T̆m,−n be the µ-adapted torus defined by (4.3c). For

m ∈ [mBoot,m0], we define the rough time function (n)τ to be the solution to the following transport equation initial
value problem:51

(n)W̆ (n)τ = 0, (4.4a)

(n)τ|T̆m,−n
= −m = −µ|T̆m,−n

. (4.4b)

We sometimes refer to T̆m,−n as a primal torus for (n)τ because (n)τ is “flowed out” from it.

Remark 4.6 ((n)W̆ is tangent to the level-sets of (n)τ). Note that equation (4.4a) implies that (n)W̆ is tangent to the
level-sets of (n)τ.

Remark 4.7 (The regularity of (n)τ). Since (n)W̆ depends on µ, and since µ is one degree less differentiable than the

fluid wave-variables Ψ⃗ (because it solves the transport equation (3.44)), it follows that (n)τ is also less regular than Ψ⃗ ;
that is why we refer to (n)τ as the “rough time function.” See Sect. 1.3 for further discussion.

Definition 4.8 (The parameter τ0). We define the parameter τ0 < 0 as follows:

τ0
def= −m0. (4.5)

In the bulk of the paper, portions of the rough hypersurface {(n)τ = τ0} will play the role of an “initial data”
hypersurface near the singularity. Note that by construction, we have τ0 ≤ (n)τ ≤ −mBoot ≤ 0.

4.2.2. Adapted rough coordinates. Having constructed the eikonal function u and the rough time function (n)τ, we now
define a system of coordinates adapted to them.

Definition 4.9 (The adapted rough coordinates and their partial derivative vectorfields). We call ((n)τ,u,x2,x3) the
adapted rough coordinates. We denote the corresponding adapted rough coordinate partial derivative vectorfields by{

∂̃
∂̃(n)τ

, ∂̃
∂̃u
, ∂̃
∂̃x2
, ∂̃
∂̃x3

}
.

51See Lemmas 14.2 and 15.1 for the well-posedness theory of this Cauchy problem.
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Our analysis will show that the map (t,x1,x2,x3)→
(

(n)τ,u,x2,x3
)
is a homeomorphism – all the way up to the

singular boundary – and that it is a diffeomorphism away from the singular boundary. Moreover, the map (t,u,x2,x3)→(
(n)τ,u,x2,x3

)
is a diffeomorphism all the way up to the singular boundary; see Theorems 31.1 and 34.1.

Remark 4.10 (Suppressing the value of n). The notation
{
∂̃
∂̃u
, ∂̃
∂̃x2
, ∂̃
∂̃x3

}
suppresses the dependence of these operators on

n. Moreover, we often write τ in place of (n)τ or ∂̃
∂̃τ

in place of ∂̃
∂̃(n)τ

when there is no danger of confusion about the

value of n.

4.3. Rough subsets. In this section, we define various subsets of spacetime that are tied to u and (n)τ. Most of the
delicate PDE analysis in the bulk of paper will take place on these subsets. Our analysis will show that these subsets are
well-adapted to the structure of the singular boundary.

4.3.1. Truncated (n)τ-adapted subsets.

Definition 4.11 (Truncated (n)τ-adapted subsets). Given intervals I, J ⊂R and real numbers τ,u ∈R, we define:

(n)̃Σ
J
τ

def= {(t,u,x2,x3) ∈R×R×T2 | (n)τ(t,u,x2,x3) = τ, u ∈ J}, (4.6a)

(n)̃ℓτ,u
def= {(t,u,x2,x3) | (t,x2,x3) ∈R×T2, (n)τ(t,u,x2,x3) = τ}, (4.6b)

(n)P Iu
def=

⋃
τ′∈I

(n)̃ℓτ′ ,u , (4.6c)

(n)MI,J
def=

⋃
τ′∈I

(n)̃Σ
J
τ′ =

⋃
u′∈J

(n)P Iu′ =
⋃

(τ′ ,u′)∈I×J

(n)̃ℓτ′ ,u′ . (4.6d)

We refer to the (n)̃Σ
J
τ as rough hypersurfaces. We sometimes refer to (n)̃Σ

J
τ0 as the initial rough hypersurface, where

τ0 < 0 is the parameter from Sect. 4.2.1. We refer to the (n)̃ℓτ,u as rough tori. We also note that (n)P Iu is a portion of the
g-null surface Pu .

From Defs. 4.9 and 4.11, it follows that
{
∂̃
∂̃u
, ∂̃
∂̃x2
, ∂̃
∂̃x3

}
spans the tangent space of (n)̃ΣIτ, that

{
∂̃
∂̃x2
, ∂̃
∂̃x3

}
spans the

tangent space of (n)̃ℓτ,u , that
{
∂̃
∂̃t
, ∂̃
∂̃x2
, ∂̃
∂̃x3

}
spans the tangent space of (n)P Iu , and that

{
∂̃
∂̃τ
, ∂̃
∂̃u
, ∂̃
∂̃x2
, ∂̃
∂̃x3

}
spans the

tangent space of (n)MI,J .

4.3.2. Truncated µ-adapted subsets. In our analysis, we will often derive estimates on truncated versions of the level-sets
of various functions, which we now define.

Definition 4.12 (Truncated level-sets of µ and X̆µ). Let I ⊂ [τ0,0] be an interval, let m ∈ [0,m0], and let M̆m and X̆−n
be the sets from Def. 4.2. We define:

M̆
I
m

def= M̆m ∩
{
(t,u,x2,x3) ∈R×R×T2 | (n)τ(t,u,x2,x3) ∈ I

}
, (4.7a)

X̆
I
−n

def= X̆−n ∩
{
(t,u,x2,x3) ∈R×R×T2 | (n)τ(t,u,x2,x3) ∈ I

}
. (4.7b)

Just as in Remark 4.4, we view (n)̃Σ
J
τ, (n)P Iu , (n)MI,J , M̆

I
m, and X̆

I
−n as sub-manifolds of spacetime equipped with the

differential structure induced by the geometric coordinates (t,u,x2,x3).

5. Coordinate transformations

To prove our main results, we will have to control the transformations between the Cartesian coordinates (t,x1,x2,x3),
the geometric coordinates (t,u,x2,x3), the adapted rough coordinates ((n)τ,u,x2,x3), and a few other coordinate systems
whose role will become clear later in the paper. In this section, we define the relevant change of variables maps and
derive some basic relationships between the partial derivative vectorfields in the different coordinate systems.
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5.1. Change of variables maps. In this short section, we define various change of variables maps that we use to prove
our main results.

Definition 5.1 (Change of variables maps). We define the change of variables map from geometric to Cartesian coordinates
as follows:

Υ (t,u,x2,x3) def= (t,x1,x2,x3). (5.1)

We define the change of variables map from geometric coordinates to adapted rough coordinates as follows:

(n)T (t,u,x2,x3) def= ((n)τ,u,x2,x3). (5.2)

We define the map M̆ from geometric coordinates to “(µ, X̆µ,x2,x3)-space” and its Jacobian (M̆ )J as follows:

M̆ (t,u,x2,x3) def= (µ, X̆µ,x2,x3), (5.3a)

(M̆ )J(t,u,x2,x3) def=
∂M̆ (t,u,x2,x3)
∂(t,u,x2,x3)

=
∂(µ, X̆µ,x2,x3)
∂(t,u,x2,x3)

. (5.3b)

We define the map (n)Φ from adapted rough coordinates to “(µ, X̆µ,x2,x3)-space” and its Jacobian ((n)Φ)J as follows:

(n)Φ((n)τ,u,x2,x3) def=
(
µ((n)τ,u,x2,x3), X̆µ((n)τ,u,x2,x3),x2,x3

)
, (5.4a)

((n)Φ)J((n)τ,u,x2,x3) def=
∂(n)Φ((n)τ,u,x2,x3)

∂((n)τ,u,x2,x3)
=
∂(µ, X̆µ,x2,x3)

∂((n)τ,u,x2,x3)
. (5.4b)

We note the following identity:

M̆ = (n)Φ ◦ (n)T . (5.5)

Remark 5.2 (Invertibility of the change of variables maps). We justify the invertibility of Υ in Prop. 18.4 and the invertibility
of (n)T in Lemma 15.5. We justify the local invertibility of (n)Φ in Lemma 15.7.

Remark 5.3 (Implicit functional dependence). In most of the paper, our convention is that functions and tensorfields
should be viewed as depending on the geometric coordinates (t,u,x2,x3), unless we explicitly indicate otherwise. For
example, it is understood that in (5.1)–(5.3b), we are viewing the quantities on the RHSs as functions of (t,u,x2,x3).
Whenever we make statements relative to the Cartesian coordinates and there is the possibility of confusion, we explicitly
indicate the presence of Υ ; see, for example, Prop. 33.1.

We now highlight some occasions when we abuse notation that involves functional dependence on the adapted rough
coordinates ((n)τ,u,x2,x3), such as on RHSs (5.4a)–(5.4b).

• Whenever the wave-variables Ψ⃗ , the acoustic geometry variables, etc. are shown to depend on the adapted rough
coordinates (e.g., when we write µ((n)τ,u,x2,x3)), it should be understood that we are implicitly composing with
(n)T

−1
, e.g., by writing µ((n)τ,u,x2,x3), we mean µ ◦ (n)T

−1
((n)τ,u,x2,x3). Put differently, to avoid cluttering

the notation, we often avoid explicitly writing the composition with (n)T
−1
.

• In view of the previous bullet point, in the language of differential geometry, one can view Lemma 5.8 as describing

the pushforward of { ∂̃
∂̃τ
, ∂̃
∂̃u
, ∂̃
∂̃x2
, ∂̃
∂̃x3
} by (n)T

−1
in terms of { ∂∂t ,

∂
∂u ,

∂
∂x2 ,

∂
∂x3 }. To avoid cluttering the discussion,

we do not use the language of pushforwards in this article, except in Prop. 33.2, where we use the notion of a
pushforward to carefully address some degeneracies that occur along the singular boundary. Similar remarks apply
to Lemma 5.4 (which could be described as identities involving pushforward by Υ ).

• We highlight that we define our area and volume forms on the (n)τ-adapted regions (n)̃ℓτ,u ,
(n)P Iu , (n)̃ΣIτ, and

(n)MI,J in terms of the adapted rough coordinates (see Def. 8.3), and that we define our L2-type norms and
energies in terms of the adapted rough coordinates (see, for example (8.12a)–(8.12d)). Moreover, in Sects. 24–29, we
derive our L2 estimates in terms of the adapted rough coordinates.

• In Lemmas 22.6 and 22.9, we derive estimates for modified quantities (PN )X and (PN )X̃ along integral curves
of (n)̃L (see (6.3)) in adapted rough coordinates. When stating and deriving these estimates, as is explained in the

previous bullet points, it should be understood that we are implicitly composing with (n)T
−1
. Similar remarks

apply during parts of the proof of Prop. 17.1.



58 Lecture notes on: The emergence of the singular boundary

5.2. Coordinate partial derivative transformations.

Lemma 5.4 (Geometric coordinate vectorfields in terms of the Cartesian ones). The following identities hold, where{
∂
∂t ,

∂
∂u ,

∂
∂x2 ,

∂
∂x3

}
are the geometric coordinate partial derivative vectorfields and {∂t ,∂1,∂2,∂3} are the Cartesian coordi-

nate partial derivative vectorfields:

∂
∂t

= ∂t +
{
L1X1 +L2X2 +L3X3

X1

}
∂1,

∂
∂u

=
µc2

X1 ∂1,
∂

∂x2 = ∂2 −
X2

X1∂1,
∂

∂x3 = ∂3 −
X3

X1∂1. (5.6)

Proof. The identities for ∂
∂u ,

∂
∂x2 , and

∂
∂x3 were proved in [52, Lemma 2.24]. To derive the identity (5.6) for ∂

∂t , we first

equate the following two expressions for L: L = ∂t + L1∂1 + LA∂A = ∂
∂t + LA ∂

∂xA
. We then solve for ∂

∂t to deduce that
∂
∂t = ∂t +L1∂1 +LA∂A −LA ∂

∂xA
. Finally, we use the identities for

{
∂
∂x2 ,

∂
∂x3

}
in (5.6) to substitute for the factors of ∂

∂xA

in the expression LA ∂
∂xA

. □

The following lemma reveals the relationship between the geometric coordinate partial derivative vectorfields and the
commutation vectorfields from Def. 3.8.

Lemma 5.5 (Relationship between
{
∂
∂t ,

∂
∂u ,

∂
∂x2 ,

∂
∂x3

}
and {L,X,Y(2),Y(3)}). The following identities hold:

L =
∂
∂t

+LA
∂

∂xA
, (5.7a)

X̆ =
∂
∂u

+µXA
∂

∂xA
, (5.7b)

Y(2) =
{
1− c−2(X2)2

} ∂

∂x2 − c
−2X2X3 ∂

∂x3 , (5.7c)

Y(3) =
{
1− c−2(X3)2

} ∂

∂x3 − c
−2X2X3 ∂

∂x2 . (5.7d)

Moreover, the following identities hold:

∂
∂t

= L−LAY(A) −
{
L2X2 +L3X3

(X1)2

}
XAY(A), (5.8a)

∂
∂u

= X̆ − 1
(X1)2µc

2XAY(A), (5.8b)

∂

∂x2 =
{

(X1)2 + (X2)2

(X1)2

}
Y(2) +

X2X3

(X1)2 Y(3), (5.8c)

∂

∂x3 =
{

(X1)2 + (X3)2

(X1)2

}
Y(3) +

X2X3

(X1)2 Y(2). (5.8d)

Proof. The identities (5.7a)–(5.7d) were proved in [52, Lemma 2.23]. The identities (5.8c)–(5.8d) then follow from solving
for ∂

∂x2 and ∂
∂x3 in (5.7c)–(5.7d) and using (3.36). To derive (5.8b), we solve for ∂

∂u in (5.7b) and use the expressions

(5.8c)–(5.8d) as well as (3.36). To derive (5.8a), we solve for ∂
∂t in (5.7a) and use the expressions (5.8c)–(5.8d). □

The following lemma is an analog of Lemma 5.5 with the Cartesian coordinate partial derivative vectorfields in place
of the geometric ones.

Lemma 5.6 (Relationship between {∂t ,∂1,∂2,∂3} and {L,X,Y(2),Y(3)}). The following identities hold:

∂t = L− L
1X1 +L2X2 +L3X3

c2 X +
L1

X1X
AY(A) −LAY(A), (5.9a)

∂1 =
X1

c2 X −
1
X1X

AY(A), (5.9b)

∂2 =
X2

c2 X +Y(2), (5.9c)

∂3 =
X3

c2 X +Y(3). (5.9d)
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Proof. To derive the identities (5.9c)–(5.9d), we use the definition (3.14) of the vectorfields Y(A) and the expression (2.15a)

for the acoustical metric in Cartesian coordinates. To prove (5.9b), we first use (5.6) to deduce ∂1 = X1

µc2
∂
∂u . We then use

(5.8b) to substitute for ∂
∂u in the RHS of the previous expression, thereby obtaining (5.9b). To prove (5.9a), we first use

(5.6) and the already proven (5.9b) to express ∂t in terms of ∂
∂t and the commutation vectorfields. To handle the ∂

∂t term,

we first use (5.7a) to express ∂
∂t = L−LA ∂

∂xA
and then use (5.8c)–(5.8d) to substitute for the factors of ∂

∂xA
. □

Corollary 5.7 (Expressions for Π/ α
β ∂α in terms of {Y(2),Y(3)}). The following identities hold relative to the Cartesian

coordinates:

Π/ α
0 ∂α =

L1

X1X
AY(A) −LAY(A), (5.10)

Π/ α
1 ∂α = − 1

X1X
AY(A), (5.11)

Π/ α
2 ∂α = Y(2), Π/ α

3 ∂α = Y(3). (5.12)

Proof. To prove (5.10), we first note that by (3.6b), relative to the Cartesian coordinates, we have (Π/ ∂t)α = Π/ α
β (∂t)β = Π/ α

0 .

Hence, the vectorfield on LHS (5.10) is the g-orthogonal projection of ∂t onto ℓt,u . The identity (5.10) therefore follows
from (5.9a). The identities (5.11)–(5.12) follow from similar arguments based on (5.9b)–(5.9d). □

The next lemma reveals the relationship between the geometric coordinate partial derivative vectorfields and the
adapted rough coordinate partial derivative vectorfields.

Lemma 5.8 (Relationship between { ∂∂t ,
∂
∂u ,

∂
∂x2 ,

∂
∂x3 } and { ∂̃∂̃τ ,

∂̃
∂̃u
, ∂̃
∂̃x2
, ∂̃
∂̃x3
}). The following identities hold for A = 2,3:

∂̃

∂̃τ
=

1
∂
∂t

(n)τ

∂
∂t
, (5.13a)

∂̃

∂̃u
=
∂
∂u
−

∂
∂u

(n)τ

∂
∂t

(n)τ

∂
∂t
, (5.13b)

∂̃

∂̃xA
=

∂

∂xA
−

∂
∂xA

(n)τ

∂
∂t

(n)τ

∂
∂t

=
∂

∂xA
+

∂
∂xA

(n)τ

∂
∂t

(n)τ
LB

∂

∂xB
−

∂
∂xA

(n)τ

∂
∂t

(n)τ
L. (5.13c)

Moreover, the following identity holds:

∂

∂xA
=

∂̃

∂̃xA
−

∂
∂xA

(n)τ

L(n)τ
LB

∂̃

∂̃xB
+

∂
∂xA

(n)τ

L(n)τ
L. (5.14)

Proof. The identity (5.13a) follows from the chain rule identity ∂
∂t = ( ∂∂t

(n)τ) ∂̃
∂̃τ

+ ( ∂∂tu) ∂̃
∂̃u

+ ( ∂∂tx
A) ∂̃

∂̃xA
and the fact that

∂
∂tu = ∂

∂tx
A = 0. The identities (5.13b)–(5.13c) follow from similar arguments and (5.7a).

Finally, with the help of (3.21), it is straightforward to confirm the identity (5.14) by checking that both sides evaluate to
the same values when acting on the adapted rough coordinate functions τ,u,x2,x3. □

5.3. An identity for ∂̃
∂̃u

. We will use the following simple identity in Sect. 18.2, when we study the homeomorphism and

diffeomorphism properties of the change of variables map Υ .

Lemma 5.9 (An identity for ∂̃
∂̃u

). The following identity holds:

∂̃

∂̃u
= X̆ +φ

n

Lµ
L−

{
µXA +φ

n

Lµ
LA

} ∂

∂xA
+

∂
∂xA

(n)τ

∂
∂t

(n)τ
LB

∂

∂xB
−

∂
∂xA

(n)τ

∂
∂t

(n)τ
L

 . (5.15)

Proof. First, we use (4.2), (4.4a), and Lemma 3.9 to deduce that (n)W̆ u = 1 and (n)W̆ (n)τ = 0. It follows that ∂̃
∂̃u

=

(n)W̆ − (n)W̆A ∂̃
∂̃xA

, where as usual, (n)W̆A = (n)W̆ xA. From this identity, (4.2), (5.7a), and (5.13c), we conclude (5.15). □
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6. The rough acoustical geometry and curvature tensors

In this section, we set up the acoustical geometry of the rough foliations, that is, the geometry associated to the

rough hypersurfaces (n)̃Σ
[−U1,U2]
τ , the characteristics Pu , and their intersection (n)̃ℓτ,u . In particular, we define the first

fundamental forms induced by the acoustical metric g on the sub-manifolds (n)̃ℓτ,u and (n)̃Σ
[−U1,U2]
τ , we define various

geometric vectorfields tied to these sub-manifolds, we exhibit various geometric decompositions, and we introduce the
Riemann and Ricci curvature of the acoustical metric g and various curvature tensors of the first fundamental form of
(n)̃ℓτ,u .

Remark 6.1 (Sometimes suppressing dependence on n). In view of (4.2) and Def. 4.5 for (n)τ, it follows that all our
constructions in this section depend on the choice of n. On the other hand, the constants “C” in our forthcoming
estimates can be chosen to independent of n for n ∈ [0,n0]. This is important because in Sects. 32–34, we will vary
n ∈ [0,n0] to obtain a continuum of time functions (n)τ and their respective foliations, and our results depend on the
fact that the “C” can be chosen uniformly with respect to n. However, to simplify the notation, there are many geometric
objects for which we often suppress their dependence on n (for example, the tensorfield g̃/ introduced below depends on

n). Nonetheless, in some objects, such as (n)̃Σ
[−U1,U2]
τ , we will retain the explicit n-dependence to provide the reader

mental reminders regarding our constructions.

6.1. First fundamental forms of (n)̃ℓτ,u and (n)̃Σ
[−U1,U2]
τ . We now introduce the first fundamental forms of the rough

tori (n)̃ℓτ,u and the rough hypersurfaces (n)̃Σ
[−U1,U2]
τ induced by the acoustical metric g.

Definition 6.2 (The first fundamental forms of (n)̃ℓτ,u and (n)̃Σ
[−U1,U2]
τ ).

First fundamental form of (n)̃ℓτ,u :

• We define the first fundamental form of (n)̃ℓτ,u relative to g to be the symmetric type
(0
2
)
tensorfield g̃/ such that

g̃/(Y ,Z) = g(Y ,Z) for all pairs (Y ,Z) of vectorfields tangent to (n)̃ℓτ,u and such that g̃/(V , ·) = g̃/(·,V ) = 0 if V is

g-orthogonal to (n)̃ℓτ,u .
• We define the inverse first fundamental form g̃/ −1 to be the dual of g̃/ relative to g, i.e., relative to arbitrary

coordinates, it is the symmetric type
(2
0
)
tensorfield with the following components:

(̃g/ −1)αβ def= (g−1)αγ (g−1)βδg̃/γδ. (6.1)

First fundamental form of (n)̃Σ
[−U1,U2]
τ :

• We define the first fundamental form of (n)̃Σ
[−U1,U2]
τ relative to g to be the symmetric type

(0
2
)
tensorfield g̃

such that g̃(Y ,Z) = g(Y ,Z) for all pairs (Y ,Z) of vectorfields tangent to (n)̃Σ
[−U1,U2]
τ and such that g̃(V , ·) =

g̃(·,V ) = 0 if V is g-orthogonal to (n)̃Σ
[−U1,U2]
τ .

• We define the inverse first fundamental form g̃ −1 to be the dual of g̃ relative to g, i.e., relative to arbitrary
coordinates, it is the symmetric type

(2
0
)
tensorfield with the following components:

(g̃ −1)αβ def= (g−1)αγ (g−1)βδg̃γδ. (6.2)

6.2. Geometric vectorfields associated to the rough foliations. In this section, we define several vectorfields that play
a crucial role in our analysis of the rough geometry, and we reveal their basic properties.

We start by introducing the rough null vectorfield (n)̃L, which is the unique g-null, Pu-tangent vectorfield normalized
by (n)̃L(n)τ = 1, i.e., (n)̃L is normalized relative to the rough time function. Roughly speaking, (n)̃L plays a similar role that
L played in the works [24, 50, 69, 73], which relied on foliations by level-sets of the Cartesian time function. However, (n)̃L
enjoys less regularity than L, so to obtain top-order estimates, we must commute the equations with L (rather than (n)̃L).

Definition 6.3 (The rough null vectorfield). We define the rough null vectorfield vectorfield (n)̃L as follows:

(n)̃L
def=

1
L(n)τ

L. (6.3)

We will often use the following basic property of (n)̃L, which follows immediately from (6.3):
(n)̃L(n)τ = 1. (6.4)
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Definition 6.4 (The vectorfields (n)U , (n)R̆, (n)R̂, (n)Ñ , and (n)N̂ ).

• We define (n)U to be the following (n)̃ℓτ,u-tangent vectorfield (see Remark 4.6):

(n)U
def= g̃/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ

∂
∂t

(n)τ

∂̃

∂̃xB
. (6.5)

• We define (n)R̆ to be the following (n)̃Σ
[−U1,U2]
τ -tangent vectorfield:

(n)R̆
def= (n)W̆ −µ(n)U = X̆ +φ

n

Lµ
L−µ(n)U, (6.6)

where φ = φ(u) is the cut-off function introduced in Def. 4.1.

For the solutions featured in our main results, (n)R̆ will be g-spacelike, i.e., |(n)R̆|2g
def= g((n)R̆, (n)R̆) > 0. Moreover,

we define (n)R̂ to be the g-unit-length rescaling of (n)R̆:

(n)R̂
def=

1

|(n)R̆|g
(n)R̆. (6.7)

• We define (n)Ñ to be the following vectorfield:

(n)Ñ
def= L+

µ

|(n)R̆|2g
(n)R̆. (6.8)

For the solutions featured in our main results, (n)Ñ will be g-timelike, i.e., g((n)Ñ , (n)Ñ ) < 0. Moreover, we
define (n)N̂ to be the g-unit-length rescaling of (n)Ñ :

(n)N̂
def=

1√
−g((n)Ñ , (n)Ñ )

(n)Ñ . (6.9)

6.3. Identities involving the first fundamental forms and geometric vectorfields.

6.3.1. Identities involving g̃/ , g̃/ −1, and g/ .

Lemma 6.5 (Identities for g̃/ and g̃/ −1). When restricted to the tangent space of (n)̃ℓτ,u , we have the following identity for g̃/
relative to the adapted rough coordinates:

g̃/ = g̃/

 ∂̃

∂̃xA
,
∂̃

∂̃xB

dxA ⊗dxB, (6.10)

where with g/AB as in (3.31a), we have:

g̃/

 ∂̃

∂̃xA
,
∂̃

∂̃xB

 = g/AB +
∂
∂xA

(n)τ

∂
∂t

(n)τ
g/BCL

C +
∂
∂xB

τ

∂
∂t

(n)τ
g/ACL

C +
( ∂
∂xA

τ) ∂
∂xB

τ

( ∂∂t
(n)τ)2

g/CDL
CLD . (6.11)

Moreover, relative to the adapted rough coordinates, the following identity holds:

g̃/ −1 = g̃/ −1
(
dxA,dxB

) ∂̃

∂̃xA
⊗ ∂̃

∂̃xB
, (6.12)

where:

g̃/ −1
(
dxA,dxC

)
g̃/

 ∂̃

∂̃xC
,
∂̃

∂̃xB

 = δAB , (6.13)

and δAB is the Kronecker delta.

Proof. (6.10) is a simple consequence of the fact that (x2,x3) are coordinates on (n)̃ℓτ,u . The identity (6.11) follows from

the fact that g̃/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
= g

(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
, (5.13c), and the fact that g(L,L) = g(L, ∂̃

∂̃xA
) = 0. The identity (6.12) is a simple

consequence of the fact that the rough coordinate vectorfields
{

∂̃
∂̃xA

}
A=2,3

span the tangent space of (n)̃ℓτ,u . Next, we

note that it is straightforward to check, using (6.1), that the type
(1
1
)
tensorfield with components (̃g/ −1)αγ g̃/γβ is the
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g-orthogonal projection tensorfield onto (n)̃ℓτ,u (see also (6.28)). From this fact and the fact that (x2,x3) are coordinates

on (n)̃ℓτ,u , the identity (6.13) readily follows. □

Lemma 6.6 (Relationship between components g/ and g̃/ ). We define A to be the 2× 2 matrix with the following entries:

ABA
def
= δBA −

∂
∂xA

(n)τ

L(n)τ
LB, (6.14)

where δBA is the Kronecker delta. Then the following identity holds:

∂

∂xA
= ABA

∂̃

∂̃xB
+

∂
∂xA

(n)τ

L(n)τ
L. (6.15)

Moreover, recalling that g/ is the first fundamental form of ℓt,u , we have the following relationship between g/AB
def
=

g/( ∂
∂xA

, ∂
∂xB

) and g̃/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
:

g/AB = ACAA
D
B g̃/

 ∂̃

∂̃xC
,
∂̃

∂̃xD

 , (6.16)

(g/−1)AB = (A−1)AC(A−1)BD g̃/
−1

(
dxC ,dxD

)
. (6.17)

In addition, the inverse (A−1)BA of A
A
B , defined by (A−1)CBA

A
C = δAB , can be expressed as follows:

(A−1)BA = δBA +
∂
∂xA

(n)τ

∂
∂t

(n)τ
LB. (6.18)

Finally, we have the following identity:

g̃/

 ∂̃

∂̃xA
,
∂̃

∂̃xB

 = (A−1)CA(A−1)DB g/CD . (6.19)

Proof. The identity (6.15) is a restatement of (5.14). To derive (6.18), we note that (6.15) implies that ∂̃
∂̃xA

= (A−1)BA
∂
∂xB

+f L

for some scalar function f . We then note that the coefficients (A−1)BA are given by (5.13c). Next, using (6.18), we see that
(6.19) follows from (6.11). (6.16) follows from applying two factors of A to each side of (6.19). (6.17) follows from taking the
inverse of (6.16) and using (6.13). □

6.3.2. Properties of the geometric vectorfields associated to the rough foliations.

Proposition 6.7 (Properties of the geometric vectorfields associated to the rough foliations). The vectorfield (n)R̆ defined
in (6.6) is g-orthogonal to (n)̃ℓτ,u , i.e., g-orthogonal to the elements of

{
∂
∂xC

}
C=2,3

. Moreover, its square norm as measured

by g (which is the same as its square norm as measured by g̃ ) satisfies:

|(n)R̆|2g = |(n)R̆|2g̃ = µ2(1− (n)r)− 2φ
nµ

Lµ
, (6.20a)

where φ = φ(u) is the cut-off function from Def. 4.1, and (n)r ≥ 0 satisfies:

(n)r
def
=
g̃/ −1

(
dxA,dxB

)
( ∂
∂xA

τ) ∂
∂xB

τ

( ∂∂tτ)2
= |(n)U |2g. (6.20b)

In particular, if µ > 0, (n)r < 1, and Lµ < 0 on the support of φ (all of which are satisfied for the solutions featured
in our main results), then (n)R̆ is g-spacelike, and the vectorfield (n)R̂ defined in (6.7) is the g-unit normal to (n)̃ℓτ,u in
(n)̃Σ

[−U1,U2]
τ .

In addition, the vectorfield (n)Ñ defined in (6.8) is g-normal to (n)̃Σ
[−U1,U2]
τ , i.e. g-orthogonal to

{
(n)R̆, ∂̃

∂̃x2
, ∂̃
∂̃x3

}
.

Moreover, its square size as measured by g satisfies:

g((n)Ñ , (n)Ñ ) = − µ2

|(n)R̆|2g
. (6.20c)
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In particular, in the solution regime under study, in which µ > 0 and |(n)R̆|g > 0, (n)Ñ is g-timelike, and the vectorfield
(n)N̂ defined in (6.9) is the future directed g-unit normal to (n)̃Σ

[−U1,U2]
τ , which is consequently g-spacelike.

Finally, (n)N̂ admits the following decomposition:

(n)N̂ =
|(n)R̆|g
µ

L+ (n)R̂. (6.20d)

Proof. We first prove the statements regarding (n)R̆. To derive the orthogonality properties of (n)R̆, we first use defini-

tions (6.5)–(6.6), the second identity in (5.13c), and the fact that g
(
L, ∂̃

∂̃xC

)
= 0 to obtain:

g

(n)R̆,
∂̃

∂̃xC

 = g

X̆, ∂

∂xC
−

∂
∂xC

τ

∂
∂tτ

L+
∂
∂xC

τ

∂
∂t

(n)τ
LD

∂

∂xD

− g
µ̃g/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ

∂
∂tτ

∂̃

∂̃xB
,
∂̃

∂̃xC

 . (6.21)

Since X̆ is g-orthogonal to the elements of
{
∂
∂xC

}
C=2,3

, since g(X̆,L) = −µ, and since (6.13) implies that:

g̃/ −1
(
dxA,dxB

)
g

 ∂̃

∂̃xB
,
∂̃

∂̃xC

 = g̃/ −1
(
dxA,dxB

)
g̃/

 ∂̃

∂̃xB
,
∂̃

∂̃xC

 = δAC , (6.22)

we conclude that RHS (6.21) = 0, i.e., that (n)R̆ is g-orthogonal to (n)̃ℓτ,u .
To prove (6.20a)–(6.20b), we first use (6.6), the g-orthogonality of (n)R̆ to (n)U , and the relations g(X̆, X̆) = µ2,

g(X̆,L) = −µ, and g(L,L) = 0 to compute that |(n)R̆|2g + |(n)U |2g = µ2 −2φ nµ
Lµ . Moreover, using definition (6.5) and (6.22),

we compute that |(n)U |2g =
g̃/ −1(dxA,dxB)( ∂

∂xA
τ) ∂

∂xB
τ

( ∂∂tτ)2
. Combining these calculations, we conclude (6.20a)–(6.20b).

Next, in view of definition (6.8), we note that the vectorfield (n)Ñ is g-orthogonal to
{

∂̃
∂̃xC

}
C=2,3

because both L and

(n)R̆ are. Furthermore, we note that the relation g((n)Ñ , (n)R̆) = 0 follows easily from definition (6.8) and the relations

g(L,L) = 0 and g(L, (n)R̆) = −µ. Hence, (n)Ñ is g-orthogonal to the set
{

(n)R̆, ∂̃
∂̃x2
, ∂̃
∂̃x3

}
, which spans the tangent space

of (n)̃Σ
[−U1,U2]
τ (see Remark 4.6). Therefore, (n)Ñ is g-orthogonal to (n)̃Σ

[−U1,U2]
τ .

Similarly, (6.20c) follows from definition (6.8) and the relations g(L,L) = 0 and g(L, (n)R̆) = −µ.
Finally, (6.20d) follows from definitions (6.7) and (6.8)–(6.9) and (6.20c).

□

6.3.3. Decompositions of g−1 and g̃ −1.

Corollary 6.8 (Decompositions of g−1 and g̃ −1). The inverse acoustical metric g−1 and the inverse first fundamental form

g̃ −1 of (n)̃Σ
[−U1,U2]
τ from Def. 6.2 can be expressed as follows relative to the vectorfields (n)N̂ and (n)R̂ from Def. 6.4 and the

inverse first fundamental form g̃/ −1 of (n)̃ℓτ,u from Def. 6.2:

g−1 = −(n)N̂ ⊗ (n)N̂ + (n)R̂⊗ (n)R̂+ g̃/ −1, (6.23a)

g̃ −1 = (n)R̂⊗ (n)R̂+ g̃/ −1. (6.23b)

Proof. (6.23a)–(6.23b) are straightforward consequences of Prop. 6.7. □

6.4. The pointwise semi-norms of tensors with respect to g̃/ and the g̃/-trace.

Definition 6.9 (Pointwise norms). If ξ is a type
(m
n

)
tensorfield, then we define |ξ|̃g/ ≥ 0 by:

|ξ|2
g̃/

def= g̃/α1α̃1
· · · g̃/αmα̃m (̃g/ −1)β1β̃1 · · · (̃g/ −1)βnβ̃nξα1···αm

β1···βn ξ
α̃1···α̃m
β̃1···β̃n

. (6.24)

Definition 6.10 (̃g/-trace). If ξ is a type
(0
2
)
tensorfield, then we define its g̃/-trace tr̃g/ξ as follows:

tr̃g/ξ
def= (̃g/ −1)αβξαβ . (6.25)
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6.5. g-orthogonal projection onto the rough tori and d̃/ .

Definition 6.11 (g-orthogonal projection onto the rough tori (n)̃ℓτ,u and (n)̃ℓτ,u-tangency).

1. We define the (n)̃ℓτ,u-projection tensorfield Π̃/ as follows, where (n)N̂ and (n)R̂ are the vectorfields from Def. 6.4
and δαβ denotes the Kronecker delta:

Π̃/
α
β

def= δαβ + (n)N̂β
(n)N̂α − (n)R̂α

(n)R̂
β
. (6.26)

2. Given any type
(m
n

)
spacetime tensorfield ξ, we define its g-orthogonal projection onto (n)̃ℓτ,u , denoted by Π̃/ ξ,

as follows:

(Π̃/ ξ)α1···αm
β1···βn

def= Π̃/
α1
α̃1
· · ·Π̃/ αm

α̃m Π̃/
β̃1
β1
· · ·Π̃/ β̃n

βn ξ
α̃1···α̃m
β̃1···β̃n

. (6.27)

3. We say that a spacetime tensorfield ξ is (n)̃ℓτ,u-tangent if Π̃/ ξ = ξ.

With the help of Lemma 3.9 and Prop. 6.7, it is straightforward to check that Π̃/ (n)N̂ = Π̃/ (n)R̂ = Π̃/ L = 0, while if Z is
(n)̃ℓτ,u-tangent, then Π̃/ Z = Z . That is, Π̃/ is the g-orthogonal projection onto (n)̃ℓτ,u . Moreover, with the help of (6.23a),

it is straightforward to check that the first fundamental form g̃/ of (n)̃ℓτ,u from Def. 6.2 satisfies:

g̃/ = Π̃/ g. (6.28)

Definition 6.12 ((n)̃ℓτ,u-differential). Let ϕ be a scalar function. We define d̃/ ϕ to be the following (n)̃ℓτ,u-tangent
one-form:

d̃/ ϕ def= Π̃/ dϕ. (6.29)

Note that [̃d/ ϕ]
(
∂̃
∂̃xA

)
= ∂̃
∂̃xA

ϕ for A = 2,3.

6.6. The Levi-Civita connection ∇̃/ of g̃/ and related differential operators.

Definition 6.13 (The Levi-Civita connection ∇̃/ of g̃/ and related differential operators).

1. We denote the Levi-Civita connection of g̃/ by ∇̃/ . In particular, for (n)̃ℓτ,u-tangent tensorfields ξ, we have

∇̃/ ξ = Π̃/ Dξ.
2. If ξ is an (n)̃ℓτ,u-tangent one-form, then we define its (n)̃ℓτ,u-divergence to be the scalar function d̃iv/ ξ

def= g̃/ −1 ·∇̃/ ξ.
Similarly, if V is an (n)̃ℓτ,u-tangent vectorfield, then we define its (n)̃ℓτ,u-divergence to be the scalar function

d̃iv/ V
def= g/−1 · ∇̃/ V♭, where V♭ is the one-form that is g-dual to V .

3. If ξ is a symmetric type
(0
2
) (n)̃ℓτ,u-tangent tensorfield, then we define its (n)̃ℓτ,u-divergence d̃iv/ ξ to be the

(n)̃ℓτ,u-tangent one-form with the following (n)̃ℓτ,u-components for A = 2,3:

[d̃iv/ ξ]

 ∂̃

∂̃xA

 def= (̃g/ −1)(dxB,dxC)
[
∇̃/ ∂̃
∂̃xB

ξ

] ∂̃

∂̃xC
,
∂̃

∂̃xA

 . (6.30)

6.7. Curvature tensors of g and g̃/ . The Riemann curvature tensors of g and g̃/ play a central role in the geometric
analysis of the acoustical geometry.

Definition 6.14 (Curvature tensors of g and g̃/ ). The Riemann curvature tensor Riem of the acoustical metric g is the
type

(0
4
)
spacetime tensorfield defined by:

Riem(X,Y,Z,W) def= g(−D2
XYZ+D2

YXZ,W), (6.31)

where X,Y,Z,W are arbitrary spacetime vectorfields, and D2
XYZ

def= XαYβDαDβZ.
The Ricci curvature tensor Ric of the acoustical metric g is the type

(0
2
)
spacetime tensor defined relative to arbitrary

coordinates as follows:

Ricαβ
def= (g−1)κλRiemακβλ. (6.32)
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Similarly, the Riemann curvature tensor ˜Riem of the Riemannian metric g̃/ on (n)̃ℓτ,u is the type
(0
4
) (n)̃ℓτ,u tensorfield

defined as follows:

˜Riem(X,Y ,Z,W ) def= g̃/(−∇̃/ 2
XYZ + ∇̃/ 2

YXZ,W ), (6.33)

where X,Y ,Z,W are arbitrary (n)̃ℓτ,u-tangent vectorfields and ∇̃/ is the Levi-Civita connection of g̃/ .

The Ricci curvature tensor ˜Riem of g̃/ is the type
(0
2
)
spacetime tensor defined relative to arbitrary coordinates as

follows:

R̃icαβ
def= (̃g/ −1)κλ ˜Riemακβλ. (6.34)

The scalar curvature R̃ of g̃/ is the scalar function defined relative to arbitrary coordinates as follows:

R̃
def= (̃g/ −1)αβR̃icαβ . (6.35)

It is well-known that because (n)̃ℓτ,u is two-dimensional, the Gauss curvature K̃ of g̃/ can be expressed as follows in
terms of it scalar curvature:

K̃ =
1
2
R̃. (6.36)

7. The acoustic double-null frame and its relationship with the rough acoustical geometry

To control the top-order derivatives of Ω and S , we will rely on a family of “elliptic-hyperbolic” integral identities
that we derive in Sect. 21. In this section, we construct the acoustic double-null frame that we use to derive the elliptic-
hyperbolic identities. Moreover, we provide various identities that relate the acoustic double-null frame to the rough
acoustical geometry constructed in Sect. 6.

7.1. The acoustic double-null frame. The new ingredient in the acoustic double-null frame is the vectorfield L, which
we now define. In Lemma 7.3, we will show that L is g-null and transversal to the characteristics Pu .

Definition 7.1 (The vectorfield L). We define L to be the vectorfield whose Cartesian components are:

Lα
def= Lα + 2Xα . (7.1)

Remark 7.2 (The role of L). In this paper, we use L only to construct a sufficiently smooth projection operator Π
α
β

onto the characteristics Pu ; see Def. 21.1. In particular, we do not derive estimates for the solution’s L derivatives, and

we never need to integrate along the integral curves of L to derive our estimates. We use Π
α
β as a tool in deriving the

elliptic-hyperbolic integral identities that we use to control the top-order derivatives of the specific vorticity and entropy
gradient; see Sect. 21.

Lemma 7.3 (Basic properties of L). The vectorfields L and B satisfy the following identities:

L = B+X, B =
1
2

(L+L) (7.2)

Moreover, L is g-null and transversal to the characteristics Pu :

g(L,L) = 0, (7.3)

g(L,L) = −2. (7.4)

In addition, the acoustical metric g and its inverse g−1 satisfy the following identities, where g/ is the first fundamental
form of ℓt,u from Def. 3.4:

gαβ = −1
2
LαLβ −

1
2
LαLβ + g/αβ , (g−1)αβ = −1

2
LαLβ − 1

2
LαLβ + (g/−1)αβ . (7.5)

Finally, we have the following identity, where δαβ is the Kronecker delta and Π/ is the ℓt,u-projection tensorfield from
Def. 3.3:

δαβ = −1
2
LαLβ −

1
2
LαLββ +Π/ α

β . (7.6)
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Proof. Equations (7.2)–(7.4) are straightforward consequences of the definition of L in (7.1), the identity B = L +X (see
(3.24)), and the identities g(L,L) = 0, g(L,X) = −1, and g(X,X) = 1 from Lemma 3.9. The statement that L is transversal
to Pu follows from (7.4) and the fact that L is g-orthogonal to Pu . The identity for gαβ in (7.5) follows from contracting

both sides of the identities against the frame
{
L,L, ∂

∂x2 ,
∂
∂x3

}
and computing that both sides are equal. The identity for

(g−1)αβ in (7.5) follows from raising the indices in the first identity with g−1. The identity (7.6) follows from using g to
lower the β index in the last identity stated in (7.5) and using (3.34c). □

Definition 7.4 (The acoustic double-null frame). We refer to
{
L,L, ∂

∂x2 ,
∂
∂x3

}
as the acoustic double-null frame.

7.2. Identities involving the acoustic double-null frame and the rough geometry. The following lemma provides
several identities involving the acoustic double-null frame and the rough acoustical geometry.

Lemma 7.5 (Identities involving the acoustic double-null frame and the rough acoustic geometry). Let (n)r be as in (6.20b),
and recall that ∇/ is the Levi-Civita connection of g/ , the first fundamental form of ℓt,u = Σt ∩Pu relative to g. Then the
following identity holds:

(n)r =
|∇/ (n)τ|2g/
(L(n)τ)2

. (7.7)

Moreover, the (n)̃ℓτ,u-tangent vectorfield
(n)U defined in (6.5) admits the following decomposition, where we recall that

the ℓt,u-tangent vectorfield ∇/ #(n)τ is the dual of ∇/ (n)τ with respect to g.:

(n)U = −(n)rL+
1

L(n)τ
∇/ #(n)τ. (7.8)

In addition, with (n)R̆ the vectorfield defined in (6.6), the vectorfield 1
µ

(n)R̆ admits the following decomposition:

1
µ

(n)R̆ = X +
(
φ

n

µLµ
+ (n)r

)
L− 1

L(n)τ
∇/ #(n)τ. (7.9)

Furthermore, the following differentiation identities hold:

(n)R̆

 1
µ−φ n

Lµ

 = −
(n)R̆µ

(µ−φ n
Lµ )2 +

n
φ′

Lµ

(µ−φ n
Lµ )2 −

φn
(n)R̆Lµ
(Lµ)2

(µ−φ n
Lµ )2 , (7.10)

(n)U

 µ

µ−φ n
Lµ

 = −
((n)Uµ)φ n

Lµ

(µ−φ n
Lµ )2 −

µφn
(n)ULµ
(Lµ)2

(µ−φ n
Lµ )2 . (7.11)

In addition, we have the following decompositions for L and L:

L =
µ

µ−φ n
Lµ

B− 1
µ−φ n

Lµ

(n)R̆− µ

µ−φ n
Lµ

(n)U, (7.12a)

L =
µ−φ 2n

Lµ

µ−φ n
Lµ

B+
1

µ−φ n
Lµ

(n)R̆+
µ

µ−φ n
Lµ

(n)U. (7.12b)

Moreover, the following identities hold:

(n)R̆αLα = −µ, (n)R̆αLα = µ(1− 2(n)r)− 2φ
n

Lµ
, (7.13a)

(n)R̆αBα = −
(
µ(n)r +φ

n

Lµ

)
. (7.13b)
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Finally, the following identities hold for any Σt-tangent vectorfield V , where g is the first fundamental form of Σt
relative to g:

(n)R̆αV
α =

{
µ(1− (n)r)−φ n

Lµ

}
XaV

a − µ

L(n)τ
V/ α∇/ α (n)τ, (7.14a)

−1
2

(n)R̆αV
αV aXa +

1
4

(n)R̆αL
α |V |2g = −1

4
µ(V aXa)

2 +
1
4

{
µ(1− 2(n)r)− 2φ

n

Lµ

}
|V/ |2g/

+
1
2

µ

L(n)τ
XaV

aV/ α∇/ α (n)τ.
(7.14b)

Proof. To prove (7.7), we expand
|∇/ (n)τ|2g/
(L(n)τ)2 = 1

(L(n)τ)2 (g/−1)AB
(
∂
∂xA

(n)τ
)

∂
∂xB

(n)τ and use the identities (6.17)–(6.18) and

L = ∂
∂t +LA ∂

∂xA
, thereby confirming that

|∇/ (n)τ|2g/
(L(n)τ)2 agrees with the expression for (n)r given in (6.20b), as desired. (7.8) then

follows from a similar argument based on expanding −(n)rL+ 1
L(n)τ
∇/ #(n)τ = − |∇/

(n)τ|2
(L(n)τ)2L+ 1

L(n)τ
(g/−1)AB

(
∂
∂xA

(n)τ
)

∂
∂xB

and

using (6.14)–(6.15) and (6.17)–(6.18).
The expression (7.9) for 1

µ
(n)R̆ follows from (6.6) and the already proved identity (7.8).

The identities (7.10)–(7.11) are straightforward consequences of the chain and Leibniz rules and the fact that (n)R̆u = 1,
which follows from Lemma 3.9, (6.6), and (7.8).

The decompositions of L and L stated in (7.12a)–(7.12b) follow from (6.6) and the identities B = L+X , L = B+X , and
B = 1

2 (L+L).
Next, we note that if V is Σt-tangent, then since B = L+X , it follows from (3.25) that LαV

α = −XaV a. From this
identity and (7.9), we deduce (7.14a).

The identities in (7.13a) follow from Lemma 3.9, (6.6), definition (7.1), and (7.8). Moreover, (7.13b) follows from the same
arguments.

Finally, the identity (7.14b) follows from (7.13a), (7.14a), and the decomposition gab = g/ab +XaXb , which follows from
(3.34a). □

8. Norms, area and volume forms, and strings of commutation vectorfields

In this section, we define various norms on regions of spacetime that are tied to the rough geometry. We also introduce
the area and volume forms that we use in our L2 analysis. Finally, we introduce notation for repeated differentiation with
respect to the commutation vectorfields.

8.1. L∞-type Sobolev norms and Hölder norms.

8.1.1. Multi-index notation in various coordinate systems.

Definition 8.1 (Multi-index notation in various coordinate systems). Let α1,α2,α3,α4 ∈N, and let α⃗ = (α1,α2,α3,α4)
be the corresponding multi-index of order |α⃗| def=

∑4
i=1αi . We define the following order |α⃗| differential operator with

respect to the geometric coordinates:

∂α⃗

∂(t,u,x2,x3)
def=

(
∂
∂t

)α1
(
∂
∂u

)α2
(
∂

∂x2

)α3
(
∂

∂x3

)α4

. (8.1)

Similarly, we define the following order |α⃗| differential operator with respect to the adapted rough coordinates:

∂̃α⃗

∂̃((n)τ,u,x2,x3)

def=

 ∂̃

∂̃(n)τ

α1
 ∂̃
∂̃u

α2
 ∂̃

∂̃x2

α3
 ∂̃

∂̃x3

α4

. (8.2)

8.1.2. Definitions of essential sup-norm-type Sobolev norms and Hölder norms.

Definition 8.2 (L∞-type Sobolev norms and Hölder norms). Let f be a scalar function, let m ≥ 0 be an integer, and let
β ∈ (0,1] be a real number. On the spacetime regions (n)MI,J defined in (4.6d), we define the following L∞-type Sobolev
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norms and Hölder norms of f relative to the geometric coordinates:

∥f ∥Wm,∞
geo ((n)MI,J )

def=
∑
|α⃗|≤m

esssup
p∈(n)MI,J

∣∣∣∣∣∣ ∂α⃗f (p)
∂(t,u,x2,x3)

∣∣∣∣∣∣ , (8.3a)

∥f ∥
Cm,βgeo ((n)MI,J )

def=
∑
|α⃗|≤m

max
p∈(n)MI,J

∣∣∣∣∣∣ ∂α⃗f (p)
∂(t,u,x2,x3)

∣∣∣∣∣∣+
∑
|α⃗|=m

sup
p1,p2∈(n)MI,J

p1,p2

∣∣∣∣∣ ∂α⃗f (p1)
∂(t,u,x2,x3) −

∂α⃗f (p2)
∂(t,u,x2,x3)

∣∣∣∣∣(
distgeo(p1,p2)

)β , (8.3b)

where distgeo(p1,p2) is the standard Euclidean distance between p1 and p2 in the flat geometric coordinate space Rt ×

Ru×T2, i.e., if pi
def= (ti ,ui ,x

2
i ,x

3
i ), ∆t def= t2−t1, and ∆u

def= u2−u1, then distgeo(p1,p2) def=
√
|∆t|2 + |∆u|2 + |∆x2|2

T
+ |∆x3|2

T
,

where for j = 2,3, |∆xj |
T
is the Euclidean distance between x

j
2 and x

j
1 in the torus.

Similarly, for intervals I, J ∈ R, we define the following norms in the adapted rough coordinate spacetime region
I × J ×T2 ⊂Rτ ×Ru ×T2:

∥f ∥Wm,∞
rough(I×J×T2)

def=
∑
|α⃗|≤m

esssup
q∈I×J×T2

∣∣∣∣∣∣ ∂̃α⃗f (q)

∂̃((n)τ,u,x2,x3)

∣∣∣∣∣∣ , (8.4)

∥f ∥
Cm,βrough(I×J×T2)

def=
∑
|α⃗|≤m

max
q∈I×J×T2

∣∣∣∣∣∣ ∂̃α⃗f (q)

∂̃((n)τ,u,x2,x3)

∣∣∣∣∣∣+
∑
|α⃗|=m

sup
q1,q2∈I×J×T2

q1,q2

∣∣∣∣∣ ∂̃α⃗f (q1)
∂̃((n)τ,u,x2,x3)

− ∂̃α⃗f (q2)
∂̃((n)τ,u,x2,x3)

∣∣∣∣∣(
distrough(q1,q2)

)β , (8.5)

where on RHS (8.5), distrough(q1,q2) is the standard Euclidean distance between q1 and q2 in the flat adapted rough

coordinate space Rτ ×Ru ×T2, i.e., if qi
def= (τi ,ui ,x

2
i ,x

3
i ), ∆τ def= τ2 − τ1, and ∆u

def= u2 − u1, then distrough(q1,q2) def=√
|∆τ|2 + |∆u|2 + |∆x2|2

T
+ |∆x3|2

T
.

Moreover, on the torus T2 equipped with the Cartesian coordinates (x2,x3), we define the following norms:

∥f ∥L∞(T2)
def= esssup

p∈T2
|f (p)|, (8.6a)

∥f ∥Wm,∞
geo (T2)

def=
∑
|α⃗|≤m

esssup
p∈T2

∣∣∣∣∣∣ ∂α⃗f (p)
∂(x2,x3)

∣∣∣∣∣∣ , (8.6b)

∥f ∥
Cm,βgeo (T2)

def=
∑
|α⃗|≤m

max
p∈T2

∣∣∣∣∣∣ ∂α⃗f (p)
∂(x2,x3)

∣∣∣∣∣∣+
∑
|α⃗|=m

sup
p1,p2∈T2

p1,p2

∣∣∣∣∣ ∂α⃗f (p1)
∂(x2,x3) −

∂α⃗f (p2)
∂(x2,x3)

∣∣∣∣∣
(distflat(p1,p2))β

, (8.6c)

where on RHSs (8.6b)–(8.6c), the multi-indices correspond to repeated differentiation with respect to { ∂
∂x2 ,

∂
∂x3 } and

distflat(p1,p2) is the standard Euclidean distance between p1 and p2 in T
2.

Similarly, on subsets S of R×T2 or R×R×T2, we define the following norms:

∥f ∥L∞(S)
def= esssup

p∈S
|f (p)|, (8.7a)

∥f ∥Wm,∞
geo (S)

def=
∑
|α⃗|≤m

esssup
p∈S

∣∣∣∣∂α⃗f (p)
∣∣∣∣ , (8.7b)

∥f ∥
Cm,βgeo (S)

def=
∑
|α⃗|≤m

max
p∈S

∣∣∣∣∂α⃗f (p)
∣∣∣∣+

∑
|α⃗|=m

sup
p1,p2∈S
p1,p2

∣∣∣∂α⃗f (p1)−∂α⃗f (p2)
∣∣∣

(distflat(p1,p2))
, (8.7c)

where on RHSs (8.7b)–(8.7c), ∂α⃗ represents repeated differentiation with respect to the coordinate partial derivative
vectorfields on S (the coordinates on S will always be clear from context, and the coordinates on the factor T2 will
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always be the Cartesian coordinates (x2,x3)) and distflat(p1,p2) is the standard Euclidean distance between p1 and p2
in the flat ambient space R×T2 or R×R×T2 (which will always be clear from context).

If ϕ⃗ = {ϕi}i=1,··· ,M is an array- or matrix-valued function with M scalar function entries, then we extend the

definitions of the above norms to ϕ⃗ by summing the scalar norms over i , e.g., ∥ϕ⃗∥
Cm,βgeo ((n)MI,J )

def=
∑M
i=1 ∥ϕi∥Cm,βgeo ((n)MI,J )

.

8.2. Area forms, volume forms, and corresponding L2 norms. We now define the area and volume forms on the
rough subsets (see Def. 4.11) (n)̃ℓτ,u ,

(n)̃ΣIτ, and
(n)MI,J that we will use in our analysis. We also define corresponding

L2-type norms. Our definitions are in terms of the adapted rough coordinates ((n)τ,u,x2,x3) because those are the
coordinates that we use in our energy identities, where the forms arise.

8.2.1. Geometric forms and related integrals.

Definition 8.3 (Geometric forms and related integrals).

• Recall that g̃/ is the first fundamental form of the rough torus (n)̃ℓτ,u . We define the canonical area form of (n)̃ℓτ,u
induced by g̃/ in the adapted rough coordinates (τ,u,x2,x3) by:

dϖ g̃/ = dϖ g̃/ (τ,u′ ,x2,x3) def=
√

det g̃/(τ,u′ ,x2,x3)dx2dx3, (8.8)

where det g̃/(τ,u′ ,x2,x3) is the determinant of the 2×2 matrix
(̃
g/(τ,u′ ,x2,x3)

(
∂̃
∂̃xA

, ∂̃
∂̃xB

))
A,B=2,3

(see RHS (6.10)).

• We define the (non-canonical) area form dϖ of (n)̃ΣIτ in the adapted rough coordinates (τ,u,x2,x3) by:

dϖ = dϖ (τ,u′ ,x2,x3) = dϖ g̃/ (τ,u′ ,x2,x3)du′ . (8.9)

• We define the (non-canonical) area form dϖ on (n)P Ju in the adapted rough coordinates (τ,u,x2,x3) by:

dϖ = dϖ (τ′ ,u,x2,x3) def= dϖ g̃/ (τ′ ,u,x2,x3)dτ′ . (8.10)

• We define the (non-canonical) volume form dϖ of (n)MI,J in the adapted rough coordinates (τ,u,x2,x3) by:

dϖ = dϖ (τ′ ,u′ ,x2,x3) def= dϖ g̃/ (τ′ ,u′ ,x2,x3)du′ dτ′ . (8.11)

Unless we explicitly indicate otherwise, all integrals along (n)̃ℓτ,u ,
(n)̃ΣIτ, and

(n)MI,J are defined with respect to the
above forms. Moreover, we will often suppress the variables with respect to which we integrate, e.g., we write:∫

(n)̃ℓτ,u

f dϖ g̃/
def=

∫
(x2,x3)∈T2

f (τ,u,x2,x3)dϖ g̃/ (τ,u,x2,x3), (8.12a)∫
(n)P Ju

f dϖ def=
∫
τ′∈J

∫
(x2,x3)∈T2

f (τ′ ,u,x2,x3)dϖ g̃/ (τ′ ,u,x2,x3)dτ′ , (8.12b)∫
(n)̃ΣIτ

f dϖ def=
∫
u′∈I

∫
(x2,x3)∈T2

f (τ,u′ ,x2,x3)dϖ g̃/ (τ,u′ ,x2,x3)du′ , (8.12c)∫
(n)MI,J

f dϖ def=
∫
τ′∈J

∫
u′∈I

∫
(x2,x3)∈T2

f (τ′ ,u′ ,x2,x3)dϖ g̃/ (τ′ ,u′ ,x2,x3)du′ dτ′ . (8.12d)

Remark 8.4 (Abuse of notation). Strictly speaking, we have abused notation in (8.12a)–(8.12d) because the RHSs are with
respect to the adapted rough coordinates while the sets (n)̃ℓτ,u ,

(n)P Ju , (n)̃ΣIτ, and
(n)MI,J on the LHSs are subsets of

geometric coordinate space (see Remark 4.4). Thus, for example, it would be more accurate to write
∫
{τ}×{u}×T2 · · · on

LHS (8.12a) instead of
∫

(n)̃ℓτ,u
· · · because {τ} × {u} ×T2 is the image of (n)̃ℓτ,u in adapted rough coordinates under the

map (n)T (see (5.2)).

In a few of our calculations, we will also refer to the canonical volume forms of g̃ and g relative to the adapted rough
coordinates, which we provide in the following definition.

Definition 8.5 (Canonical volume forms relative to the adapted rough coordinates).
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• Recall that g̃ is the first fundamental form of (n)̃Σ
[−U1,U2]
τ , as in Def. 6.2. We define dvolg̃

def=
√

det g̃ dx2 dx3 du′

to be the canonical area form on (n)̃Σ
[−U1,u]
τ induced by g̃ , where det g̃ is evaluated relative to the adapted rough

coordinates (u′ ,x2,x3) on (n)̃Σ
[−U1,U2]
τ .

• Recall that g denotes the acoustical metric, defined relative to the Cartesian coordinates in (2.15a). We de-

fine dvolg
def=

√
|detg|dx2 dx3 du′ dτ′ to be the canonical volume form on (n)M[τ0,τBoot),[−U1,U2] induced by

the acoustical metric g, where detg is evaluated relative to the adapted rough coordinates (τ′ ,u′ ,x2,x3) on
(n)M[τ0,τBoot),[−U1,U2].

8.2.2. Identities involving the forms. For future use, in the following lemma, we establish several identities involving
dvolg̃ ,dvolg ,dϖ , and dϖ relative to the adapted rough coordinates.

Lemma 8.6 (Identities involving dvolg̃ ,dvolg ,dϖ , and dϖ ). Let |(n)R̆|g ≥ 0 be as in (6.20a). Then the following iden-

tities hold relative to the adapted rough coordinates (τ,u,x2,x3), e.g., det g̃/ is the determinant of the 2 × 2 matrix(̃
g/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

))
A,B=2,3

:

det g̃ = |(n)R̆|2g det g̃/ , (8.13a)

detg = − µ2

(L(n)τ)2
det g̃/ . (8.13b)

Moreover, with dvolg̃ ,dvolg ,dϖ , and dϖ g̃/ denoting the area and volume forms from Defs. 8.3 and 8.5, we have the

following identities relative to the adapted rough coordinates:

dvolg̃ = |(n)R̆|gdϖ = |(n)R̆|gdϖ g̃/ du′ , (8.14a)

dvolg =
µ

L(n)τ
dϖ =

µ

L(n)τ
dϖ g̃/ du′ dτ. (8.14b)

Proof. Let (n)R̂ be as in Def. 6.4. Recall (see Prop. 6.7) that (n)R̂ is tangent to (n)̃Σ
[−U1,U2]
τ and g-orthogonal to the rough

tori (n)̃ℓτ,u . From (5.8c)–(5.8d), (6.5), (6.6), and Lemma 3.9, it follows that (n)R̂u = 1
|(n)R̆|g

. Also considering the identities

(6.12)–(6.13) and (6.23b) (where we view the components of RHS (6.23b) as entries of a 3 × 3 matrix in adapted rough

coordinates (u,x2,x3) on (n)̃Σ
[−U1,U2]
τ ), we carry out straightforward calculations in the adapted rough coordinates to

deduce that det g̃ −1 = |(n)R̆|−2 det g̃/ −1, where det g̃/ −1 is the determinant of the 2× 2 matrix
(̃
g/ −1

(
dxA,dxB

))
A,B=2,3

The desired result (8.13a) now readily follows. Similarly, recall (see Prop. 6.7) that (n)N̂ is the g-unit normal to (n)̃Σ
[−U1,U2]
τ .

Since (n)R̂ is tangent to (n)̃Σ
[−U1,U2]
τ and (n)R̂u = 1

|(n)R̆|g
, we deduce from the identity (6.20d) that (n)N̂ (n)τ =

(L(n)τ)|(n)R̆|g
µ

and (n)N̂u = 1
|(n)R̆|g

. Also considering the identities (6.12)–(6.13) and (6.23a) (where we view the components of RHS (6.23a)

as entries of a 4×4 matrix in adapted rough coordinates), we carry out straightforward calculations in the adapted rough

coordinates to deduce that detg−1 = − (L(n)τ)2

µ2 det g̃/ −1, from which (8.13b) readily follows.

The identities (8.14a)–(8.14b) then follow from (8.13a)–(8.13b) and Defs. 8.3 and 8.5.
□

8.2.3. Geometric L2 and L∞ norms. In this section, we define various L2 norms with respect to the area and volume
forms introduced in Def. 8.3. We also define an L∞-type norm on the rough tori.

Definition 8.7 (Geometric L2 norms). Recall that we measure the norm of ℓt,u-tangent tensorfields with g/ , i.e., if ξ

is a type
(0
2
)
ℓt,u-tangent tensorfield, then |ξ|2g/

def= (g/−1)αβ(g/−1)γδξαγξβδ . Then for scalar functions or ℓt,u-tangent
tensorfields ξ, we define:

∥ξ∥L2((n)̃ℓτ,u)
def=

∫
(n)̃ℓτ,u

|ξ|2g/ dϖ g̃/

1/2

, ∥ξ∥L2
(
(n)P Ju

) def=
(∫

(n)P Ju
|ξ|2g/ dϖ

)1/2

, (8.15a)

∥ξ∥L2((n)̃ΣIτ)
def=

(∫
(n)̃ΣIτ

|ξ|2g/ dϖ
)1/2

, ∥ξ∥L2((n)MI,J )
def=

∫
(n)MI,J

|ξ|2g/ dϖ

1/2

. (8.15b)
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Definition 8.8 (Geometric L∞ norms). For scalar functions or ℓt,u-tangent tensorfields ξ, we define the following L∞

norm on the rough tori (n)̃ℓτ,u :

∥ξ∥L∞((n)̃ℓτ,u)
def= ess sup(x2,x3)∈T2 |ξ|g/ (τ,u,x2,x3), (8.16)

where on RHS (8.16), we are viewing ξ as a function of the adapted rough coordinates (τ,u,x2,x3).

Remark 8.9 (Carefully note the role of g/ ). We stress that g/ is the Riemannian metric on the acoustic tori ℓt,u , even
though the integrals defining ∥ · ∥L2((n)̃ℓτ,u), ∥ · ∥L2

(
(n)P Ju

), ∥ · ∥L2((n)̃ΣIτ), and ∥ · ∥L2((n)MI,J ) are over regions and with respect

to forms tied to the adapted rough coordinates.
Similarly, on RHS (8.16), |ξ|g/ is the pointwise norm of ξ with respect to the Riemannian metric g/ on the acoustic tori.

8.3. Strings of commutation vectorfields and vectorfield semi-norms. Recall that Z = {L,X̆,Y(2),Y(3)}, P =
{L,Y(2),Y(3)}, and Y = {Y(2),Y(3)} are the commutation vectorfield sets from (3.16). To simplify the presentation of
formulas and estimates, we now introduce notation capturing repeated differentiation with respect to these vectorfields.

Definition 8.10 (Strings of commutation vectorfields and vectorfield semi-norms). Let f be a scalar function and let ξ
be an ℓt,u-tangent tensorfield.

• ZN ;Mf denotes an arbitrary string of N commutation vectorfields in Z applied to f , where the string contains
at most M factors of X̆ . We set Z0,0f = f . We often write Zf instead of Z1;1f .

• PN f denotes an arbitrary string of N commutation vectorfields in P applied to f . We set P 0f = f . We often
write P f instead of P 1f .

• YN f denotes an arbitrary string of N commutation vectorfields in Y applied to f . We set Y0f = f .
• ZN ;M

∗ f denotes an arbitrary string of N commutation vectorfields in Z applied to f , where the string contains
at least one factor of P and at most M factors of X̆ .

• PN∗ denotes an arbitrary string of N commutation vectorfields in P applied to f , where the string contains at
least two factors of L or at least one factor of Y(A).

• ZN ;M
∗∗ f denotes an arbitrary string of N commutation vectorfields in Z applied to f , where the string contains

at least two factors of L or at least one factor of Y(A) and at most M factors of X̆ .

• P(N ) denotes the set of all differential operators of the form PN .
• Y(N ) denotes the set of all differential operators of the form YN .
• We define order N strings of ℓt,u-projected Lie derivatives such as L/NP and L/N ;M

Z in an analogous fashion. Such

operators act on ℓt,u-tangent tensorfields ξ, e.g., L/NP ξ.
• L/ (N )

P
denotes the set of all differential operators of the form L/NP .

• L/ (N )
Y

denotes the set of all differential operators of the form L/NY .
• Z≤N ;Mf denotes the array of all terms of the form ZN ′ ;Mf , where 0 ≤N ′ ≤N .
• If N1 < N2, then Z[N1,N2];Mf denotes the array of all terms of the form ZN ′ ;Mf , where N1 ≤N ′ ≤N2.

• We define arrays such as Y≤2f , L/ [N1,N2]
Y ξ, etc. in an analogous fashion.

We also define corresponding pointwise semi-norms:

• |ZN ;Mf | denotes the magnitude of ZN ;Mf as defined above (there is no summation).
• |Z≤N ;Mf | denotes the sum over all terms of the form |ZN ′ ;Mf | with N ′ ≤N .
• |Z[N1,N2];Mf | denotes the sum over all terms of the form |ZN ′ ;Mf | with N1 ≤N ′ ≤N2.

• Terms such as |P [N1,N2]
∗ f |, |L/≤N ;M

Z ξ|g/ , |Y≤N f |, etc., are defined analogously, e.g., |L/≤N ;M
Z ξ|g/ is the sum over all

terms of the form |L/N
′ ;M
Z ξ|g/ with N ′ ≤N .

• We will freely combine the above definitions with Def. 2.9, e.g.,

|PN (Ω,S)| def= max
{
|PNΩ|, |PNS |

}
. (8.17)
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9. Schematic structure capturing structure and schematic identities

In this section, we introduce schematic notation that will help us succinctly exhibit the important qualitative features
of various equations. We then provide a collection of identities expressed in schematic form; they will be helpful when
we derive estimates.

9.1. Some schematic notation.

Notation 9.1 (Schematic functional dependence). We often use the notation f(ξ(1), · · · ,ξ(m)) to schematically depict an ex-
pression (often tensorial and involving contractions) that depends smoothly on the ℓt,u-tangent tensorfields ξ(1), · · · ,ξ(m).
Note that in general, f(0) , 0.

Notation 9.2 (Schematic use of the symbol P ). Throughout the rest of the paper, P schematically denotes a differential
operator that is tangent to the characteristics Pu . For example, P f might denote d/ f ,Lf , or Y(2)f . We use such notation
when the details of P are unimportant.

We use the notation x⃗ to denote the array of spatial Cartesian coordinates, i.e.,

x⃗
def= (x1,x2,x3). (9.1)

We use the same conventions from Def. 2.12 for differential operators acting on x⃗, e.g.,

d/ x⃗ def= (d/ x1,d/ x2,d/ x3). (9.2)

9.2. Schematic structure of various tensorfields.

Proposition 9.1 (Schematic structure of various tensorfields). Recall that γ and γ are the arrays from Def. 3.14. The
following schematic relations hold for scalar functions (α,β = 0,1,2,3, ι = 0,1,2,3,4):

gαβ , (g
−1)αβ , g/αβ , (g/

−1)αβ , Gιαβ ,Π/
α
β , L

α , Xα , Lα , Y α(2), Y
α
(3), c = f(γ), (9.3a)(

∂
∂t

)α
,

(
∂

∂x2

)α
,

(
∂

∂x3

)α
= f(γ), (9.3b)(

∂
∂u

)α
= f(γ), (9.3c)

GιLL, G
ι
LX , G

ι
XX = f(γ), (9.3d)

Xα(Small), Y
α
(2;Small), Y

α
(3;Small), c − 1 = f(γ)γ, (9.3e)

X̆α = f(γ). (9.3f)

Moreover, if ϕ is a scalar function, then we have the following schematic relation for its ∇/ -Hessian (which is a symmetric
type

(0
2
)
-tangent tensorfield):

∇/ 2ϕ = f(γ,d/ x⃗ )Y2ϕ + f(γ,d/ x⃗ ) · Yγ · Yϕ. (9.4)

Finally, we have the following schematic relations for ℓt,u-tangent tensorfields, where d/ x⃗ is defined in (9.2):

g/, G⃗/ L, G⃗/ X , G⃗/ = f(γ,d/ x⃗ ), (9.5a)

Y(2), Y(3), = f(γ, g/−1,d/ x⃗ ), (9.5b)

χ = f(γ,d/ x⃗ )Pγ, (9.5c)

trg/χ = f(γ, g/−1,d/ x⃗ )Pγ, (9.5d)

ζ(Tan–Ψ⃗ ), k/ (Tan–Ψ⃗ ) = f(γ,d/ x⃗ )P Ψ⃗ , (9.5e)

ζ(Trans–Ψ⃗ ), k/ (Trans–Ψ⃗ ) = f(γ,d/ x⃗ )X̆Ψ⃗ . (9.5f)

Proof. After one accounts for the third dimension, the same proofs as in [73, Lemma 2.19] hold for (9.3a)–(9.5f), except
(9.3a) for Lα was not stated there, (9.3b)–(9.3c) were not stated there, (9.3e) for c − 1 was not stated there, and (9.4) was
not stated there. The identity Lα = f(γ) stated in (9.3a) follows from definition (7.1) and the identity (9.3a) for Lα and Xα .
The identity c − 1 = f(γ)γ stated in (9.3a) follows easily from (2.5). The identities (9.3b)–(9.3c) follow from (5.8a)–(5.8d)
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and the remaining identities in the proposition (note that (9.4) is not needed for these proofs). To prove (9.4), we first note
that relative to the geometric coordinates (x2,x3) on ℓt,u , ∇/ 2ϕ = ∇/ 2

ABϕd/ xA ⊗ d/ xB. Next, we use the Leibniz rule for

∇/ to deduce that ∇/ 2
ABϕ = ∂

∂xA
( ∂
∂xB

ϕ)− (∇/ ∂
∂xA

∂
∂xB

) · ∇/ ϕ. Moreover, computing the Christoffel symbols of g/ with respect

to the (x2,x3) coordinates, we deduce that (∇/ ∂
∂xA

∂
∂xB

) · ∇/ ϕ = 1
2 (g/−1)CD

(
∂
∂xA

g/CB + ∂
∂xB

g/CB − ∂
∂xC

g/AB
)

∂
∂xD

ϕ. Using

(3.31a)–(3.31b) to substitute for the coordinate components of g/ and g/−1, using (5.8c)–(5.8d) to express all vectorfields ∂
∂xA

in terms of Y(2) and Y(3), and using the remaining identities in the proposition, we conclude (9.4). □

9.3. Transversal derivatives in terms of Pu-tangential derivatives and structural properties of g-null forms. In
this section, we use the transport equations from Theorem 2.15 to derive expressions for the X̆ derivatives of Ω, S , C,
and D in terms of Pu-tangential derivatives. We also exhibit some crucial structural properties of the inhomogeneous
terms in the equations of Theorem 2.15, including the g-null forms.

Lemma 9.2 (Expressions for X̆Ω and X̆S in terms of Pu-tangential derivatives). The following schematic identities hold
for the X̆ derivatives of the Cartesian components of Ω and S :

X̆Ωi = −µLΩ+ f(γ,S,ZΨ⃗ ) · (Ω,S). (9.6a)

X̆S i = −µLS + f(γ,S,ZΨ⃗ ) · (Ω,S). (9.6b)

Proof. The identity (9.6a) follows from multiplying the transport equation (2.23a) and by µ, using the identity X̆ =
−µL + µB (see (3.24)), using Lemma 5.6 to write the Cartesian partial derivatives ∂α in terms of the commutation
vectorfields, and using Prop. 9.1. (9.6b) follows from a similar argument based on (2.23c) □

Lemma 9.3 (Crucial structural properties of g-null forms). The product of µ and the terms defined in (2.26a)–(2.27e) enjoy
the following schematic structure:52

µMi
(C), µM(D) = f

(
γ,S,ZΨ⃗

)
· (P≤1Ω,P≤1S), (9.7a)

µQi
(v), µQ(±), µQ(ρ) = f(γ,ZΨ⃗ ) · P Ψ⃗ , (9.7b)

µQi
(C), µQ(D) = f(γ,S,ZΨ⃗ ) · S. (9.7c)

Proof. All the results follow from [52, Lemma 8.2], except the term stemming from last term on RHS (2.26b), which is of

the schematic form f(Ψ⃗ ,S) · µ∂iΩ, was not handled there. To handle this last term, we use Lemma 5.6 to write the
Cartesian spatial partial derivatives ∂i in terms of the commutation vectorfields, use the identity (9.6a) to substitute for
the X̆ derivatives of Ω, and use Prop. 9.1. □

Lemma 9.4 (Crucial structural properties of the linear inhomogeneous terms). The product of µ and the terms C,D-
involving terms on RHSs (2.22a)–(2.22d), as well as the product of µ and the terms defined in (2.28a)–(2.28h) enjoy the
following schematic structure:

µc2 exp(2ρ)Ci , µ
{
F;sc

2 exp(2ρ)− cexp(ρ)
p;s

ϱ

}
D,

µexp(ρ)
p;s

ϱ
D, µc2 exp(2ρ)D

= µf(Ψ⃗ ) · (C,D),

(9.8a)

µLi(v), µL(±), µL(ρ), µL(s), µL
i
(Ω), µL

i
(S), µL(divΩ), µL

i
(C)

= f(γ,Ω,S,ZΨ⃗ ) · (Ω,S).
(9.8b)

Proof. We use Lemma 5.6 to write the Cartesian partial derivatives ∂α in terms of the commutation vectorfields, and we
use Prop. 9.1. □

In the next lemma, we provide an analog of Lemma 9.2 for the modified fluid variables.

52All of these are g-null forms, except the last term on RHS (2.26b), which turns out to be a harmless error term.
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Lemma 9.5 (Expressions for the transversal derivatives of the modified fluid variables in terms of Pu-tangential derivatives).
Recall that the modified fluid variables C and D are defined in Def. 2.7. The following schematic identities hold for the X̆
derivatives of the Cartesian components of C and D:

(X̆Ci , X̆D) = −µ(LC,LD) + f(γ,S,ZΨ⃗ ) · P Ψ⃗ + f(γ,S,ZΨ⃗ ) · (P≤1Ω,P≤1S). (9.9)

Proof. The identity (9.9) follows from an argument similar to the one we used to prove Lemma 9.2, based on equations
(2.24b) and (2.25a), where we use Lemma 9.3 to handle the g-null forms appearing on the RHSs of (2.24b) and (2.25a). □

Lemma 9.6 (Schematic identity for µCi and µD). The µ-weighted Cartesian components of the modified fluid variables
defined in (2.10a)–(2.10b) can be expressed as follows:

(µCi ,µD) = f(γ,S,ZΨ⃗ ) · P≤1(Ω,S). (9.10)

Proof. The identity (9.10) follows from definitions (2.10a)–(2.10b), Prop. 9.1, Lemma 5.6 (which allows us to schematically
express µ∂α = f(γ)X̆ +µf(γ)P ), and Lemma 9.2 (which allows us to substitute for the X̆ derivatives of Ω and S ). □

9.4. Additional schematic identities involving differentiation. For future use, in this section, we provide some addi-
tional schematic identities involving differentiation.

Lemma 9.7 (Schematic identity for ∆/ ϕ). If ϕ is a scalar function, then its angular Laplacian on ℓt,u can be expressed as
follows, where the first term on RHS (9.11) is written precisely and the last two are written schematically:

∆/ ϕ =
∑
A=2,3

Y(A)(Y(A)ϕ) +γ · f(γ)Y2ϕ + f(γ) · Yγ · Yϕ. (9.11)

Proof. Using the identity g/−1 = (g−1)αβΠ/ γ
α Π/ δ

β ∂γ ⊗∂δ , (1.2), (2.15b), Cor. 5.7, and Prop. 9.1, we find that:

g/−1 = c2
∑
A=2,3

Y(A) ⊗Y(A) +γ · f(γ)
∑

A,B=2,3

Y(A) ⊗Y(B) =
∑
A=2,3

Y(A) ⊗Y(A) +γ · f(γ)
∑

A,B=2,3

Y(A) ⊗Y(B), (9.12)

where the first term on RHS (9.12) is written precisely and the second one schematically. Hence, using the Leibniz
rule, we deduce that ∆/ ϕ =

∑
A=2,3Y(A)(Y(A)ϕ) + γ · f(γ)

∑
A,B=2,3Y(A)(Y(B)ϕ) plus error terms of the schematic form

f(γ) · g/(∇/ Y(A)
Y(B),Y(C)) ·Y(D)ϕ. Noting that g/(∇/ Y(A)

Y(B),Y(C)) = g(DY(A)
Y(B),Y(C)), we compute relative to the Cartesian

coordinates and use Prop. 9.1 to deduce that:

g(DY(A)
Y(B),Y(C)) = gαβ(Y(A)Y

α
(B))Y

β
(C) +Y α(A)Y

β
(B)Y

γ
(C)ΓΓΓ αγβ = f(γ) · Yγ, (9.13)

where ΓΓΓ αγβ
def= 1

2

(
∂αgγβ +∂βgαγ −∂γgαβ

)
are the (lowered) Cartesian Christoffel symbols of g and the final expression

on RHS (9.13) is written schematically. Combining these identities, we conclude (9.11). □

Lemma 9.8 (Identity satisfied by X̆Li ). There exist smooth functions, all schematically denoted by “f,” such that the
following identity holds, where the arrays Ψ⃗ and Ψ⃗ (Partial) are defined in Def. 2.8:

X̆Li = f(γ) · X̆Ψ⃗ · (−δi1 +Xi(Small)) + f(γ) · X̆Ψ⃗ (Partial) +µf(γ)P Ψ⃗ + f(γ)Yµ. (9.14)

Proof. The same proof of [73, Lemma 2.14] holds with minor modifications that take into account the expressions for gαβ
and (g−1)αβ given by (2.15a) and (2.15b), the identity (3.24), and the definition (3.13) of Xi(Small). □

9.5. Deformation tensors. In our analysis, we encounter the deformation tensors of various vectorfields.

Definition 9.9 (Deformation tensors). Let Z be a spacetime vectorfield. We define the deformation tensor (Z)πππ of Z
(with respect to g) to be the following symmetric type

(0
2
)
tensorfield:

(Z)πππαβ
def= LZgαβ = DαZβ +DβZα , (9.15)

where the final equality in (9.15) follows from the torsion-free property of D.
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9.6. Identities involving the rough-toroidal components of deformation tensors. In the next lemma, we derive
simple identities relating the (n)̃ℓτ,u-components of a deformation tensor (Z)πππ and the (n)̃ℓτ,u-components of LZ g̃/ .

Lemma 9.10 (Relating the (n)̃ℓτ,u components of LZ g̃/ and (Z)πππ). Let Z be a spacetime vectorfield, and let g̃/ be the first

fundamental form of (n)̃ℓτ,u , as in Def. 6.2. Then the following identities hold for A,B = 2,3:

(Z)πππ

 ∂̃

∂̃xA
,
∂̃

∂̃xB

 def
= [LZg]

 ∂̃

∂̃xA
,
∂̃

∂̃xB

 = [LZ g̃/]
 ∂̃

∂̃xA
,
∂̃

∂̃xB

 . (9.16)

Proof. First, using (6.23a) and the Leibniz rule for Lie differentiation, we deduce:

(Z)πππ
def= LZg = −(LZ (n)N̂ ♭)⊗ (n)N̂ ♭ − (n)N̂ ♭ ⊗LZ (n)N̂ ♭

+ (LZ (n)R̂♭)⊗ (n)R̂♭ + (n)R̂♭ ⊗LZ (n)R̂♭ +LZ g̃/ ,
(9.17)

where (n)N̂ ♭ denotes the one-form g-dual to (n)N̂ and (n)R̂♭ denotes the one-form g-dual to (n)R̂. Contracting (9.17)

against ∂̃
∂̃xA
⊗ ∂̃
∂̃xB

and using that (n)N̂ and (n)R̂ are g-orthogonal to
{
∂̃
∂̃x2
, ∂̃
∂̃x3

}
, we conclude (9.16). □

9.7. A schematic rewriting of the wave equations satisfied by Ψ⃗ . The following lemma shows that X̆Ψ obeys a
transport equation with source terms that are small but lose one derivative. We will use it in Sect. 17, when we derive
improvements of the auxiliary bootstrap assumptions.

Lemma 9.11 (A schematic rewriting of the wave equations satisfied by Ψ⃗ ). The covariant wave equations (2.22) verified by
Ψ ∈ {R(+),R(−),v

2,v3, s} can be expressed in the following schematic form:

LX̆Ψ = f(γ)P 2Ψ⃗ + f(γ,ZΨ⃗ )Pγ+ f(γ,S,ZΨ⃗ ) · P≤1(Ω,S). (9.18)

Proof. We first decompose µ×LHS (2.22) using (3.51a), (3.44), Prop. 9.1, and (9.11). We then decompose µ×RHS (2.22) using
Prop. 9.1, (9.7b), and (9.10). □

10. Parameters, their size assumptions, and conventions for constants

In this section, we list and describe the “size-parameters” that appear throughout the paper. These parameters will
play a crucial role in Sect. 11, when we describe our assumptions on the data. Then, in Sect. 10.3, we state our conventions
for how constants appearing in our analysis, such as C and C♦, are allowed to depend on the parameters.

10.1. Parameters.

10.1.1. Parameters of the background simple isentropic plane-symmetric solutions. First, we recall that in Appendix A, we
construct a large family of “admissible” simple isentropic plane-symmetric solutions, where “admissible” means that
it has properties such that it falls under the scope of our main results; see Def. A.7 for the precise definition. Each
such admissible “background” solution has singularity-forming behavior that is described by the following collection
(background solution-dependent) positive parameters, which we describe in detail in Appendix A:

U0, U1, Uj, U2, τ0, n0,m
PS
0 ,m

PS
1 , δ̊

PS
∗ , δ̊

PS, α̊PS,MPS
2 . (10.1)

10.1.2. Parameters of the perturbed solutions. The positive parameters listed in (10.1) capture the behavior of various aspects
of the background solution near its singular boundary. In Appendix B, we use Cauchy stability arguments to show that
there are open sets of initial data on Σ0, which are close to the data of one of the simple isentropic plane-symmetric
solutions, such that the state of the perturbed solution near its singular boundary (but still within the region of classical
existence) is described by the following list parameters:

U0, U1, Uj, U2, τ0, n0,m0,m1, δ̊, δ̊∗, α̊, M2, (10.2)

as well as our main new smallness parameter: ϵ̊. In Appendix B, we show that the parameters U0, U1, Uj, U2, τ0, n0,m0
for the perturbed solutions can be chosen to be exactly the same as the ones for the background solutions. On the other
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hand, we will show (see (B.1)) that the remaining perturbed parameters can be chosen to be close to the background ones
in the following sense:

1
2
≤ m1

mPS
1

,
δ̊∗

δ̊PS∗
,
δ̊

δ̊PS
,
α̊

α̊PS
,
M2

MPS
2

≤ 2, (10.3)

ϵ̊ ≥ 0 can be chosen as small as we want. (10.4)

10.1.3. Informal description of the parameters. Many of the parameters listed in Sect. 10.1.2 will not appear until later in
the paper, but to help guide the reader, we now provide a summary of their role and that of a few other parameters too.
We refer to Fig. 11 for an illustration that shows how some of the parameters are tied to the location of various subsets.

• The background density ϱ > 0 is fixed throughout the article; see (2.2).
• Ntop is an integer representing the maximum number of times we commute the equations when we derive energy

estimates. In proving our main results, we assume that Ntop ≥ 24.
• The parameters τ0 and m0 are related by τ0 = −m0 (see Def. 4.8). We view τ0 to be the “initial rough time,” i.e.,

the value of (n)τ corresponding to the initial state of the solution near the singularity.

• The parameter m0 is the minimum value of µ along the initial rough hypersurface portion (n)̃Σ
[−Uj,Uj]
τ0 . For

convenience, we assume that m0 is small. While the smallness of m0 is not essential, it allows us to focus on
studying the solution only near the singularity and allows us to give short proofs of various estimates.

• The parameters 0 < U1, 0 < U2, 0 < Uj < min{U1,U2} delineate ranges of values for the eikonal function u
in the problem under study. We will study the solution on various intervals of u-values, including: [−U1,−Uj],
[−Uj,Uj], [Uj,U2], and [−U1,U2]. The interesting analysis will happen when u ∈ [−Uj,Uj], since this
region contains the singular boundary portion under study.

• The parameter α̊ measures the L∞-size of the amplitude of R(+) along the initial rough hypersurface (n)̃Σ
[−U1,U2]
τ0 .

• The parameter m1 quantifies the positivity of µ away from the interesting region, more precisely when u <
[−Uj,Uj]; see (11.20).

• The parameter δ̊∗ measures the size of the crucial factor that drives the blowup; see definition (11.6).
• The parameter δ̊ measures the L∞-size of the transversal derivatives of R(+) along the initial rough hypersurface

(n)̃Σ
[−U1,U2]
τ0 . It also controls the L∞ size of the transversal derivatives of various geometric quantities constructed

out of the eikonal function. We make no smallness assumptions on δ̊.
• The parameter ϵ̊ measures the extent to which the solution’s data “break the simple isentropic plane-symmetry.”
• ε is a small “bootstrap parameter” first appearing in Sect. 12.3.
• The parameter M2 quantifies the transversal convexity of µ (namely, the positive size of various second-order

Pu-transversal derivatives of µ, including X̆X̆µ, (n)W̆ (n)W̆µ, etc.) in the interesting region (n)̃Σ
[−Uj,Uj]
τ0 ; see, for

example, (11.18).
• The parameter n0 is such that the transversal convexity mentioned above holds for n ∈ [0,n0].
• The parameter U0 is defined by

U0
def= U1 +

18

δ̊PS∗
(10.5)

(see (A.94)) and plays a role only in Appendices A and B and the proof of Lemma 27.3, where we show that there
exist open sets of initial data satisfying all of our assumptions; see Sect. 10.2.

10.2. Parameter size assumptions. In this section, we state the size assumptions on the parameters that are sufficient
for our main results to hold, i.e., for Theorems 31.1 and 34.1 to hold.

For the remainder of the article, when we say that “A is small relative to B,” we mean that A ≥ 0, that
B > 0, and that there exists a continuous increasing function53 f : (0,∞)→ (0,∞) such that A < f (B).
The functions f are allowed to depend on the equation of state.

Assumption 10.1 (Size assumptions on the parameters).

53Although we do not specify their form, the functions f could always be chosen to be polynomials with positive coefficients or exponentials of
such polynomials.



L. Abbrescia and J. Speck 77

• To close our estimates, we assume that the regularity-parameter Ntop is an integer satisfying:

Ntop ≥ 24. (10.6)

• We assume that the following parameters are positive, but they do not have to be small or large: ϱ, U1, Uj, U2,
δ̊, δ̊∗, and m1.

• We assume that 0 <M2 < 1. We make no other assumptions on M2.
• We assume that α̊ > 0, and that α̊ is small relative to 1 and small relative to the background density ϱ.
• We assume that m0 and |τ0| are small relative to 1, δ̊−1, δ̊∗, and M2. This is possible in view of Remark B.1. In

particular, we assume:

|τ0| < 1. (10.7)

• We assume that:

n0 ≤
M2Uj

32
. (10.8)

• We assume that ϵ̊ is small relative to ϱ, 1, α̊, U1, Uj, U2, δ̊
−1, δ̊∗, m0, and M2.

• We assume that 0 < Uj <min{U1,U2}, m0 <
m1
2 , and τ0 = −m0.

• Our main results will hold under the assumption that ε = Cϵ̊ for some large constant C , where ε is the bootstrap
parameter first appearing in Sects. 12.3–12.3.2. This is consistent with the following parameter-size relations, which
we assume in order to simplify our bootstrap argument:

ϵ̊ ≤ ε ≤ α̊2, (10.9a)

ε3/2 ≤ ϵ̊. (10.9b)

10.3. Conventions for constants. In this section, we state our conventions for how the constants C , C∗, c, and C♦
appearing in our analysis are allowed to depend on the parameters introduced above.

• The constants C , C∗, and c are free to vary from line to line, and we use them in a similar fashion; we mainly
use “C” in our estimates, introducing C∗ and c only in a few arguments in which multiple constants play a
role. These constants are allowed to depend on the nonlinearities (i.e., on the equation of state), and they can
continuously depend on the quantities ϱ, U1, Uj, U2, δ̊

−1, δ̊∗, m
−1
1 , and M−1

2 from Sect. 10.1.3. In particular, C
and c are allowed, in principle, to increase with respect to U1, Uj, U2, δ̊

−1, δ̊∗, m
−1
1 , and M−1

2 . However, C ,
C∗, and c can be chosen to be independent of the parameters α̊, ϵ̊, ε, τ0, m0, and n0 under the smallness
assumptions of Sect. 10.2. In particular, C, C∗, and c can be chosen to be independent of the value of n, as
long as n ∈ [0,n0].

• A ≲ B means that there exists a constant C > 0 (where C has the properties described above) such that A ≤ CB.
• A ≈ B means that A ≲ B and B ≲ A.
• A = O(B) means that |A| ≲ |B|.
• Constants C♦ are also allowed to vary from line to line.

However, unlike C and c, the C♦ are universal in the sense that under the smallness assumptions of
Sect. 10.2, they can be chosen to be independent of ϱ, U0, U1, Uj, U2, τ0, n0,m0,m1, δ̊, δ̊∗, α̊, M2,
and ϵ̊, and also independent of the equation of state.

• A = O♦(B) means that there exists a constant C♦ > 0 (where C♦ has the properties described above) such that
|A| ≤ C♦|B|.

• As examples, we note that δ̊ϵ̊ ≤ 1 def= C♦ and δ̊2ϵ̊ ≤ 1 def= C♦ (because ϵ̊ is assumed to be small relative to δ̊−1

and relative to increasing functions of δ̊−1, such as δ̊−2), that 10α̊2 ≤ C♦α̊, while we have only δ̊α̊ ≤ C (i.e., our
smallness assumptions on α̊ are not strong enough to ensure that δ̊α̊ is small because δ̊ might be large).

• As another example, in our estimates (e.g., the proof of (18.5)), by assuming that |τ0| is small and using that
C is independent of |τ0| (in particular, C does not implicitly contain any factors of 1

|τ0 |
), we can ensure that

C|τ0| ≤ 1
2M2

and C|τ0| ≤
M2
2 .

11. Assumptions on the data

In this section, we state our assumptions on the data in terms of the parameters listed in Sect. 10.1. Moreover, in
Appendix B, we show that our assumptions are satisfied by an open set of data that are close to the data of simple
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isentropic plane-wave solutions. The analysis in Appendix B is based on the construction – carried out in Appendix A –
of simple isentropic plane-symmetric solutions that satisfy the assumptions, as well as (mostly) standard Cauchy stability
arguments, which we outline.

In the rest of the paper, Ntop denotes a fixed integer representing the maximum number of times we need to commute
the equations of Theorem 2.15 for all estimates to close. The proof of our main results relies on the assumption (10.6).

11.1. Background solutions RPS
(+) and bona fide initial data on Σ0. Fix any of the “admissible” background (shock-

forming) simple isentropic plane-symmetric solutions that we construct in Appendix A, where we define “admissible” in
Def. A.7. For such solutions, only a single Riemann invariant is non-vanishing; we denote it by RPS

(+). In the rest of

Sect. 11.1, we view RPS
(+) as a solution in three spatial dimensions that is independent of the torus coordinates (x2,x3).

We now discuss the initial data of a perturbation of one of the background solutions. We consider the “bona fide
initial data” of the perturbed solution to be:

Ψ⃗
∣∣∣
Σ0

= (R(+),R(−),v
2,v3, s)

∣∣∣
Σ0

def=
(
R̊(+),R̊(−), v̊

2, v̊3, s̊
)
, (11.1)

where R̊(+),R̊(−), v̊
2, v̊3, s̊ : R×T2→R are given scalar-valued functions. Let

(
Ω̊i , S̊ i , C̊i ,D̊

)
i=1,2,3

respectively denote

the initial data on Σ0 of
(
Ωi ,S i ,Ci ,D

)
i=1,2,3

. Note that these data are determined by
(
R̊(+),R̊(−), v̊

2, v̊3, s̊
)
, the

compressible Euler equations (2.6a)–(2.6c), definition (2.7), and Def. 2.7.

Remark 11.1 (The data of the eikonal function quantities on Σ0 are determined). Recall that the initial condition of the

eikonal function is u|Σ0
= −x1 (see (3.1)). It is straightforward to check that this initial condition and Ψ⃗

∣∣∣
Σ0

together

determine the data of all of the auxiliary quantities constructed out of u, such as µ|Σ0
, Li |Σ0

, etc.

We next note that relative to the Cartesian coordinates (t,x1,x2,x3), we have (see definition (3.3c)):

ℓ0,u =
{
(0,x1,x2,x3) | x1 = −u, (x2,x3) ∈ T2

}
. (11.2)

Moreover, we recall (see (3.4a)) that for u1 ≤ u2, relative to the Cartesian coordinates, we have:

Σ
[u1,u2]
0 =

{
(0,x1,x2,x3) | − x1 ∈ [u1,u2], (x2,x3) ∈ T2

}
. (11.3)

In the next definition, we provide a family of norms of the data perturbations on Σ0. Under suitable assumptions,
smallness of the norms suffices for our main results to hold.

Definition 11.2 (Norms of the data perturbation on Σ0). Let Ntop be a fixed integer satisfying (10.6), and let R̊PS
(+)

def= RPS
(+)|Σ0

denote the initial data of RPS
(+) on Σ0. Given real numbers u1 < u2, we define the ∆̊

Ntop+1

Σ
[u1 ,u2]
0

to be the following Sobolev

norm of the perturbation of the data from the data of the background solution (that is, we subtract off R̊PS
(+) and then

take the norm):

∆̊
Ntop+1

Σ
[u1 ,u2]
0

def=
∥∥∥∥(R̊(+) − R̊PS

(+),R̊(−), v̊
2, v̊3, s̊

)∥∥∥∥
H
Ntop+1
Cartesian(Σ

[u1 ,u2]
0 )

+
∥∥∥∥(Ω̊1,Ω̊2,Ω̊3, S̊1, S̊2, S̊3

)∥∥∥∥
H
Ntop
Cartesian(Σ

[u1 ,u2]
0 )

+
∥∥∥∥(C̊1, C̊2, C̊3,D̊

)∥∥∥∥
H
Ntop
Cartesian(Σ

[u1 ,u2]
0 )

+ max
u∈[u1,u2]

∑
|⃗I |≤Ntop

∥∥∥∥(∂I⃗Ω̊1,∂I⃗Ω̊
2,∂I⃗Ω̊

3,∂I⃗ S̊
1,∂I⃗ S̊

2,∂I⃗ S̊
3
)∥∥∥∥
L2
Cartesian(ℓ0,u )

.

(11.4)

In (11.4),

∥f ∥
HN
Cartesian(Σ

[u1 ,u2]
0 )

def=


∑
|⃗I |≤N

∫
Σ

[u1 ,u2]
0

[
∂I⃗ f (t = 0,x1,x2,x3)

]2
dx1dx2dx3


1/2

, (11.5a)

∥f ∥L2
Cartesian(ℓ0,u )

def=
{∫

T
2

[
∂I⃗ f (t = 0,x1 = −u,x2,x3)

]2
dx2dx3

}1/2

, (11.5b)
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where I⃗ denotes a multi-index of order |⃗I | corresponding to repeated partial differentiation with respect to the Cartesian
spatial coordinates, i.e., repeated differentiation with respect to ∂1,∂2,∂3. In particular, ∥f ∥

HN
Cartesian(Σ

[u1 ,u2]
0 )

is the

standard order N Sobolev norm of f along Σ
[u1,u2]
0 , while the ∥ · ∥L2

Cartesian(ℓ0,u ) norm sum on the last line of RHS (11.4)

controls tangential and transversal spatial derivatives of (Ω̊, S̊) along ℓ0,u .

11.2. The assumptions on the initial data. In order for our main results to hold, it suffices for ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

to be

sufficiently small, where δ̊PS∗ > 0 and U0
def= U1 + 18

δ̊PS
∗
> 0 are parameters associated to the background solution (see

Appendix A) and Ntop is the fixed integer satisfying (10.6).
For the solutions under study, the analysis is difficult/interesting only near the singularity. Moreover, the structures

we use to detect the singular boundary become evident only late in the classical evolution, i.e., close to the singular
boundary. For this reason, in Sect. 11.2, we find it convenient to describe the state of the fluid solution and acoustic

geometry (e.g., µ, Li , and χ) on the “late-time” rough hypersurface portion (n)̃Σ
[−U1,U2]
τ0 , the rough tori (n)̃ℓτ0,u , as well

as the null hypersurface portion P 4δ̊−1
∗

−U1
, where δ̊∗ > 0 is defined in (11.6). Our description is in terms of assumed bounds

for various norms of the solution on (n)̃Σ
[−U1,U2]
τ0 , (n)̃ℓτ0,u , and P

4δ̊−1
∗

−U1
in terms of the parameters of Sect. 10.2. We refer

to Fig. 9 for an illustration of these data-hypersurfaces.

In Appendix B, we use Cauchy stability-type arguments to sketch a proof that if ∆̊
Ntop+1

Σ
[U0 ,U2]
0

is sufficiently small, then the

assumptions we state in Sect. 11.2 are satisfied, where our main smallness parameter ϵ̊ (which vanishes for the background

solutions) satisfies ϵ̊ ≲ ∆̊
Ntop+1

Σ
[U0 ,U2]
0

whenever ∆̊
Ntop+1

Σ
[U0 ,U2]
0

is sufficiently small, where the implicit constants depend on the

background solution. Since our main results apply whenever ϵ̊ is sufficiently small, this in particular shows that there are
open sets of data for which our main theorem holds.

Remark 11.3 (We don’t need the background solutions to control the dynamics). We “use” the plane-symmetric background

solutions only to show that there exist open sets of data that satisfy our assumptions on (n)̃Σ
[−U1,U2]
τ0 , (n)̃ℓτ0,u , and P

4δ̊−1
∗

−U1
.

When studying the evolution to the future of (n)̃Σ
[−U1,U2]
τ0 , we never actually have to “subtract off” any background

solution or even refer to one at all.

11.2.1. Quantitative assumptions on the data of the fluid and eikonal function quantities along (n)̃Σ
[−U1,U2]
τ0 , (n)̃ℓτ0,u , and

P 4δ̊−1
∗

−U1
. In this section, we state quantitative assumptions on the data of the fluid variables and the eikonal function

quantities along (n)̃Σ
[−U1,U2]
τ0 , (n)̃ℓτ0,u , and P

4δ̊−1
∗

−U1
. We again emphasize that our assumptions hold for perturbations of

the simple isentropic plane-symmetric solutions from Appendix B.
We start by defining the data-parameter δ̊∗.

Definition 11.4 (Key data-parameter tied to the Cartesian time of first blowup). We define δ̊∗ by:

δ̊∗
def= sup

(n)̃Σ
[−U1 ,U2]
τ0

1
2

[
(c−1c;ρ +1)X̆R(+)

]
+
. (11.6)

We assume that:

δ̊∗ > 0. (11.7)

Remark 11.5 (Connection between δ̊∗ and the Cartesian time of first blowup). For simple isentropic plane-symmetric
solutions, the Cartesian time of first shock formation is precisely 1

δ̊∗
; see Appendix A. Our main results show that for

the perturbed solutions under study, the Cartesian time of first blowup, which we denote here by tFirst shock, satisfies
tFirst shock = {1 +O(ϵ̊)} 1

δ̊∗
.

We refer to Sect. 8.3 for notation regarding strings of commutation vectorfields and to Defs. 8.7 and 8.8 for the
definitions of our L2 and L∞ norms.
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L∞ assumptions on the wave-variables and their pure transversal derivatives. For u ∈ [−U1,U2] andM = 1,2,3,4,

we assume (recall that Ψ⃗ and Ψ⃗ (Partial) are defined in Def. 2.8): ∥∥∥R(+)

∥∥∥
L∞((n)̃ℓτ0 ,u) ≤ α̊, (11.8a)∥∥∥X̆MR(+)

∥∥∥
L∞((n)̃ℓτ0 ,u) ≤ δ̊, (11.8b)∥∥∥∥Ψ⃗ (Partial)

∥∥∥∥
L∞((n)̃ℓτ0 ,u)

,
∥∥∥∥X̆MΨ⃗ (Partial)

∥∥∥∥
L∞((n)̃ℓτ0 ,u)

≤ ϵ̊. (11.8c)

L∞ assumptions involving tangential derivatives of the wave-variables. For u ∈ [−U1,U2], we assume:∥∥∥∥P [1,Ntop−10]Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ0 ,u)

,
∥∥∥∥Z[1,Ntop−11;1]
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ0 ,u)

,
∥∥∥∥Z[1,6];2
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ0 ,u)

,∥∥∥∥Z[1,5];3
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ0 ,u)

,
∥∥∥∥LX̆X̆X̆X̆Ψ⃗ ∥∥∥∥

L∞((n)̃ℓτ0 ,u)
≤ ϵ̊.

(11.9)

L∞ assumptions involving tangential derivatives of the transport-variables. For u ∈ [−U1,U2], we assume:∥∥∥P≤Ntop−11(Ω,S)
∥∥∥
L∞((n)̃ℓτ0 ,u) ,

∥∥∥P≤Ntop−12(C,D)
∥∥∥
L∞((n)̃ℓτ0 ,u) ≤ ϵ̊. (11.10)

L2 assumptions along (n)̃Σ
[−U1,U2]
τ0 . We assume:∥∥∥∥P [1,Ntop+1]Ψ⃗

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ0

) ≤ ϵ̊, (11.11a)∥∥∥∥X̆P [1,Ntop]Ψ⃗

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ0

) ≤ ϵ̊, (11.11b)∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ0

) ≤ ϵ̊, (11.11c)∥∥∥P≤Ntop(C,D)
∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ0

) ≤ ϵ̊. (11.11d)

L2 assumptions along P
[0, 4

δ̊∗
]

−U1
. We assume: ∥∥∥∥P≤Ntop+1Ψ⃗

∥∥∥∥
L2

P [0, 4
δ̊∗

]

−U1


≤ ϵ̊, (11.12a)

∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2

P [0, 4
δ̊∗

]

−U1


≤ ϵ̊, (11.12b)

∥∥∥P≤Ntop(C,D)
∥∥∥
L2

P [0, 4
δ̊∗

]

−U1


≤ ϵ̊. (11.12c)

L2 assumptions along (n)̃ℓτ0,u . For u ∈ [−U1,U2], we assume:∥∥∥∥P [1,Ntop]Ψ⃗

∥∥∥∥
L2((n)̃ℓτ0 ,u )

≤ ϵ̊, (11.13a)∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2((n)̃ℓτ0 ,u )

≤ ϵ̊, (11.13b)∥∥∥P≤Ntop−1(C,D)
∥∥∥
L2((n)̃ℓτ0 ,u )

≤ ϵ̊. (11.13c)
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L∞ assumptions tied to transversal derivatives of the eikonal function quantities. For u ∈ [−U1,U2] and M =
0,1,2,3, we assume:54∥∥∥LX̆Mµ

∥∥∥
L∞((n)̃ℓτ0 ,u )

≤ 1
2

∥∥∥∥X̆M {
c−1(c−1c;ρ + 1)X̆R(+)

}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+ ϵ̊, (11.14a)∥∥∥X̆Mµ
∥∥∥
L∞((n)̃ℓτ0 ,u )

≤
∥∥∥∥X̆M {

c−1
}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+
1

2δ̊∗

∥∥∥∥X̆M {
c−1(c−1c;ρ + 1)X̆R(+)

}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+ ϵ̊. (11.14b)

Moreover, for u ∈ [−U1,U2] and M = 1,2,3,4, we assume:∥∥∥∥LX̆MLi(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

≤ ϵ̊, (11.14c)∥∥∥∥X̆ML1
(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

≤ δ̊, (11.14d)∥∥∥∥X̆MLA(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

≤ ϵ̊. (11.14e)

L∞ assumptions involving tangential derivatives of the eikonal function quantities. For u ∈ [−U1,U2], we as-
sume: ∥∥∥∥P [1,Ntop−12]

∗ µ
∥∥∥∥
L∞((n)̃ℓτ0 ,u )

,
∥∥∥∥Z[1,5];1
∗∗ µ

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

,
∥∥∥∥Z[1,4];2
∗∗ µ

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

≤ ϵ̊, (11.15a)∥∥∥∥L1
(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

≤ α̊, (11.15b)∥∥∥∥LA(Small)∥∥∥∥L∞((n)̃ℓτ0 ,u )
,
∥∥∥∥P [1,Ntop−11]Li(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

,
∥∥∥∥Z[1,Ntop−12];1
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

,∥∥∥∥Z[1,5];2
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

,
∥∥∥∥Z[1,4];3
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ0 ,u )

≤ ϵ̊.
(11.15c)

L2 assumptions for the eikonal function quantities. We assume:∥∥∥∥P [1,Ntop]
∗ µ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ0

) , ∥∥∥∥P [1,Ntop]Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ0

) , ∥∥∥∥Z[1,Ntop];1
∗ Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ0

) ≤ ϵ̊, (11.16a)∥∥∥∥L/≤Ntop−1;1
Z χ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

) , ∥∥∥∥L/≤Ntop

P χ
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

) ≤ ϵ̊. (11.16b)

11.2.2. Data-assumptions for the size of t and x1 on (n)̃Σ
[−U1,U2]
τ0 . With δ̊∗ as in (11.6), we assume:

1

2δ̊∗
≤ min

(n)̃Σ
[−U1 ,U2]
τ0

t ≤ sup
(n)̃Σ

[−U1 ,U2]
τ0

t ≤ 2

δ̊∗
, (11.17a)

−U2 +
1

2δ̊∗
≤ min

(n)̃Σ
[−U1 ,U2]
τ0

x1 ≤ sup
(n)̃Σ

[−U1 ,U2]
τ0

x1 ≤U1 +
2

δ̊∗
. (11.17b)

11.2.3. Localized assumptions on the data of µ and its derivatives on the initial rough hypersurface. We now make localized

quantitative and qualitative assumptions on the behavior of µ along (n)̃Σ
[−U1,U2]
τ0 , where we recall that 0 < Uj <

min{U1,U2} (see Fig. 11).

54Some of these “assumptions” can in fact be derived as a consequence of other assumptions, up to constant factors that we absorb into the
parameters δ̊, α̊, and ϵ̊. For convenience, instead of deriving those “assumptions,” we just assume them. The same is true for other assumptions on
the eikonal function quantities stated below. For example, even though the data of the X̆-derivatives of Li could be controlled via the identity (9.14),
we just assume (11.14d). We also refer to (3.44) and (3.46) for intuition behind the form of RHS (11.14a), to (A.10) for intuition behind the first term on
RHS (11.14b), and to Remark 11.5 for intuition behind the factor δ̊−1

∗ in the second term on RHS (11.14b).
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Transversal convexity of µ. We assume that there exists a constant M2 satisfying 0 <M2 < 1 such that:55

M2 ≤ min
(n)̃Σ

[−Uj ,Uj]
τ0

{
(n)W̆ (n)W̆µ, (n)W̆ X̆µ, X̆X̆µ, X̆X̆µ− (X̆µ)LX̆µ

Lµ
,

X̆X̆µ+
nLX̆µ
Lµ

,
∂
∂u
X̆µ,

∂
∂u
X̆µ−

( ∂∂uµ) ∂∂t X̆µ
∂
∂tµ

,
∂̃

∂̃u
X̆µ

}
≤ max

(n)̃Σ
[−Uj ,Uj]
τ0

{
(n)W̆ (n)W̆µ, (n)W̆ X̆µ, X̆X̆µ, X̆X̆µ− (X̆µ)LX̆µ

Lµ
,

X̆X̆µ+
nLX̆µ
Lµ

,
∂
∂u
X̆µ,

∂
∂u
X̆µ−

( ∂∂uµ) ∂∂t X̆µ
∂
∂tµ

,
∂̃

∂̃u
X̆µ

}
≤ 1
M2

.

(11.18)

X̆−n is located near {u = 0}. With X̆−n as in (4.3b), we assume that:

X̆−n ⊂ (n)̃Σ
[− 1

4Uj,
1
4Uj]

τ0 , (11.19a)

min
(n)̃Σ

[−Uj ,Uj]
τ0 \(n)̃Σ

[− 1
2Uj ,

1
2Uj]

τ0

|X̆µ+n| ≥ M2Uj

4
. (11.19b)

Quantitative positivity of µ away from the interesting region. We assume that there is a constant m1 > 0 such that:

min
(n)̃Σ

[−U1 ,U2]
τ0 \(n)̃Σ

[−Uj ,Uj]
τ0

µ ≥m1. (11.20)

We also assume (recall that m0 = −τ0):
m1

2
>m0. (11.21)

Quantitative negativity of Lµ. We assume that the following inequalities hold, where δ̊∗ is defined in (11.6):

−17
16

δ̊∗ ≤ min
(n)̃Σ

[−Uj ,Uj]
τ0

Lµ ≤ max
(n)̃Σ

[−Uj ,Uj]
τ0

Lµ ≤ −15
16

δ̊∗. (11.22)

Quantitative bounds on the Jacobian ((n)Φ)J. We assume that the Jacobian matrix ((n)Φ)J(q) defined in (5.4b) is invertible

for every q ∈ {τ0} × [−Uj,Uj]×T2 and that:

sup
q1,q2∈{τ0}×[−Uj,Uj]×T2

∣∣∣∣((n)Φ)J−1(q1)((n)Φ)J(q2)− ID
∣∣∣∣
Euc
≤ 1

3
, (11.23)

where | · |Euc is the standard Frobenius norm on matrices (equal to the square root of the sum of the squares of the matrix
entries) and ID denotes the 4× 4 identity matrix.

Quantitative bounds on the Jacobian (M̆ )J. We assume that the Jacobian matrix (M̆ )J(p) defined in (5.3b) is invertible

for every p ∈ (n)̃Σ
[−Uj,Uj]
τ0 and that the following holds, where T̆−τ0,0 ⊂

(0)̃Σ
[−Uj,Uj]
τ0 is the µ-adapted torus defined in

(4.3c):

sup
p1∈T̆−τ0 ,0

p2∈(n)̃Σ
[− 1

4Uj ,
1
4Uj]

τ0

∣∣∣∣(M̆ )J(p1)(M̆ )J−1(p2)− ID
∣∣∣∣
Euc
≤ 1

3
, (11.24)

55Most of the estimates assumed in (11.18) are redundant in the sense that they could derived, up to constant factors, as consequences of other
assumptions; it is only for convenience that we have chosen to make assumptions on all these quantities.
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where | · |Euc is the standard Frobenius norm on matrices (equal to the square root of the sum of the squares of the matrix
entries).

12. The bootstrap assumptions, except those concerning the wave energies

In proving our main results, we rely on a continuity argument based on deriving improvements of a set of bootstrap
assumptions for the solution on a region of the form (n)M[τ0,τBoot),[−U1,U2]. In this section, we set up the bootstrap

argument and state all the bootstrap assumptions, except for the ones concerning L2-type energies, which we provide in
Sect. 24.3.

12.1. The start of the bootstrap argument: the bootstrap time interval [τ0,τBoot) and mBoot. From now until Sect. 31,
we assume that there is a classical solution on an “open-at-the-top” region of the form (n)M[τ0,τBoot),[−U1,U2], and we will
state our bootstrap assumptions on the same region. Here and throughout,

τBoot ∈ (
3
4
τ0,0] (12.1)

is the “bootstrap rough-time,” where we recall that the small parameter τ0 < 0 is the most negative value achieved by the
rough time function (n)τ. In Appendix B, we provide Cauchy stability arguments guaranteeing the existence of a region of
classical existence of the form (n)M[τ0,τBoot),[−U1,U2] for some τBoot satisfying (12.1). Hence, at the start56 of our bootstrap

argument, (n)τ has range [τ0,τBoot), which contains [τ0,
3
4τ0]. We also set:

mBoot
def= −τBoot ≥ 0. (12.2)

12.2. Bootstrap assumptions tied to the fundamental scaffolding of the analysis. The bootstrap assumptions in this
section ensure that various fundamental aspects of our approach (such as the change of variables maps from Sect. 5.1) are
well-defined and enjoy basic properties that we use throughout the rest of the paper.

12.2.1. Bootstrap assumptions for the inverse foliation density.

1. We assume that the following estimate holds on (n)M[τ0,τBoot),[−U1,U2]:

µ > 0. (BA µ > 0)

2. We assume that Lµ and ∂
∂tµ are quantitatively negative in (n)M[τ0,τBoot),[−Uj,Uj], where δ̊∗ is defined in (11.6):

−5
4
δ∗ ≤ min

(n)M[τ0 ,τBoot),[−Uj ,Uj]

Lµ ≤ max
(n)M[τ0 ,τBoot),[−Uj ,Uj]

Lµ ≤ −3
4
δ∗, (BA Lµ neg)

−5
4
δ∗ ≤ min

(n)M[τ0 ,τBoot),[−Uj ,Uj]

∂
∂t

µ ≤ max
(n)M[τ0 ,τBoot),[−Uj ,Uj]

∂
∂t

µ ≤ −3
4
δ∗. (BA ∂

∂tµ neg)

56In Lemma 15.5, we will show that (n)τ can be suitably extended to have range [τ0,τBoot], and in Theorem 31.1, we will show that it can be
suitably extended to have range [τ0,0].
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3. We assume that near X̆
[τ0,τBoot)
−n , µ is quantitatively convex in directions transversal to X̆

[τ0,τBoot)
−n . That is, we

assume that the following estimates hold on (n)M[τ0,τBoot),[−Uj,Uj], where 0 <M2 < 1 is as in (11.18):

M2

4
≤ inf

(n)M[τ0 ,τBoot),[−Uj ,Uj]

{
(n)W̆ (n)W̆µ, (n)W̆ X̆µ, X̆X̆µ, X̆X̆µ− (X̆µ)LX̆µ

Lµ
,

X̆X̆µ+
nLX̆µ
Lµ

,
∂
∂u
X̆µ,

∂
∂u
X̆µ−

( ∂∂uµ) ∂∂t X̆µ
∂
∂tµ

,
∂̃

∂̃u
X̆µ

}
≤ sup

(n)M[τ0 ,τBoot),[−Uj ,Uj]

{
(n)W̆ (n)W̆µ, (n)W̆ X̆µ, X̆X̆µ, X̆X̆µ− (X̆µ)LX̆µ

Lµ
,

X̆X̆µ+
nLX̆µ
Lµ

,
∂
∂u
X̆µ,

∂
∂u
X̆µ−

( ∂∂uµ) ∂∂t X̆µ
∂
∂tµ

,
∂̃

∂̃u
X̆µ

}
≤ 4
M2

.

(BA µ cnvx)

12.2.2. Bootstrap assumptions for the rough time function.

1. We assume that in (n)M[τ0,τBoot),[−U1,U2], we have:

∂
∂t

(n)τ > 0. ( BA ∂
∂t

(n)τ > 0)

2. We assume that the following estimates hold, where δ̊∗ is defined in (11.6):

3
4
δ∗ ≤ L(n)τ ≤ 5

4
δ∗, on (n)M[τ0,τBoot),[−U1,U2]. ( BA L(n)τ)

12.2.3. Bootstrap assumptions for change of variables maps. We make the following assumptions for various change of
variables maps.

1. The change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) defined in (5.1) satisfies ∥Υ ∥C3,1
geo ((n)M[τ0 ,τBoot),[−U1 ,U2]) <

∞ and is a diffeomorphism from (n)M[τ0,τBoot),[−U1,U2] onto its image.

2. The change of variables map (n)T (t,u,x2,x3) = ((n)τ,u,x2,x3) defined in (5.2) satisfies
∥∥∥(n)T

∥∥∥
C2,1
geo ((n)M[τ0 ,τBoot),[−U1 ,U2])

<

∞ and is a diffeomorphism from (n)M[τ0,τBoot),[−U1,U2] onto its image, which is [τ0,τBoot)× [−U1,U2]×T2.

3. The change of variables map (n)Φ defined in (5.4a) satisfies
∥∥∥(n)Φ

∥∥∥
C1,1
rough([τ0,τBoot)×[−U1,U2]×T2) < ∞ and is a

diffeomorphism from [τ0,τBoot) × [−Uj,Uj] × T2 onto its image. Furthermore, the Jacobian matrix ((n)Φ)J(q)
defined in (5.4b) is invertible for every q ∈ [τ0,τBoot)× [−Uj,Uj]×T2 and satisfies:

max
q1,q2∈[τ0,τBoot)×[−Uj,Uj]×T2

∣∣∣∣((n)Φ)J−1(q1)((n)Φ)J(q2)− ID
∣∣∣∣
Euc
≤ 2

3
. (12.3)

12.2.4. Bootstrap assumptions for the structure and location of T̆m,−n and X̆
[τ0,τBoot)
−n . Recall that the µ-adapted tori T̆m,−n

are defined in (4.3c) and that the hypersurface portions X̆
[τ0,τBoot)
−n are defined in (4.7b). Also recall that 0 ≤ mBoot =

−τBoot <m0 = −τ0.

1. We assume that for each m ∈ (mBoot,m0], there exist scalar functions Tm,−n,Um,−n ∈W 2,∞(T2), depending on
m and n, such that relative to the geometric coordinates (t,u,x2,x3), we have:

T̆m,−n =
{(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
| (x2,x3) ∈ T2

}
. (BA µ− TORI STRUCTURE)

In particular, in geometric coordinates, T̆m,−n is a W 2,∞ graph over T2.
2. We assume that for each fixed τ ∈ [τ0,τBoot) = [−m0,−mBoot),

T̆m,−n ⊂ (n)̃Σ
[− 3

4Uj,
3
4Uj]

τ . (BA T̆m,−n − LOCATION)
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3. We assume that:

X̆
[τ0,τBoot)
−n ⊂ (n)M[τ0,τBoot),[− 3

4Uj,
3
4Uj]. (BA X̆

[τ0,τBoot)
−n − LOCATION)

4. We assume that the map (n)E : (mBoot,m0]×T2→ (n)M[τ0,τBoot),[− 3
4Uj,

3
4Uj] defined by:

(n)E(m,x2,x3) def=
(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
(12.4)

is a diffeomorphism from (mBoot,m0]×T2 onto X̆
[τ0,τBoot)
−n such that for every m′ ∈ (mBoot,m0), we have:

(n)E ∈ C1,1([m′ ,m0]×T2), (12.5)

and such that:

−∞ < inf
(m,x2,x3)∈(mBoot,m0]×T2

∂
∂m

Tm,−n(x2,x3) ≤ sup
(m,x2,x3)∈(mBoot,m0]×T2

∂
∂m

Tm,−n(x2,x3) < 0. (12.6)

In particular, X̆
[τ0,τBoot)
−n is a C1,1 embedded sub-manifold-with-boundary of (n)M[τ0,τBoot),[− 3

4Uj,
3
4Uj] whose

boundary is T̆m0,−n, and:

X̆
[τ0,τBoot)
−n =

⋃
m∈(mBoot,m0]

T̆m,−n. (BA X̆
[τ0,τBoot)
−n − FOLIATED)

12.2.5. Bootstrap assumptions for the size of t and x1 on (n)̃Σ
[−U1,U2]
τ . With δ̊∗ as in (11.6), we assume that the following

inequalities hold for τ ∈ [τ0,τBoot):

1

4δ̊∗
≤ min

(n)̃Σ
[−U1 ,U2]
τ

t ≤ max
(n)̃Σ

[−U1 ,U2]
τ

t ≤ 4

δ̊∗
, (BA t − SIZE)

−U2 +
1

4δ̊∗
≤ min

(n)̃Σ
[−U1 ,U2]
τ

x1 ≤ max
(n)̃Σ

[−U1 ,U2]
τ

x1 ≤U1 +
4

δ̊∗
. (BA x1 − SIZE)

12.2.6. Soft bootstrap assumptions concerning regularity. We assume that for every τ ∈ (τ0,τBoot), we have:

Ψ⃗ ,Ωi , S i , Ci ,D ∈ C3,1
geo ((n)M[τ0,τ],[−U1,U2]), (BA Fluid Regularity)

Υ ∈ C3,1
geo ((n)M[τ0,τ],[−U1,U2]), (BA Υ Regularity)

Li , µ ∈ C2,1
geo ((n)M[τ0,τ],[−U1,U2]). (BA Geometry Regularity)

Remark 12.1. In (BA Fluid Regularity)–(BA Geometry Regularity), we are not making any quantitative assumptions on
the size of the norms. That is, we are assuming only that the norms are finite, e.g., ∥µ∥C2,1

geo ((n)M[τ0 ,τ],[−U1 ,U2])
< ∞. In

Lemma 15.6, we will show that all of these norms are ≤ C.

12.3. The main quantitative bootstrap assumptions. We now state our main quantitative bootstrap assumptions. In
the rest of the paper, ε ≥ 0 denotes a small “bootstrap” parameter whose smallness we described in Sect. 10.2. Later on,
we will close our bootstrap argument by setting ε = Cϵ̊ for some large constant C , where ϵ̊ is the data-size parameter
from Sect. 11.2.1; see, in particular, Prop. 30.1.

12.3.1. Fundamental quantitative bootstrap assumptions. Our fundamental quantitative bootstrap assumptions for Ψ⃗ , Ω,
S , C, and D are that the following inequalities hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∥∥∥∥P [1,Ntop−10]Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u)

,
∥∥∥P≤Ntop−11(Ω,S)

∥∥∥
L∞((n)̃ℓτ,u) ,

∥∥∥P≤Ntop−12(C,D)
∥∥∥
L∞((n)̃ℓτ,u) ≤ ε. (BA L∞ FUND)
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12.3.2. Auxiliary bootstrap assumptions. To derive pointwise and L∞ estimates, we find it convenient to make the following
auxiliary bootstrap assumptions.

Auxiliary bootstrap assumptions for small quantities. We assume that the following inequalities hold for (τ,u) ∈
[τ0,τBoot)× [−U1,U2] (recall that Ψ⃗ and Ψ⃗ (Partial) are defined in Def. 2.8 and that (n)̃L is defined in (6.3)):

∥∥∥R(+)

∥∥∥
L∞((n)̃ℓτ,u )

≤ α̊1/2 + ε1/2, (AUX R(+) SMALL)∥∥∥∥Ψ⃗ (Partial)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2, (AUX Ψ⃗ (Partial) SMALL)∥∥∥∥(n)̃LZ≤Ntop−11;1Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,Ntop−11];1
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LP≤4X̆X̆Ψ⃗
∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,6];2
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LP≤2X̆X̆X̆Ψ⃗
∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,5];3
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LX̆X̆X̆X̆Ψ⃗
∥∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2,

(AUX Ψ⃗ SMALL)

∥∥∥Z≤Ntop−11;1(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤6;2(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤5;3(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥X̆X̆X̆X̆(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2,

(AUX (Ω,S) SMALL)

∥∥∥Z≤Ntop−12;1(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤6;2(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤5;3(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥X̆X̆X̆X̆(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2,

(AUX (C,D) SMALL)

∥∥∥(n)̃LP [1,Ntop−12]µ
∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥P [1,Ntop−12]
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,5];1
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,5];1
∗∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,4];2
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,4];2
∗∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2,

(AUX µ SMALL)

∥∥∥∥L1
(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ α̊1/2, (AUX L1
(Small) SMALL)∥∥∥∥LA(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2, (AUX LA(Small) SMALL)∥∥∥∥(n)̃LP≤Ntop−11Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥P [1,Ntop−11]Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,Ntop−12];1Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,Ntop−12];1
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,5];2Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,5];2
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,4];3Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,4];3
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2.

(AUX PLi(Small) SMALL)
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Auxiliary bootstrap assumptions tied to pure transversal derivatives. We assume that the following inequalities hold
for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∥∥∥X̆MR(+)

∥∥∥
L∞((n)̃ℓτ,u )

≤ δ̊+ ε1/2, 1 ≤M ≤ 4,

(AUX X̆MR(+) LARGE)∥∥∥∥X̆MΨ⃗ (Partial)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2, 1 ≤M ≤ 4,

(AUX X̆MΨ⃗ (Partial) SMALL)∥∥∥∥X̆ML1
(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ δ̊+ ε1/2, 1 ≤M ≤ 3,

(AUX X̆[1,3]L1
(Small) LARGE)∥∥∥∥X̆MLA(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ ε1/2, 1 ≤M ≤ 3,

(AUX X̆[1,3]LA(Small) SMALL)∥∥∥X̆Mµ
∥∥∥
L∞((n)̃ℓτ,u )

≤
∥∥∥∥X̆M {

c−1
}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+
3

2δ̊∗

∥∥∥∥X̆M {
c−1(c−1c;ρ + 1)X̆R(+)

}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+ ε1/2, 0 ≤M ≤ 3,

(AUX X̆≤3µ LARGE)∥∥∥(n)̃LX̆Mµ
∥∥∥
L∞((n)̃ℓτ,u )

≤ 1
δ∗

∥∥∥∥X̆M {
c−1(c−1c;ρ + 1)X̆R(+)

}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+ ε1/2, 0 ≤M ≤ 3.

(AUX (n)̃LX̆≤3µ LARGE)

12.4. Key running assumptions. From now until Sect. 31, we will often silently use the parameter-size and initial data
assumptions of Sects. 10.2 and 11.2 and the bootstrap assumptions of Sects. 12.2 and 12.3. In particular, when we state
lemmas, propositions, and corollaries, we will not explicitly restate these assumptions.

12.5. A summary of the forthcoming derivation of improvements of the bootstrap assumptions. In the subsequent
sections, we will derive strict improvements of all the bootstrap assumptions that we made throughout Sect. 12. For the
reader’s convenience, here we state all the forthcoming results that yield the desired strict improvements. Here we clarify
that by “strict improvements,” we mean one or more of the following three things:

1. (Quantitative improvement) By this, we mean that some quantity Q was assumed to satisfy A1 ≤ Q ≤ A2 in
the bootstrap assumptions (where A1,A2 are real numbers), and we derive the improved bound B1 ≤ Q ≤ B2,
where A1 < B1 ≤ B2 < A2.

2. (From soft to quantitative) By this, we mean that in the bootstrap assumptions, we assumed that some function
f belongs to some function space and has a finite norm in that space, and our improvement is a quantitative
estimate for the norm of f .

3. (Extension to the closure) By this, we mean that our bootstrap assumptions involved an assumption on the
“open-at-the-top” domain (n)M[τ0,τBoot),[−U1,U2], and we derive an improved result showing that the assumption

holds on the closed domain (n)M[τ0,τBoot],[−U1,U2].

Here are the precise spots in the article where we derive improvements of the bootstrap assumptions.

• Regarding the bootstrap assumptions of Sect. 12.2.1: we derive improvements of (BA µ > 0) in (18.1), of (BA Lµ neg)
in (18.8a), of (BA ∂

∂tµ neg) in (18.8b), and of (BA µ cnvx) in (18.5).
• We derive improvements of the bootstrap assumptions of Sect. 12.2.2 in (18.9a)–(18.9b).
• We derive improvements of the bootstrap assumptions of Sect. 12.2.3 in Lemmas 15.5 and 15.7 and in Prop. 18.4.
• Regarding the bootstrap assumptions of Sect. 12.2.4: we derive improvements of Items 1 and 4 of in Cor. 15.8, of

(BA T̆m,−n − LOCATION) in (18.3b), and of (BA X̆
[τ0,τBoot)
−n − LOCATION) in (18.3a).

• We derive improvements of the bootstrap assumptions of Sect. 12.2.5 in Lemma 18.5.
• We derive improvements of the bootstrap assumptions of Sect. 12.2.6 in Lemma 15.6.
• We derive improvements of the fundamental quantitative bootstrap assumptions of Sect. 12.3.1 in Prop. 30.1.
• We derive improvements of the auxiliary bootstrap assumptions of Sect. 12.3.2 in Prop. 17.1.

• In Sect. 24.3, we state bootstrap assumptions for the L2-type energies for the wave-variables Ψ⃗ . We derive
improvements of them in Prop. 24.1.
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13. Preliminary pointwise, commutator, and differential operator comparison estimates

We operate under the assumptions of Sect. 12.4. In this section, we use the bootstrap assumptions to derive several
preliminary estimates, including pointwise estimates, commutator identities and estimates, and differential operator
estimates comparing L/ and ∇/ .

13.1. The norm of the ℓt,u-tangent commutation vectorfields and simple comparison estimates.

Lemma 13.1 (The norm of the ℓt,u-tangent commutation vectorfields and simple comparison estimates). Assume the
parameter- and data-size assumptions of Sects. 10.2 and 11.2, and assume that the bootstrap assumptions of Sects. 12.2 and
12.3 hold on (n)M[τ0,τBoot),[−U1,U2]. Then the ℓt,u-tangent commutation vectorfields Y = {Y(2),Y(3)} (see Def. 3.8) satisfy
the following pointwise estimates on (n)M[τ0,τBoot),[−U1,U2]:

|Y(A)|g/ = 1 +O♦(α̊1/2). (13.1)

Moreover, for any type
(m
n

)
ℓt,u-tangent tensorfield ξ

α1···αm
β1···βn , the following pointwise estimates hold on

(n)M[τ0,τBoot),[−U1,U2],

where the ξ
A1···An
B1···Bn denote the components of ξ with respect to the geometric coordinates (x2,x3) on ℓt,u (see Notation 3.1):

|ξ|2g/ =
{
1 +O♦(α̊1/2)

} ∑
(1)U,··· ,(m)U∈Y
(1)V ,··· ,(n)V ∈Y

∣∣∣∣(1)Uα1
· · · (m)Uαm

(1)V β1 · · · (n)V βnξ
α1···αn
β1···βn

∣∣∣∣2

=
{
1 +O♦(α̊1/2)

} ∑
A1,··· ,Am=2,3
B1,··· ,Bn=2,3

∣∣∣∣ξA1···An
B1···Bn

∣∣∣∣2 . (13.2)

Proof. We first prove (13.2). We only prove the result for ℓt,u-tangent one-forms ξ because arbitrary type
(m
n

)
ℓt,u-tangent

tensorfields can be handled via similar arguments. Let ξ be an ℓt,u-tangent one form. Then by (3.31b), we have that

|ξ|2g/ = c2 ∑
A=2,3(ξA)2−(XAξA)2, where we recall that ξA

def= ξ· ∂
∂xA

. Next, using the bootstrap assumptions, Prop. 9.1, and

(10.9a), we deduce that c − 1,X2,X3 = O♦(α̊1/2) and thus |ξ|2g/ =
{
1 +O♦(α̊1/2)

}∑
A=2,3(ξA)2. Using in addition (5.8c)–

(5.8d) and the fact that X1 + 1 = X1
(Small) = O♦(α̊1/2) (see (3.13)), we have that ξA = ξ · Y(A) +O♦(α̊1/2)

∑
A=2,3 |ξ · Y(A)|.

Combining these results, we conclude (13.2) for ℓt,u-tangent one-forms ξ.

To prove (13.1), we first use (13.2) to deduce that |Y(A)|2g/ =
{
1 +O♦(α̊1/2)

}∑
B=2,3(Y B(A))

2. Moreover, the identities

(5.7c)–(5.7d) and the estimates noted in the previous paragraph yield
∑
B=2,3(Y B(A))

2 = 1 +O♦(α̊1/2). Combining these

estimates, we conclude (13.1).
□

13.2. Basic facts and assumptions that we use silently throughout the paper. In the rest of the paper, we silently
use the following basic facts and assumptions.

1. All of the estimates we derive hold on the bootstrap region (n)M[τ0,τBoot),[−U1,U2]. Moreover, when deriving
estimates, we often silently rely on the parameter- and data-size assumptions of Sects. 10.2 and 11.2 and the
bootstrap assumptions of Sects. 12.2 and 12.3. In particular, we often silently use (10.9a).

2. All quantities that we estimate can be controlled in terms of the variables γ = {Ψ⃗ ,µ− 1,L1
(Small),L

2
(Small),L

3
(Small)},

Ω, and S (though we also rely on the modified fluid variables C and D to help control Ω and S ).
3. We use the Leibniz rule for the operators L/Z and ∇/ when deriving pointwise estimates for the L/Z - and ∇/ -

derivatives of tensor products of the schematic form
∏m
i=1ξ(i), where the ξ(i) are scalar functions or ℓt,u-tangent

tensors. Thanks to our assumption (10.6) on Ntop, our derivative counts are such that all the ξ(i) except at most

one are uniformly bounded in L∞ on (n)M[τ0,τBoot),[−U1,U2]. Thus, our pointwise estimates often explicitly feature
(on the right-hand sides) only one factor with many derivatives on it, multiplied by a constant that uniformly
bounds the other factors. In some estimates, the right-hand sides also gain a smallness factor such as ε1/2,
generated by the remaining ξ′(i)s.

4. We use the conventions for constants C,c, and C♦ stated in Sect. 10.3.
5. We use the conventions for strings of commutation vectorfields stated in Sect. 8.3.
6. We use the schematic identities stated in Prop. 9.1.
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7. We use the comparison estimates of Lemma 13.1.

13.3. Pointwise estimates for Cartesian components of geometric vectorfields. In this section, we provide simple
pointwise estimates for the Cartesian components of the vectorfields {L,X̆,Y(2),Y(3)} and their derivatives.

Lemma 13.2 (Pointwise estimates for xi and the Cartesian components of the vectorfields {L,X̆,Y(2),Y(3)}). Let P ∈
{L,Y(2),Y(3)}. For i = 1,2,3, the following pointwise estimates hold on (n)M[τ0,τBoot),[−U1,U2]:

|P i | ≲ 1 + |γ|, (13.3a)

|P [1,N ]P i | ≲ |P [1,N ]γ|, (13.3b)

|Z[1,N ];1
∗ P i | ≲ |Z[1,N ];1

∗ γ|, (13.3c)

|Z[1,N ];1P i | ≲ |Z[1,N ];1γ|, (13.3d)

|X̆i | ≲ 1 + |γ|, (13.3e)

|P [1,N ]X̆i | ≲ |P [1,N ]γ|, (13.3f)

|Z[1,N ];1
∗ X̆i | ≲ |Z[1,N ];1

∗ γ|, (13.3g)

|Z[1,N ];1X̆i | ≲ |Z[1,N ];1γ|, (13.3h)

|d/ xi |g/ ≲ 1 + |γ|, (13.3i)

|d/ P [1,N ]xi |g/ ≲ |P [1,N ]γ|, (13.3j)

|d/Z[1,N ];1xi |g/ ≲ |Z
[1,N ];1
∗ γ|+ |P [1,N ]

∗ γ|. (13.3k)

Proof. The lemma follows from the same arguments given in [50, Lemma 8.4], with minor modifications accounting for
the third dimension. □

13.4. Pointwise estimates for various ℓt,u-tangent tensorfields. In this section, we record several pointwise estimates
for various ℓt,u-tangent tensorfields.

Lemma 13.3 (Crude pointwise estimates for the Lie derivatives of g/ and χ). The following pointwise estimates hold on
(n)M[τ0,τBoot),[−U1,U2]:

|L/N+1
P g/ |g/ , |L/N+1

P g/−1|g/ , |L/NP χ|g/ , |P
N trg/χ| ≲ |P [1,N+1]γ|, (13.4a)

|L/N+1;1
Z∗ g/ |g/ , |L/

N+1;1
Z∗ g/−1|g/ , |L/

N ;1
Z χ|g/ , |ZN ;1trg/χ| ≲ |Z

[1,N+1];1
∗ γ|+ |P [1,N+1]

∗ γ|, (13.4b)

|L/N+1;1
Z g/ |g/ , |L/

N+1;1
Z g/−1|g/ ≲ |Z[1,N+1];1γ|+ |P [1,N+1]

∗ γ|. (13.4c)

Proof. The same proof of [50, Lemma 8.5] holds with minor modifications to account for the third spatial dimension. □

13.5. Commutator identities and estimates.

Lemma 13.4 (Simple commutator identities). For any Pu-tangent vectorfields P ,P1, P2 ∈ {L,Y(2),Y(3)}, the commutators
[P1, P2] and [X̆,P ] are ℓt,u-tangent. Moreover, there exist smooth functions, all schematically denoted by “f,” such that the
following identity holds:

[P1, P2] = f(P≤1γ)Y(2) + f(P≤1γ)Y(3). (13.5a)

For each P ∈ {L,Y(2),Y(3)}, there exist smooth functions, all schematically denoted by “f,” such that the following identity
holds:

[P , X̆] = f(P≤1γ, X̆Ψ⃗ )Y(2) + f(P≤1γ, X̆Ψ⃗ )Y(3). (13.5b)

Proof. Let P ∈ {L,Y(2),Y(3)}. From Lemma 3.9 and the fact that the Y(A) are ℓt,u-tangent, we find deduce that [P , X̆]t =
[P , X̆]u = 0, i.e, that [P , X̆] is ℓt,u-tangent. Similarly, if P1, P2 ∈ {L,Y(2),Y(3)}, then [P1, P2]t = [P1, P2]u = 0, and hence
[P1, P2] is ℓt,u-tangent.

We now prove (13.5b). From the above observations and the fact that { ∂
∂xA
}A=2,3 spans the tangent space of ℓt,u , we

see that [P , X̆] = [P , X̆]A ∂
∂xA

. From this identity, (5.8c)–(5.8d), and Prop. 9.1, we deduce that [P , X̆] can be written as a
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linear combination of Y(2),Y(3) with coefficients that are smooth functions of P≤1γ, of the Cartesian components X̆Li ,

and of X̆Ψ⃗ . We then use (9.14) to substitute for X̆Li , which in total yields (13.5b).
The identity (13.5a) can be proved through similar but simpler arguments that do not involve factors of µ or X̆

differentiations, and we omit the details. □

The following proposition provides various vectorfield commutator estimates that we use in our analysis.

Proposition 13.5 (Pointwise commutator estimates). Let 1 ≤ N ≤ Ntop be an integer, and let ϕ be a scalar function on
(n)M[τ0,τBoot),[−U1,U2]. For any P ∈ P

def
= {L,Y(2),Y(3)}, iterated commutators can be pointwise bounded as follows on

(n)M[τ0,τBoot),[−U1,U2]: ∣∣∣[P ,PN ]ϕ
∣∣∣ ≲ ε1/2

∣∣∣P [1,N ]ϕ
∣∣∣+

∑
N1+N2≤N+1
N1,N2≤N

∣∣∣P [2,N1]γ
∣∣∣ ∣∣∣P [1,N2]ϕ

∣∣∣
︸                                 ︷︷                                 ︸

Absent if N = 1

, (13.6a)

∣∣∣[X̆,PN ]ϕ
∣∣∣ , ∣∣∣[P ,ZN ;1]ϕ

∣∣∣ ≲ ∣∣∣P [1,N ]ϕ
∣∣∣+

∑
N1+N2≤N+1
N1,N2≤N

∣∣∣∣P [2,N1]
∗ γ

∣∣∣∣ ∣∣∣P [1,N2]ϕ
∣∣∣

︸                                 ︷︷                                 ︸
Absent if N = 1

+
∑

N1+N2≤N
N1≤N−1

∣∣∣∣P [1,N1]X̆Ψ⃗
∣∣∣∣ ∣∣∣P [1,N2]ϕ

∣∣∣
︸                                 ︷︷                                 ︸

Absent if N = 1

.
(13.6b)

In particular, for any P ∈ {L,Y(2),Y(3)}, we have the following pointwise estimates on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣[P ,PN ]ϕ
∣∣∣ ≲ ε1/2

∣∣∣P [1,N ]ϕ
∣∣∣ , if 1 ≤N ≤Ntop − 11, (13.7a)∣∣∣[X̆,PN ]ϕ

∣∣∣ , ∣∣∣[P ,ZN ;1]ϕ
∣∣∣ ≲ ∣∣∣P [1,N ]ϕ

∣∣∣ , if 1 ≤N ≤Ntop − 12. (13.7b)

Moreover, the following pointwise estimates hold:∣∣∣[P ,ZN ;2]ϕ
∣∣∣ , ∣∣∣[X̆,ZN ;1]ϕ

∣∣∣ ≲ ∣∣∣∣Z[1,N ];1
∗ ϕ

∣∣∣∣ , if 1 ≤N ≤ 5, (13.8a)∣∣∣[P ,ZN ;3]ϕ
∣∣∣ , ∣∣∣[X̆,ZN ;2]ϕ

∣∣∣ ≲ ∣∣∣∣Z[1,N ];2
∗ ϕ

∣∣∣∣ , if 1 ≤N ≤ 4. (13.8b)

Finally, if ξ is an ℓt,u-tangent type
(0
n

)
-tensorfield and P ∈ {L,Y(2),Y(3)}, then the following pointwise estimates hold:∣∣∣[L/P ,L/NP ]ξ

∣∣∣
g/
≲ ε1/2

∣∣∣L/≤NP ξ
∣∣∣
g/

+
∑

N1+N2≤N+1
N2≤N

∣∣∣∣P [2,N1]
∗ γ

∣∣∣∣ ∣∣∣∣L/ [1,N2]
P ξ

∣∣∣∣
g/

︸                                 ︷︷                                 ︸
Absent if N = 1

, (13.9a)

∣∣∣∣[L/P ,L/N ;1
Z ]ξ

∣∣∣∣
g/
≲

∣∣∣L/≤NP ξ
∣∣∣
g/

+
∑

N1+N2≤N+1
N2≤N

∣∣∣∣P [2,N1]
∗ γ

∣∣∣∣ ∣∣∣∣L/ [1,N2]
P ξ

∣∣∣∣
g/

︸                                 ︷︷                                 ︸
Absent if N = 1

+
∑

N1+N2≤N
N1≤N−1

∣∣∣∣P [1,N1]X̆Ψ⃗
∣∣∣∣ ∣∣∣∣L/ [1,N2]
P ξ

∣∣∣∣
g/

︸                                  ︷︷                                  ︸
Absent if N = 1

.
(13.9b)
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Proof. We first prove (13.6a). Iterating (13.5a) and using Prop. 9.1 and the bootstrap assumptions, we find that
∣∣∣[P ,PN ]ϕ

∣∣∣ ≲∑
N1+N2≤N+1
N1,N2≤N

∣∣∣P [1,N1]γ
∣∣∣ ∣∣∣P [1,N2]ϕ

∣∣∣. From this bound and the fact that the bootstrap assumptions imply that |Pγ| ≲ ε1/2,

we arrive at (13.6a).
To prove (13.6b) for

∣∣∣[X̆,PN ]ϕ
∣∣∣, we use a similar argument that also relies on (13.5b) to deduce

∣∣∣[X̆,PN ]ϕ
∣∣∣ ≲∑

N1+N2≤N+1
N1,N2≤N

∣∣∣P [1,N1]γ
∣∣∣ ∣∣∣P [1,N2]ϕ

∣∣∣+∑
N1+N2≤N
N1≤N−1

∣∣∣∣P≤N1X̆Ψ⃗
∣∣∣∣ ∣∣∣P [1,N2]ϕ

∣∣∣. From this bound and the fact that the bootstrap

assumptions imply that |Pγ| ≲ 1 and
∣∣∣∣X̆Ψ⃗ ∣∣∣∣ ≲ 1, we conclude the desired bounds for

∣∣∣[X̆,PN ]ϕ
∣∣∣. The estimate (13.6b)

for
∣∣∣[P ,ZN ;1]ϕ

∣∣∣ can be proved through a similar argument, and we omit the details.
Except for (13.9a)–(13.9b), the remaining estimates in the proposition follow from similar arguments that take into

account the details of the auxiliary bootstrap assumptions of Sect. 12.3.2, in particular the L∞ regularity of the solution
variables with respect to X̆ and Pu-tangential differentiations.

We now prove (13.9a). We first consider the case in which ξ = ξAd/ xA is an ℓt,u-tangent one-form, where by our usual

conventions, ξA
def= ξ · ∂

∂xA
. By Lemma 3.13 and the Leibniz rule, for any P ∈P , we have:

L/P ξ = (P ξA)d/ xA + ξAd/ (P xA). (13.10)

Differentiating (13.10) with ℓt,u-projected Lie derivatives, using the Leibniz rule, using Lemma 3.13, using the bootstrap
assumptions, using (13.6a) with the scalar functions ξA in the role of ϕ, and using (13.3i)–(13.3j), we see that

∣∣∣[L/P ,L/NP ]ξ
∣∣∣
g/
≲∑

A=2,3 ε
1/2

∣∣∣P [1,N ]ξA
∣∣∣+∑

A=2,3
∑
N1+N2≤N+1

N2≤N

∣∣∣∣P [2,N1]
∗ γ

∣∣∣∣ ∣∣∣P≤N2ξA
∣∣∣. We clarify that we have used the fact that the set of

products arising in the Leibniz expansions of L/PL/NP (ξAd/ xA) and L/NP L/P (ξAd/ xA) is the same, except that the vectorfield
differential operators can appear in a different order in the two sets of products. Next, by considering the coordinate
components of the one-forms on each side of (13.10), using the bootstrap assumptions, and using (13.2) and (13.3j), we find
that

∑
A=2,3 |P ξA| ≲ |(P ξA)d/ xA|g/ ≲ |L/P ξ|g/ + |ξ|g/ . Differentiating (13.10) and using similar arguments, we use induction in

M to deduce that for 1 ≤M ≤Ntop, we have
∑
A=2,3 |PMξA| ≲

∣∣∣L/≤MP ξ
∣∣∣
g/
+
∑
M1+M2≤M
M2≤M−1

∣∣∣P [1,M1]γ
∣∣∣ ∣∣∣∣L/≤M2
P ξ

∣∣∣∣
g/
. Combining

these estimates and using the bootstrap assumptions, we conclude (13.9a) for ℓt,u-tangent one-forms ξ. For any n ≥ 2,
the estimate (13.9a) for type

(0
n

)
ℓt,u-tangent tensorfields ξ can be proved using similar arguments. We have therefore

proved (13.9a). The commutator estimate (13.9b) follows from similar arguments that rely on (13.3k), (13.4c), (13.6b), and
the identity (9.14) (we use the latter to eliminate the explicit presence of X̆Li -dependent terms on RHS (13.9b), which
otherwise would have arisen from the first terms on RHSs (13.3k) and (13.4c)); we omit the details.

□

13.6. Differential operator estimates comparing L/ and ∇/ . In this section, we provide some pointwise estimates that
compare various differential operators.

Lemma 13.6 (Differential operator pointwise comparison estimates). Let f be a scalar function on (n)M[τ0,τBoot),[−U1,U2].

Then the following pointwise estimates hold on (n)M[τ0,τBoot),[−U1,U2]:

|d/ f |2g/ =
{
1 +O♦(α̊1/2)

} 3∑
A=2

|Y(A)f |2, (13.11a)

|∆/ f |2 ≤ 2(1 +C♦α̊
1/2)

3∑
A=2

|d/ Y(A)f |2g/ +Cε1/2|d/ f |2g/ . (13.11b)

Proof. (13.11a) follows from (13.2) with ξ
def= d/ f .

We now prove (13.11b). We first note that (13.1)–(13.2), the Leibniz rule, and the fact that g/(∇/ Y(A)
Y(B),Y(C)) =

g(DY(A)
Y(B),Y(C)) yield the following estimate for any scalar function f :

|∇/ 2f |2g/ ≤
{
1 +O♦(α̊1/2)

} 3∑
A=2

|d/ Y(A)f |2g/ +C
3∑

A,B,C=2

|g(DY(A)
Y(B),Y(C))|2|d/ f |2g/ . (13.12)
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Next, we use (9.13) and the bootstrap assumptions to deduce that |g(DY(A)
Y(B),Y(C))| ≲ ε1/2. Inserting this bound into

RHS (13.12) and using the inequality |∆/ f |2 ≤ 2|∇/ 2f |2g/ , we arrive at the desired estimate (13.11b).
□

13.7. Transport inequalities for the eikonal function quantities. In this section, we provide transport inequalities sat-
isfied by the eikonal function quantities µ,Li(Small),χ, and trg/χ. We also provide pointwise estimates for the differentiated

quantity L/LL/N−1
P χ. These estimates involve a loss of one order of differentiability relative to Ψ⃗ in the sense that the

right-hand sides of the transport equations that we use to derive the inequalities depend on the first-order derivatives

of Ψ⃗ . In Sect. 25, we use the transport inequalities to derive below-top-order energy estimates for the eikonal function
quantities.

Proposition 13.7 (Transport inequalities for the eikonal function quantities). The following pointwise estimates hold on
(n)M[τ0,τBoot),[−U1,U2]:

|Lµ| ≲ |ZΨ⃗ |, (13.13a)

|LPN∗ µ|, |PN∗ Lµ| ≲ |Z
[1,N+1];1
∗ Ψ⃗ |+ |P [1,N ]γ|+ ε1/2|P [1,N ]

∗ γ|, if 1 ≤N ≤Ntop, (13.13b)

|LPNLi(Small)|, |P
NLLi(Small)| ≲ |P

[1,N+1]Ψ⃗ |+ ε1/2|P [1,N ]γ|, if 0 ≤N ≤Ntop, (13.13c)

|LPN−1trg/χ|, |PN−1Ltrg/χ| ≲ |P [1,N+1]Ψ⃗ |+ ε1/2|P [1,N ]γ|, if 1 ≤N ≤Ntop, (13.13d)

|L/LL/N−1
P χ|g/ , |L/N−1

P L/Lχ|g/ ≲ |P [1,N+1]Ψ⃗ |+ ε1/2|P [1,N ]γ|, if 1 ≤N ≤Ntop, (13.13e)

|LZN ;1Li(Small)|, |Z
N ;1LLi(Small)| ≲ |Z

[1,N+1];1
∗ Ψ⃗ |+ |Z[1,N ];1

∗ γ|+ ε1/2|P [1,N ]
∗ γ|, if 1 ≤N ≤Ntop, (13.13f)

|LZN−1;1trg/χ|, |ZN−1;1Ltrg/χ| ≲ |Z
[1,N+1];1
∗ Ψ⃗ |+ |Z[1,N ];1

∗ γ|+ ε1/2|P [1,N ]
∗ γ|, if 2 ≤N ≤Ntop, (13.13g)

|L/LL/
N−1;1
Z χ|g/ , |L/

N−1;1
Z L/Lχ|g/ ≲ |Z

[1,N+1];1
∗ Ψ⃗ |+ |Z[1,N ];1

∗ γ|+ ε1/2|P [1,N ]
∗ γ|, if 2 ≤N ≤Ntop. (13.13h)

Proof. Thanks to the transport equations of Lemma 3.21, the identity (3.49b), and the commutator estimates of Prop. 13.5,
the estimates (13.13a)–(13.13d), (13.13f), and (13.13g) follow from the same arguments given in [50, Proposition 8.13], and we
omit the details. In the rest of the proof, we will silently use the comparison estimates stated in (13.2).

We now prove (13.13e) for L/N−1
P L/Lχ. Since ℓt,u-projected Lie differentiation with respect to the elements of Z

commutes with d/ (see (3.29)), equation (3.49a), the chain rule, (2.18a), and Prop. 9.1 imply the following relation, where the
last three products on RHS (13.14) are written schematically:

L/Lχ = (G⃗ab ⋄LΨ⃗ )d/ La ⊗d/ xb + gabd/ L
a ⊗d/ Lb + gabd/ LL

a ⊗d/ xb

+ f(γ,d/ x⃗ ) · P P Ψ⃗ + f(γ,d/ x⃗ ) · P Ψ⃗ · Pγ+ f(γ,d/ x⃗ ) · P Ψ⃗ ·d/ P x⃗.
(13.14)

Substituting RHS (3.45) for LLa on RHS (13.14), taking L/N−1
P derivatives of the resulting expression, and using (3.29), Prop. 9.1,

(13.3i)–(13.3j), and the bootstrap assumptions, we conclude (13.13e) for L/N−1
P L/Lχ. The estimate (13.13e) for L/LL/N−1

P χ then
follows from the commutator estimate (13.9a), the crude estimate (13.4a) for the ℓt,u-projected Lie derivatives of χ, and
the bootstrap assumptions. With the help of the estimates (13.3k) and (13.4b) and the commutator estimate (13.9b), the
estimates stated in (13.13h) follow from similar arguments, and we omit the details. □

13.8. Pointwise commutator estimates for χ tied to a Codazzi-type identity. We will use the results of this section
in Sect. 29.3, when we derive top-order L2 estimates for χ with the help of elliptic estimates. A key point of Lemmas
13.8–13.9 is that RHSs (13.15)–(13.16) depend on one fewer derivative of γ compared to the crude results of Lemma 13.3.

Lemma 13.8 (Codazzi-type identity for χ). There exist smooth functions, all schematically denoted by “f,” such that the
following identity holds:

div/ χ−d/ trg/χ = f(P≤1γ,d/ x⃗ )Pγ+ f(γ,d/ x⃗ )P 2Ψ⃗ . (13.15)

Proof. We view both sides of (3.49a) as a symmetric type
(0
2
)
ℓt,u-tangent tensorfield such that the components of the

identity with respect to the geometric coordinates (x2,x3) take the following form χAB = gab ∂
∂xA

La⊗ ∂
∂xB

xb + · · · , where
· · · denotes terms that do not depend on the derivatives of L. For clarity, we note that the first, third, and fourth product
on RHS (3.49a) are not symmetric, even though the sum of all terms on RHS (3.49a) must be symmetric. We apply ∇/ B
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(which, in view of Def. 3.11 and the symmetry of χAB, is the same as the operator div/ ) to the identity, and we apply ∇/ A
to (3.49b) and note that the RHSs of the resulting equations are ℓt,u-tangent one-forms such that the terms involving the
second-order derivatives of L have the A-components gab(g/−1)BC[∇/ 2

BAL
a]d/ Cxb , i.e., the second-order-in-L terms agree

(and therefore cancel from LHS (13.15)). Also using Lemmas 9.1 and 9.7, we conclude (13.15). □

Lemma 13.9 (Pointwise commutator estimates for χ tied to a Codazzi-type identity). Let 1 ≤ N ≤ Ntop. Then the

following pointwise estimates hold on (n)M[τ0,τBoot),[−U1,U2], where on LHS (13.16), PN−1 denotes the same order N − 1
string of commutation vectorfields in each of the two terms:∣∣∣div/ L/N−1

P χ−d/ PN−1trg/χ
∣∣∣
g/
≲

∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+
∣∣∣P [1,N ]γ

∣∣∣ . (13.16)

Proof. Throughout the proof, we silently use the comparison estimates in (13.2). We apply L/N−1
P to (13.15). By Lemma 3.13,

the operator L/N−1
P commutes under the operators d/ on each side of (13.15). This yields the main term d/ PN−1trg/χ on

LHS (13.16), while the bootstrap assumptions and Lemma 9.7 yield that
∣∣∣L/N−1
P RHS (13.15)

∣∣∣
g/
≲ RHS (13.16) as desired. Hence,

to complete the proof, we must show that
∣∣∣L/N−1
P div/ χ− div/ L/N−1

P χ
∣∣∣
g/
≲ RHS (13.16). To this end, we apply L/N−1

P div/ and

div/ L/N−1
P to (3.49a), thereby obtaining expressions for L/N−1

P div/ χ and div/ L/N−1
P χ respectively. Unlike in the proof of (13.15),

here we are viewing div/ χ to be ∇/ AχAB, i.e., the covariant derivative acts on the first slot of χ. Similarly, in the expression
div/ L/N−1

P χ, it is understood that the covariant derivative acts on the first slot of L/N−1
P χ. As above, Lemmas 3.13, 5.5 and

9.7 and the bootstrap assumptions imply that all terms except the principal ones, i.e., the ones involving the order N + 1
derivatives of Li , are bounded in the norm | · |g/ by ≲ RHS (13.16). The principal terms in L/N−1

P div/ χ and div/ L/N−1
P χ are

respectively gab(PN−1∆/ La)d/ xb and gab(∆/ PN−1La)d/ xb . Hence, using Lemma 9.7, the commutator estimate (13.6a), and
the bootstrap assumptions, we see that the principal terms in the difference gab(PN−1∆/ La)d/ xb − gab(∆/ PN−1La)d/ xb

cancel and that
∣∣∣L/N−1
P div/ χ− div/ L/N−1

P χ
∣∣∣
g/
≲ RHS (13.16) as desired. □

13.9. Pointwise estimates for the inhomogeneous terms in the commuted equations. In this section, we derive
pointwise estimates for the derivatives of the inhomogeneous terms in the equations of Theorem 2.15. These pointwise
estimates are straightforward to derive and serve as preliminary ingredients in our derivation of energy estimates. We
remark that we will derive pointwise estimates for the commutator error terms later in the article. The commutator
estimates for the wave equations are particularly difficult, and we derive them in Sect. 22, after we derive sharp estimates
for µ (see Sect. 18.1).

13.9.1. Pointwise estimates for the derivatives of the null forms.

Lemma 13.10 (Pointwise estimates for the derivatives of the null forms). Let N ≤Ntop. The PN -derivatives of the product
of µ and the terms defined in (2.26a)–(2.27e) satisfy the following pointwise estimates on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣∣PN (µMi

(C))
∣∣∣∣ , ∣∣∣PN (µM(D))

∣∣∣ ≲ ∣∣∣P≤N+1(Ω,S)
∣∣∣

+ ε

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ , (13.17a)

∣∣∣∣PN (µQi
(v))

∣∣∣∣ , ∣∣∣PN (µQ(±))
∣∣∣ , ∣∣∣PN (µQ(ρ))

∣∣∣ ≲ ε

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣+
∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ , (13.17b)∣∣∣∣PN (µQi
(C))

∣∣∣∣ , ∣∣∣PN (µQ(D))
∣∣∣ ≲ ∣∣∣P≤NS∣∣∣

+ ε

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ . (13.17c)

Proof. We differentiate the identities of Lemma 9.3 with PN , use the bootstrap assumptions, and use the commutator

estimate (13.6b) so that on the RHSs of the estimates, all terms featuring any X̆-differentiation of Ψ⃗ are such that the X̆
operator acts last. □

13.9.2. Pointwise estimates for the derivatives of the linear inhomogeneous terms.

Lemma 13.11 (Pointwise estimates for the derivatives of the linear inhomogeneous terms). Let N ≤ Ntop. Consider the
product of µ and the terms C,D-involving terms on RHSs (2.22a)–(2.22d), as well as the product of µ and the terms defined in
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(2.28a)–(2.28h). Then the PN -derivatives of these terms satisfy the following pointwise estimates on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣∣∣∣PN
(
µc2 exp(2ρ)Ci , µ

{
F;sc

2 exp(2ρ)− cexp(ρ)
p;s

ϱ

}
D
)∣∣∣∣∣∣ ,∣∣∣∣∣∣PN

(
µexp(ρ)

p;s

ϱ
D, µc2 exp(2ρ)D

)∣∣∣∣∣∣
≲ µ

∣∣∣PN (C,D)
∣∣∣+

∣∣∣P≤N−1(C,D)
∣∣∣+ ε

∣∣∣∣P [1,N ]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ ,
(13.18a)

∣∣∣∣PN (
µLi(v), µL(±), µL(ρ), µL(s), µL

i
(Ω), µL

i
(S), µL(divΩ), µL

i
(C)

)∣∣∣∣
≲

∣∣∣P≤N (Ω,S)
∣∣∣+ ε

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ . (13.18b)

Proof. We apply the same reasoning used in the proof of Lemma 13.10 to the identities provided by Lemma 9.4. □

13.9.3. Pointwise estimates for the derivatives of the inhomogeneous terms in the commuted wave equations.

Corollary 13.12 (Pointwise estimates for the derivatives of the inhomogeneous terms in the commuted wave equations).

Let Ψ⃗
def
= (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4)

def
= (R(+),R(−),v

2,v3, s) be the solutions to the covariant wave equations (2.22). We denote
the product of µ and the RHS of the covariant wave equation satisfied by Ψι by Gι, i.e., µ2gΨι = Gι. Let 1 ≤ N ≤ Ntop.

Then the following pointwise estimates hold on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣PNGι∣∣∣ ≲ µ
∣∣∣PN (C,D)

∣∣∣+
∣∣∣P≤N−1(C,D)

∣∣∣+
∣∣∣P≤N (Ω,S)

∣∣∣+ ε

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣+
∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ . (13.19)

Proof. The corollary is a direct consequence of the estimates (13.17b) and (13.18a)–(13.18b).
□

14. Embeddings of X̆
[τ0,τBoot)
−n and the flow map of (n)W̆

We continue to work under the assumptions of Sect. 13.2. In this section, we derive quantitative control over how the

level-sets X̆
[τ0,τBoot)
−n (see definition (4.7b)) are embedded in the spacetime region (n)M[τ0,τBoot),[−U1,U2]. We also derive

quantitative control of the flow map of (n)W̆ . We will use these results in Sect. 15 to demonstrate the viability of the
“transversal initial value" problem (4.4a)–(4.4b) that we used to construct the rough time function (n)τ; see Remark 15.2
concerning some subtleties tied to the regularity theory in the construction.

14.1. Embedded sub-manifolds and quantitative control over the embeddings.

Lemma 14.1 (Embedded sub-manifolds and quantitative control over the embeddings). Let Tm,−n(x2,x3) andUm,−n(x2,x3)
be the functions on T

2 from Sect. 12.2.4. Then for m ∈ (mBoot,m0], we have:

∥Tm,−n∥W 2,∞(T2), ∥Um,−n∥W 2,∞(T2) ≤ C, (14.1a)∥∥∥∥∥∥
(
∂

∂x2Tm,−n,
∂

∂x3Tm,−n

)∥∥∥∥∥∥
W 1,∞(T2)

,

∥∥∥∥∥∥
(
∂

∂x2Um,−n,
∂

∂x3Um,−n

)∥∥∥∥∥∥
W 1,∞(T2)

≤ Cε1/2. (14.1b)

Moreover,

∂
∂m

Tm,−n =
1

∂
∂tµ−

( ∂
∂uµ) ∂∂t X̆µ

∂
∂u X̆µ

, (14.2)

and there is a C > 1 such that following estimate holds:

−C < inf
(m,x2,x3)∈(mBoot,m0]×T2

∂
∂m

Tm,−n(x2,x3) ≤ sup
(m,x2,x3)∈(mBoot,m0]×T2

∂
∂m

Tm,−n(x2,x3) < − 1
C
. (14.3)

X̆
[τ0,τBoot)
−n is a graph. Let

(n)H(mBoot,m0]
def
=

{
(t,x2,x3) ∈R×T2 | Tm0,−n(x2,x3) ≤ t < TmBoot,−n(x2,x3)

}
. (14.4)
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Then (n)H(mBoot,m0] is precompact, and there exists an embedding
(n)H : (n)H(mBoot,m0] → (n)M[τ0,τBoot),[− 3

4Uj,
3
4Uj] of

the form (n)H(t,x2,x3) =
(
t, (n)h(t,x2,x3),x2,x3

)
such that (n)H ∈ W 2,∞(int

(
(n)H(mBoot,m0])

)
and such that (n)H is a

diffeomorphism from (n)H(mBoot,m0] onto X̆
[τ0,τBoot)
−n , where:

int
(

(n)H(mBoot,m0]

)
def
=

{
(t,x2,x3) ∈R×T2 | Tm0,−n(x2,x3) < t < TmBoot,−n(x2,x3)

}
(14.5)

is the interior of (n)H(mBoot,m0]. In particular, relative to the geometric coordinates (t,u,x2,x3), we have:

X̆
[τ0,τBoot)
−n =

{(
t, (n)h(t,x2,x3),x2,x3

)
∈ (n)M[τ0,τBoot),[−U1,U2] | (t,x2,x3) ⊂ (n)H(mBoot,m0]

}
. (14.6)

Moreover, (n)H is C1,1 on every compact subset of (n)H(mBoot,m0], and the following estimates hold:∥∥∥(n)H
∥∥∥
W 2,∞(int((n)H(mBoot ,m0]))

≤ C, (14.7a)∥∥∥∥∥∥
(
∂

∂x2
(n)h,

∂

∂x3
(n)h

)∥∥∥∥∥∥
W 1,∞(int((n)H(mBoot ,m0]))

≤ Cε1/2. (14.7b)

Finally, on (n)H(mBoot,m0], the following estimate holds:

∂
∂t

(n)h = − LX̆µ ◦
(n)H

X̆X̆µ ◦ (n)H
+O(ε1/2). (14.8)

Proof. Throughout this proof, we silently use the soft bootstrap assumptions of Sect. 12.2.6, which guarantee our needed
qualitative regularity. When proving quantitative estimates, we will use the bootstrap assumptions of Sects. 12.3.1 and
12.3.2.

To derive the existence of the embedding of the form (n)H(t,x2,x3) =
(
t, (n)h(t,x2,x3),x2,x3

)
, we first note that by

(12.5), (12.6), and the inverse function theorem, the map (m,x2,x3)→
(
Tm,−n(x2,x3),x2,x3

)
on (mBoot,m0] ×T2 is a

diffeomorphism onto (n)H(mBoot,m0] whose inverse is of the form (t,x2,x3)→
(

(n)I(t,x2,x3),x2,x3
)
, where for any m′ ∈

(mBoot,m0], the map (t,x2,x3)→ (n)I(t,x2,x3) is C1,1 on
{
(t,x2,x3) ∈R×T2 | Tm0,−n(x2,x3) ≤ t ≤ Tm′ ,−n(x2,x3)

}
.

Thus, the desired embedding (n)H (into (n)M[τ0,τBoot),[− 3
4Uj,

3
4Uj] by (BA X̆

[τ0,τBoot)
−n − LOCATION)) is the composition of

the diffeomorphism (t,x2,x3)→
(

(n)I(t,x2,x3),x2,x3
)
with the embedding (n)E defined in (12.4).

We now prove (14.7a)–(14.7b) and (14.8). The estimate ∥(n)h∥L∞(int((n)H(mBoot ,m0])) ≤ C follows trivially from the fact that

(n)h
(

(n)H(mBoot,m0]

)
⊂ [−3

4Uj,
3
4Uj] (since (n)H

(
(n)H(mBoot,m0]

)
⊂ (n)M[τ0,τBoot),[− 3

4Uj,
3
4Uj]). To control the derivatives

of (n)h, we differentiate the equation [X̆µ]
(
t, (n)h(t,x2,x3),x2,x3

)
= −n (which holds since X̆µ|

X̆
[τ0 ,τBoot)
−n

= −n) with
∂
∂t ,

∂
∂x2 ,

∂
∂x3 , use the chain rule to algebraically solve for the derivatives of (n)h relevant for the estimates (14.7a)–

(14.7b) and (14.8), and then use the bootstrap assumptions. More precisely, we use the following consequences of
Lemmas 9.1 and 5.5 and the bootstrap assumptions: L = ∂

∂t + O(ε1/2) ∂
∂x2 + O(ε1/2) ∂

∂x3 , X̆ = ∂
∂u + O(ε1/2) ∂

∂x2 +

O(ε1/2) ∂
∂x3 , ∥X̆µ∥W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≤ C ,

∥∥∥∥( ∂
∂x2 X̆µ,

∂
∂x3 X̆µ

)∥∥∥∥
W 1,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≤ Cε1/2, ∂

∂t X̆µ = LX̆µ+

O(ε1/2), ∂
∂u X̆µ = X̆X̆µ+O(ε1/2), and ∂

∂u X̆µ ≈ 1 along X̆
[τ0,τBoot)
−n (see (BA X̆

[τ0,τBoot)
−n − LOCATION) and (BA µ cnvx)).

We have therefore proved (14.7a)–(14.7b) and (14.8).
We now prove (14.1a)–(14.1b). The estimate ∥Tm,−n∥L∞(T2) ≤ C follows trivially from (BA t − SIZE), as does the

precompactness of (n)H(mBoot,m0]. The estimate ∥Um,−n∥L∞(T2) ≤ C follows trivially from (BA T̆m,−n − LOCATION),
which implies that Um,−n(T2) ⊂ [−3

4Uj,
3
4Uj]. To control the derivatives of Tm,−n and Um,−n that are relevant for

(14.1a)–(14.1b), we implicitly differentiate the identities (µ, X̆µ) ◦
(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
= (m,−n) with

∂
∂x2 and ∂

∂x3 and argue as in the proof of (14.7a)–(14.7b), using in addition the fact that − ∂∂tµ ≈ 1 along X̆
[τ0,τBoot)
−n (see

(BA X̆
[τ0,τBoot)
−n − LOCATION) and (BA ∂

∂tµ neg)). We have therefore proved (14.1a)–(14.1b). Similarly, to prove (14.2)–(14.3),

we implicitly differentiate the identities (µ, X̆µ) ◦
(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
= (m,−n) with ∂

∂m and use the

bootstrap assumptions, including (BA ∂
∂tµ neg) and (BA µ cnvx).



96 Lecture notes on: The emergence of the singular boundary

To deduce that (n)H is C1,1 on every compact subset of (n)H(mBoot,m0], we first note that (12.6) implies that for any

compact subset K of (n)H(mBoot,m0], there is a m′ ∈ (mBoot,m0] and a compact set

(n)H[m′ ,m0]
def=

{
(t,x2,x3) ∈R×T2 | Tm0,−n(x2,x3) ≤ t ≤ Tm′ ,−n(x2,x3)

}
such that K ⊂ (n)H[m′ ,m0]. Since (12.5) implies that

(n)H[m′ ,m0] has a C
1 boundary,57 it is a standard Sobolev embedding

result (see [39, Theorem 5 in Section 5.6]) that W 1,∞
geo ((n)H(m′ ,m0)) ↪→ C0,1((n)H[m′ ,m0]), where by (12.6), (n)H(m′ ,m0)

def={
(t,x2,x3) ∈R×T2 | Tm0,−n(x2,x3) < t < Tm′ ,−n(x2,x3)

}
is the interior of (n)H[m′ ,m0]. Thus, in view of (14.7a), we

conclude that (n)H is C1,1 on (n)H[m′ ,m0] as desired. □

14.2. Properties of the flow map of (n)W̆ and the viability of the data-hypersurface X̆
[τ0,τBoot)
−n .

Lemma 14.2 (Properties of the flow map of (n)W̆ and the viability of the data-hypersurface X̆
[τ0,τBoot]
−n ).

Properties of the flow map of (n)W̆ . Let (n)W̆ be the vectorfield defined in (4.2), and recall that (n)W̆ τ = 0 and (n)W̆ u = 1.

Let (∆u,t,u,x2,x3)→ (n)ι∆u(t,u,x2,x3) denote the flow map of (n)W̆ , i.e., at each fixed (t,u,x2,x3) ∈ (n)M[τ0,τBoot),[−U1,U2],

the components of (n)ι∆u(t,u,x2,x3) solve the following ODE system initial value problem on the flow interval ∆u ∈
[−U1 −u,U2 −u]:

∂
∂∆u

(n)ι∆u(t,u,x2,x3) = (n)W̆ ◦ (n)ι∆u(t,u,x2,x3), (n)ι0(t,u,x2,x3) = (t,u,x2,x3). (14.9)

Then for each fixed τ ∈ [τ0,τBoot) and each pair u1,u2 ∈ [−U1,U2], (n)ιu2−u1
is a diffeomorphism from the rough

torus (n)̃ℓτ,u1
(defined in (4.6b)) onto the rough torus (n)̃ℓτ,u2

. In particular, the integral curves of (n)W̆ thread (n)̃Σ
[−U1,U2]
τ .

Moreover, for every fixed τ ∈ [τ0,τBoot), each integral curve of (n)W̆ passes through precisely one point on the µ-adapted
torus T̆−τ,−n defined in (4.3c).
Moreover, with dgeo denoting the differential with respect to the geometric coordinates, we have the following bounds,

where the implicit constants in (14.11) are independent of all ∆u such that |∆u| ≤U1 +U2:

sup
|∆u|≤U1+U2

∥dgeo(n)ι∆u∥W 2,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2)∩(n)M(τ0 ,τBoot),(−U1−∆u,U2−∆u)) ≤ C, (14.10)

det
(
dgeo

(n)ι∆u
)
≈ 1 on (n)M[τ0,τBoot),[−U1,U2] ∩ (n)M[τ0,τBoot),[−U1−∆u,U2−∆u]. (14.11)

Estimates tied to the flow of X̆
[τ0,τBoot)
−n by (n)W̆ . Let (n)H : (n)H(mBoot,m0]→ (n)M[τ0,τBoot),[− 3

4Uj,
3
4Uj] be the embedding

of X̆
[τ0,τBoot)
−n from Lemma 14.1, which is of the form (n)H(t,x2,x3) =

(
t, (n)h(t,x2,x3),x2,x3

)
, and let (n)F be the map and

set defined by:

(n)F(∆u,t,x2,x3)
def
= (n)ι∆u ◦ (n)H(t,x2,x3), (14.12)

(n)F
def
=

{
(∆u,t,x2,x3) ∈R×R×T2 | (t,x2,x3) ∈ (n)H(mBoot,m0] and ∆u ∈

[
−U1 − (n)h(t,x2,x3),U2 − (n)h(t,x2,x3)

]}
.

(14.13)

Then (n)F : (n)F → (n)M[τ0,τBoot),[−U1,U2] is a diffeomorphism such that (n)F and its inverse function (n)F−1 satisfy the
following bounds:

∥(n)F∥W 2,∞(int((n)F )) ≤ C, (14.14)

∥(n)F−1∥W 2,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2)) ≤ C, (14.15)

where:

int
(

(n)F
)

=
{
(∆u,t,x2,x3) ∈R×R×T2 | (x2,x3) ∈ T2, Tm0,−n(x2,x3) < t < TmBoot,−n(x2,x3),

and ∆u ∈
(
−U1 − (n)h(t,x2,x3),U2 − (n)h(t,x2,x3)

)} (14.16)

57In fact, the boundary is C1,1 , though we do not need this fact here.
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is the interior of (n)F , and Tm0,−n and TmBoot,−n are the functions appearing in (14.6). Finally, (n)F is C1,1 on every

compact subset of (n)F , and (n)F−1 is C1,1 on every compact subset of (n)M[τ0,τBoot),[−U1,U2].

Proof. Throughout this proof, we silently use the soft bootstrap assumptions of Sect. 12.2.6, which guarantee sufficient
qualitative regularity. For quantitative estimates, we will use the bootstrap assumptions of Sects. 12.3.1 and 12.3.2.

From (BA µ− TORI STRUCTURE), (BA T̆m,−n − LOCATION), and the facts that (n)W̆ (n)τ = 0 and (n)W̆ u = 1, it follows

that for each fixed τ ∈ [τ0,τBoot), every integral curve of (n)W̆ in (n)̃Σ
[−U1,U2]
τ must intersect T̆−τ,−n at one or more points

in (n)̃Σ
[− 3

4Uj,
3
4Uj]

τ . Recalling that µ|T̆−τ,−n = −τ and (n)W̆µ|T̆−τ,−n = 0, and using the transversal convexity bootstrap

assumption (BA µ cnvx) for (n)W̆ (n)W̆µ, we see that the intersection occurs at a unique point.
Next, we differentiate the evolution equation in (14.9) and use the chain rule to deduce that dgeo

(n)ι∆u is the solution
to the following linear ODE system initial value problem:

∂
∂∆u

dgeo
(n)ι∆u = (dgeo

(n)W̆ ) ◦ (n)ι∆u(t,u,x2,x3) · dgeo(n)ι∆u(t,u,x2,x3), (14.17)

dgeo
(n)ι0 = diag(1,1,1,1). (14.18)

Definition (4.2), Lemma 5.5, Prop. 9.1, and the bootstrap assumptions imply that:∥∥∥∥((n)W̆ t, (n)W̆ u, (n)W̆ 2, (n)W̆ 3
)∥∥∥∥
W 3,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≤ C (14.19)

and thus:

∥dgeo(n)W̆ ∥W 2,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2)) ≤ C, (14.20)

where we are viewing dgeo
(n)W̆ to be the Jacobian matrix of the map (t,u,x2,x3)→

(
(n)W̆ t, (n)W̆ u, (n)W̆ 2, (n)W̆ 3

)
. We

now integrate (14.17) with respect to ∆u starting from 0 and use the initial condition (14.18), the estimate (14.20), Grönwall’s
inequality, and the fact that |∆u| ≤U1 +U2 in the region under study, thereby concluding (14.10).

The estimate (14.11) follows from a similar argument based on the linear ODE system:

∂
∂∆u

lndet
(
dgeo

(n)ι∆u
)

= tr(dgeo
(n)W̆ ) ◦ (n)ι∆u(t,u,x2,x3), det

(
dgeo

(n)ι0
)

= 1 (14.21)

and the estimate tr(dgeo
(n)W̆ ) = O(ε1/2), which is a consequence of definition (4.2), Lemma 5.5, Prop. 9.1, and the

bootstrap assumptions.
The estimate (14.14) follows from (14.7a), (14.10), the chain rule, and finally from using the equation (14.9) and the

aforementioned estimate ∥
(

(n)W̆ t, (n)W̆ u, (n)W̆ 2, (n)W̆ 3
)
∥W 3,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≤ C to control the partial derivatives

of (n)F with respect to ∆u.
Next, we highlight that the map ∆u → (n)ι∆u(t,u,x2,x3) is just a parameterization of the integral curve of

(n)W̆ that passes through the point (t,u,x2,x3). Moreover, we recall that we have already shown that every in-

tegral curve of (n)W̆ in (n)̃Σ
[−U1,U2]
τ must intersect X̆

[τ0,τBoot)
−n at a unique point (more precisely, a point in the

torus T̆−τ,−n, which is contained in X̆
[τ0,τBoot)
−n ), where X̆

[τ0,τBoot)
−n is the image of the set (n)H(mBoot,m0] under

the embedding (n)H (see Lemma 14.1). It follows that (n)F is a bijection from (n)F onto (n)M[τ0,τBoot),[−U1,U2].

Thus, to conclude that (n)F is a diffeomorphism on (n)F , it remains only for us to show that its Jacobian ma-
trix d(∆u,t,x2,x3)

(n)F has non-vanishing determinant. To this end, we note that the standard theory of flow maps,

the identity (n)W̆ ◦ (n)ι∆u(t,u,x2,x3) = [dgeo(n)ι∆u(t,u,x2,x3)] · (n)W̆ (t,u,x2,x3), and the chain rule yield the iden-

tity d(∆u,t,x2,x3)
(n)F(∆u,t,x2,x3) = [(dgeo(n)ι∆u) ◦ (n)H(t,x2,x3)] · (n)M(t,x2,x3), where (n)M is the 4 × 4 matrix-

valued function on (n)H(mBoot,m0] whose first column is
(

(n)W̆ t, (n)W̆ u, (n)W̆ 2, (n)W̆ 3
)⊤
◦ (n)H and whose last three

columns form the Jacobian matrix d(t,x2,x3)
(n)H . This implies, in particular, that det

(
d(∆u,t,x2,x3)

(n)F(∆u,t,x2,x3)
)

=

det
(
(dgeo(n)ι∆u) ◦ (n)H

)
·det

(
(n)M(t,x2,x3)

)
. Thus, we see from (14.11) that to prove:

|det
(
d(∆u,t,x2,x3)

(n)F
)
| ≈ 1, on the domain (n)F , (14.22)
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we need only to show that |det (n)M | ≈ 1 on the domain (n)H(mBoot,m0]. To this end, we use Lemma 14.1 (in particular

(14.7b) and (14.8)), the identities (see (4.2)) (n)W̆ t = φn
Lµ ,

(n)W̆ u = 1, and (n)W̆ xA = µXA + φn
LµL

A, Prop. 9.1, and the
bootstrap assumptions to deduce that:

(n)M =


[φ n

Lµ ] ◦ (n)H 1 0 0

1 − LX̆µ◦
(n)H

X̆X̆µ◦(n)H
+ ∗ ∗ ∗

∗ 0 1 0
∗ 0 0 1

 , (14.23)

where “∗” denotes O(ε1/2) quantities. From (14.23) and the bootstrap assumptions (notably (BA µ cnvx)), we see that
−C ≤ det (n)M = − 1

C . We have thus shown that (n)F is a diffeomorphism from (n)F onto (n)M[τ0,τBoot),[−U1,U2].

(14.15) follows from differentiating the identity (n)F ◦ (n)F−1(t,u,x2,x3) = (t,u,x2,x3) and using (14.14), (14.22), and the
chain rule.

To show that (n)F is C1,1 on every compact subset of (n)F , we first note that arguments similar to the ones we
used to prove (14.10), but based on the soft regularity assumptions of Sect. 12.2.6, imply that (n)ι∆u is C2,1 on every com-
pact subset of

{
(∆u,t,u,x2,x3) | (t,u,x2,x3) ∈ (n)M[τ0,τBoot),[−U1,U2] ∩ (n)M[τ0,τBoot),[−U1−∆u,U2−∆u], |∆u| ≤U1 +U2

}
.

Since Lemma 14.1 shows that (n)H is C1,1 on every compact subset of (n)H(mBoot,m0], the desired C1,1 result for
(n)F follows from definition (14.12) and the fact that the composition of two C1,1 maps is also C1,1. The fact
that (n)F−1 is C1,1 on every compact subset of (n)M[τ0,τBoot),[−U1,U2] then follows from differentiating the identity
(n)F ◦ (n)F−1(t,u,x2,x3) = (t,u,x2,x3), using the C1,1 result for (n)F, and using the fact that diffeomorphisms map
compact subsets to compact subsets.

□

15. Estimates for the rough time function, continuous extensions, and various diffeomorphisms and homeomorphisms

We continue to work under the assumptions of Sect. 13.2. In this section, we use the results of Sect. 14 to derive
estimates for the rough time function (n)τ. We then show that the map (n)T (t,u,x2,x3) = ((n)τ,u,x2,x3) extends to
a diffeomorphism on the closure of (n)M[τ0,τBoot),[−U1,U2], which is (n)M[τ0,τBoot],[−U1,U2]. Next, we show that various

solution variables extend to the compact set (n)M[τ0,τBoot],[−U1,U2] as functions with substantial Hölder regularity, which

we will exploit throughout the paper. Finally, we establish related results for the map (n)Φ((n)τ,u,x2,x3) = (µ, X̆µ,x2,x3)
from Def. 5.1.

15.1. Transport equation solutions that are smoother than the data-hypersurface. We will use the following lemma
to derive W 3,∞

geo ((n)M(τ0,τBoot),(−U1,U2)) estimates for the rough time function. There is one nonstandard aspect that we
carefully handle: the initial data are smoother than the hypersurface on which they are posed.

Lemma 15.1 (Transport equation solutions that are smoother than the data-hypersurface). Consider the initial value
problem for a scalar function ϕ:

(n)W̆ϕ = 0, ϕ|
X̆

[τ0 ,τBoot)
−n

= A |
X̆

[τ0 ,τBoot)
−n

, (15.1)

and assume that A ∈ W 3,∞
geo ((n)M(τ0,τBoot),(−U1,U2)) is an “ambient” spacetime function of the geometric coordinates

satisfying ((n)W̆A )|
X̆

[τ0 ,τBoot)
−n

= 0, where the hypersurface X̆
[τ0,τBoot)
−n is W 2,∞ (as was shown in Lemma 14.1 via the

embedding (n)H ). Then there exists a unique solution ϕ ∈W 3,∞
geo ((n)M(τ0,τBoot),(−U1,U2)) satisfying the following estimates:

∥ϕ∥W 3,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

≲ ∥A ∥W 3,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

, (15.2a)∥∥∥∥∥∥
(
∂

∂x2ϕ,
∂

∂x3ϕ

)∥∥∥∥∥∥
W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

≲

∥∥∥∥∥∥
(
∂

∂x2 A ,
∂

∂x3 A

)∥∥∥∥∥∥
W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

. (15.2b)

Remark 15.2 (The solution is more regular than the data-hypersurface). The main point of the lemma is that the solution

has the same regularity as A , even though the embedded data-hypersurface X̆
[τ0,τBoot)
−n is one degree less regular, that

is, the embedding (n)H from Lemma 14.1 satisfies (n)H ∈W 2,∞(int((n)H(mBoot,m0])).
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Proof. We prove only (15.2a) since (15.2b) can be proved using similar arguments.
Throughout the proof, we silently use the fact that functions f ∈W 1,∞

geo ((n)M(τ0,τBoot),(−U1,U2)), are locally Lipschitz and

thus have (by Rademacher’s theorem) a.e. differentiable locally Lipschitz traces along the W 2,∞ hypersurface X̆
[τ0,τBoot)
−n

such that ∥f ∥
W 1,∞(int(X̆[τ0 ,τBoot)

−n ))
≲ ∥f ∥W 1,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
.

By Lemma 14.2, (15.1) is equivalent to the following ODE initial value problem:

∂
∂∆u

(
ϕ ◦ (n)F(∆u,t,x2,x3)

)
= 0, (15.3)

ϕ ◦ (n)F(0, t,x2,x3) = A ◦ (n)H(t,x2,x3), (15.4)

where (n)F is the diffeomorphism from (n)F onto (n)M[τ0,τBoot),[−U1,U2] from the lemma. The solution to (15.3)–(15.4)

is ϕ ◦ (n)F(∆u,t,x2,x3) = A ◦ (n)H(t,x2,x3). From this formula, the assumptions of Lemma 15.1, (14.7a), and (14.14), it
immediately follows that ϕ ◦ (n)F ∈W 2,∞(int((n)F )), where we stress that the norm on W 2,∞(int((n)F )) is with respect
to the coordinates (∆u,t,x2,x3). Composing ϕ ◦ (n)F with (n)F−1 (in particular, using that (n)F and (n)F−1 are W 2,∞

diffeomorphisms by (14.14) and (14.15)), we see that ∥ϕ∥W 2,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

≲ ∥A ∥W 2,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

.

To complete the proof, it suffices for us to show:

∂⃗geoϕ ∈W 2,∞
geo ((n)M(τ0,τBoot),(−U1,U2)), ∥∂⃗geoϕ∥W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≲ ∥A ∥W 3,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
, (15.5)

where ∂⃗geoϕ
def=

(
∂
∂tϕ,

∂
∂uϕ,

∂
∂x2ϕ,

∂
∂x3ϕ

)
is the array of geometric coordinate partial derivatives of ϕ. Due to the limited

regularity (n)H ∈ W 2,∞(int((n)H(mBoot,m0])), the desired regularity of ϕ cannot be inferred directly from the formula

ϕ ◦ (n)F(∆u,t,x2,x3) = A ◦ (n)H(t,x2,x3). Instead, we commute (15.1) with the geometric coordinate partial derivative

vectorfields to deduce that ∂⃗geoϕ satisfies the following initial value problem:

(n)W̆ ∂⃗geoϕ = I⃗ · ∂⃗geoϕ, ∂⃗geoϕ|
X̆

[τ0 ,τBoot)
−n

= ∂⃗geoA |
X̆

[τ0 ,τBoot)
−n

, (15.6)

where schematically, we have I⃗ = dgeo(n)W̆ (i.e., I⃗ schematically comprises the first partial derivatives of the components

of (n)W̆ in the geometric coordinate system), the validity of the initial condition on RHS (15.6) relies on the compatibility

condition assumption ((n)W̆A )◦(n)H = 0 and the fact that (n)W̆ is transversal to X̆
[τ0,τBoot)
−n (by the bootstrap assumption

(BA µ cnvx) for (n)W̆ X̆µ and (BA X̆
[τ0,τBoot)
−n − LOCATION)), and by (14.20), we have ∥I⃗∥W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≲ 1. As

in (15.3)–(15.4), we can rewrite (15.6) as the following linear ODE system in the unknowns (∂⃗geoϕ) ◦ (n)F(∆u,t,x2,x3):

∂
∂∆u

[
(∂⃗geoϕ) ◦ (n)F(∆u,t,x2,x3)

]
=

[
I⃗ ◦ (n)F(∆u,t,x2,x3)

]
· (∂⃗geoϕ) ◦ (n)F(∆u,t,x2,x3), (15.7)

(∂⃗geoϕ) ◦ (n)F(0, t,x2,x3) = (∂⃗geoA ) ◦ (n)H(t,x2,x3), (15.8)

where our assumptions on ∂⃗geoA and the regularity of (n)H imply that (∂⃗geoA )◦ (n)H ∈W 2,∞(int((n)H(mBoot,m0])) (here
(n)H(mBoot,m0] is the domain of (n)H ) with ∥(∂⃗geoA ) ◦ (n)H∥W 2,∞(int((n)H(mBoot ,m0]))

≲ ∥A ∥W 3,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

. The

standard theory of transport equations with W 2,∞(int((n)F )) coefficients yields that (15.7)–(15.8) has a unique solution

(which must be (∂⃗geoϕ) ◦ (n)F, where ϕ is the solution to (15.1)) satisfying (∂⃗geoϕ) ◦ (n)F ∈W 2,∞(int((n)F )). Moreover,

with the help of the above bound for ∥∂⃗geoA ∥W 2,∞(int((n)H(mBoot ,m0]))
, a standard argument based on commuting (15.7) up

to two times with respect to the partial derivatives in the coordinate system (∆u,t,x2,x3), integrating with respect to
∆u, applying Grönwall’s inequality, and using that |∆u| ≤U1 +U2 in the region under study yields the bound:∥∥∥∥(∂⃗geoϕ) ◦ (n)F

∥∥∥∥
W 2,∞((n)F )

≲ ∥A ∥W 3,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

{
1 + ∥I⃗ ◦ (n)F∥W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

}
. (15.9)

Finally, composing (∂⃗geoϕ)◦(n)F with (n)F−1, and using (14.14)–(14.15) as well as the bound ∥I⃗∥W 2,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

≲ 1

and the bound (15.9), we conclude (15.2a).
□
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15.2. Estimates for the rough time function and the change of variables map from adapted rough coordinates to
geometric coordinates. Using Lemma 15.1, we now derive estimates for the rough time function, the change of variables
map from geometric coordinates to adapted rough coordinates, and its inverse.

We start with the following simple lemma, which provides an identity for D(n)τ|
X̆

[τ0 ,τBoot)
−n

.

Lemma 15.3 (Identity for D(n)τ along X̆
[τ0,τBoot)
−n ). Recall that X̆

[τ0,τBoot)
−n is the truncated X̆µ-level-set defined in (4.7b).

With Dϕ denoting the spacetime gradient one-form of the scalar function ϕ, we have the following identity:

D(n)τ|
X̆

[τ0 ,τBoot)
−n

= −Dµ|
X̆

[τ0 ,τBoot)
−n

. (15.10)

Proof. The bootstrap assumptions of Sect. 12.2.4 imply that X̆
[τ0,τBoot)
−n is a hypersurface portion foliated by {T̆m,−n}m∈(mBoot,m0].

From these facts and (4.4b), it follows that (n)τ and −µ have the same derivatives in directions tangent to X̆
[τ0,τBoot)
−n .

Moreover, since definition (4.2) implies that (n)W̆µ|
X̆−n

= 0, we see from (4.4a) that along X̆
[τ0,τBoot)
−n , (n)τ and −µ have the

same (n)W̆ -derivative. Since (BA µ cnvx) and (BA X̆
[τ0,τBoot)
−n − LOCATION) imply that (n)W̆ is transversal to X̆

[τ0,τBoot)
−n ,

we conclude the desired identity (15.10). □

Lemma 15.4 (Estimates for (n)τ, (n)T , and (n)T −1). The following estimates hold.

Estimates for (n)τ: ∥∥∥(n)τ
∥∥∥
W 3,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≲ 1, (15.11a)∥∥∥∥∥∥

(
∂

∂x2
(n)τ,

∂

∂x3
(n)τ

)∥∥∥∥∥∥
W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

≲ ε1/2. (15.11b)

Moreover,

1
2
δ∗ ≤

∂
∂t

(n)τ ≤ 3
2
δ∗, on (n)M[τ0,τBoot),[−U1,U2], (15.12a)

1
2
δ∗ ≤ L(n)τ ≤ 3

2
δ∗, on (n)M[τ0,τBoot),[−U1,U2]. (15.12b)

Estimates for (n)T and (n)T −1: The following estimate holds, where (n)T is the change of variables map from geometric
coordinates to adapted rough coordinates defined in (5.2):∥∥∥(n)T

∥∥∥
W 3,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≲ 1. (15.13)

The following estimates hold, where dgeo
(n)T is the Jacobian matrix of (n)T :

det
(
dgeo

(n)T
)
≈ 1, on (n)M[τ0,τBoot),[−U1,U2], (15.14)∥∥∥[dgeo

(n)T ]−1
∥∥∥
W 2,∞((n)M[τ0 ,τBoot),[−U1 ,U2])

≤ C. (15.15)

In addition, the following estimate holds, where (n)T −1 is the change of variables map from adapted rough coordinates
to geometric coordinates and drough

(n)T −1 is its Jacobian matrix:

∂̃

∂̃τ
t = det

(
drough

(n)T −1
)
≈ 1, on [τ0,τBoot)× [−U1,U2]×T2. (15.16)

In addition, the following estimate holds:∥∥∥(n)T −1
∥∥∥
W 3,∞

rough((τ0,τBoot)×(−U1,U2)×T2)
≤ C. (15.17)

Finally, (n)T −1 extends to a C2,1([τ0,τBoot]× [−U1,U2]×T2) map satisfying the estimate:∥∥∥(n)T −1
∥∥∥
C2,1
rough([τ0,τBoot]×[−U1,U2]×T2)

≤ C. (15.18)
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Proof. Recall from Def. 4.5 that (n)W̆ (n)τ = 0 and (n)τ|
X̆

[τ0 ,τBoot)
−n

= −µ|
X̆

[τ0 ,τBoot)
−n

. Hence, (15.11a) follows from applying

Lemma 15.1 with A = −µ and the bound ∥µ∥W 3,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

≲ 1, which follows from Lemma 5.5, Prop. 9.1, and

the bootstrap assumptions.

Similarly, (15.11b) follows from (15.2b) and the bound
∥∥∥∥( ∂
∂x2 µ,

∂
∂x3 µ

)∥∥∥∥
W 2,∞

geo ((n)M(τ0 ,τBoot),(−U1 ,U2))
≲ ε1/2, which follows

from Lemma 5.5, Prop. 9.1, and the bootstrap assumptions.
(15.13) follows from (15.11a) and the definition of (n)T .
To prove (15.12a) and (15.12b), we first commute the equation (n)W̆ (n)τ = 0 with L to obtain the transport equation

(n)W̆ L(n)τ = [(n)W̆ ,L](n)τ. Using (4.2), Prop. 13.5, the bootstrap assumptions, and (15.11b), we see that the source term can
be pointwise bounded on (n)M[τ0,τBoot),[−U1,U2] as follows:

∣∣∣[(n)W̆ ,L](n)τ
∣∣∣ ≲ ε1/2. Moreover, since Lemma 15.3 implies that

L(n)τ|
X̆

[τ0 ,τBoot)
−n

= −Lµ|
X̆

[τ0 ,τBoot)
−n

, we can use the bootstrap assumptions (BA Lµ neg) and (BA X̆
[τ0,τBoot)
−n − LOCATION)

to deduce that −5
4δ∗ ≤ −L

(n)τ|
X̆

[τ0 ,τBoot)
−n

≤ −3
4δ∗. Hence, recalling that (n)W̆ u = 1, we can integrate the transport

equation for L(n)τ starting from the (n)W̆ -transversal data-hypersurface X̆
[τ0,τBoot)
−n (see (BA µ cnvx)) and use the fact that

|u| ≤U1 +U2 ≤ C on the region under study to conclude that:

−5
4
δ∗ −Cε1/2 ≤ min

(n)M[τ0 ,τBoot),[−U1 ,U2]

−L(n)τ ≤ max
(n)M[τ0 ,τBoot),[−U1 ,U2]

−L(n)τ ≤ −3
4
δ∗ +Cε1/2, (15.19)

which yields (15.12b). Finally, using (15.19), the identity ∂
∂t

(n)τ = L(n)τ − LA ∂
∂xA

(n)τ, and the bound
∣∣∣LA ∂

∂xA
(n)τ

∣∣∣ ≲ ε1/2

implied by the bootstrap assumptions and (15.11b), we conclude (15.12a).
(15.14) now follows from (15.12a) and the simple identity ∂

∂t
(n)τ = det

(
dgeo

(n)T
)
, which follows easily from the

definition of (n)T .
(15.15) now follows from (15.13) and (15.14).
The “=” in (15.16) follows easily from the definition of (n)T . The “≈” in (15.16) follows from the identity

det
(
[drough

(n)T −1] ◦ (n)T
)

=
(
det[dgeo

(n)T ]
)−1

and (15.14).
(15.17) follows from differentiating (up to two times, with the adapted rough coordinate partial derivative vectorfields)

the identity drough
(n)T −1 = [dgeo(n)T ]−1 ◦ [(n)T −1] and using (BA t − SIZE), (15.15), and the chain rule.

(15.18) follows from (15.17), and the following Sobolev embedding result for scalar functions f (see the proof of [39, Theo-
rem 5 in Section 5.6]), which relies on the convexity of the domain (τ0,τBoot)×(−U1,U2)×T2: ∥f ∥C0,1

rough([τ0,τBoot]×[−U1,U2]×T2) ≤
C∥f ∥W 1,∞

rough((τ0,τBoot)×(−U1,U2)×T2).

□

In the next lemma, we continue our analysis of the change of variables map (n)T . More precisely, we exhibit its prop-
erties on the closure of (n)M[τ0,τBoot),[−U1,U2]. We also derive the quasi-convexity of the closure of (n)M(τ0,τBoot),(−U1,U2)
and, as a consequence, prove a standard Sobolev embedding result.

Lemma 15.5 (Properties of (n)T on the closure of (n)M[τ0,τBoot),[−U1,U2] and quasi-convexity). The following results hold.

1. (n)M[τ0,τBoot),[−U1,U2] is precompact in the topology of the geometric coordinates (t,u,x2,x3).
2. The change of variables map (n)T (t,u,x2,x3) = ((n)τ,u,x2,x3) extends to a C2,1 diffeomorphism on the closure

of (n)M[τ0,τBoot),[−U1,U2], which we denote by cl
(

(n)M[τ0,τBoot),[−U1,U2]

)
. Moreover, cl

(
(n)M[τ0,τBoot),[−U1,U2]

)
=

(n)M[τ0,τBoot],[−U1,U2], and
(n)T

(
(n)M[τ0,τBoot],[−U1,U2]

)
= [τ0,τBoot]× [−U1,U2]×T2.

3. The following estimates hold for the extended maps:

1
2
δ∗ ≤

∂
∂t

(n)τ ≤ 3
2
δ∗, on (n)M[τ0,τBoot],[−U1,U2]. (15.20)

4.

∂̃

∂̃τ
t = det

(
drough

(n)T −1
)
≈ 1, on [τ0,τBoot]× [−U1,U2]×T2, (15.21)
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5. ∥∥∥(n)T
∥∥∥
C2,1
geo ((n)M[τ0 ,τBoot],[−U1 ,U2])

≤ C, (15.22)∥∥∥(n)T −1
∥∥∥
C2,1
rough([τ0,τBoot]×[−U1,U2]×T2)

≤ C, (15.23)∥∥∥∥∥∥
(
∂

∂x2
(n)τ,

∂

∂x3
(n)τ

)∥∥∥∥∥∥
C1,1
geo ((n)M[τ0 ,τBoot],[−U1 ,U2])

≤ Cε1/2. (15.24)

6. (Quasi-convexity of (n)M(τ0,τBoot),(−U1,U2)). For every pair of points q1,q2 ∈ (τ0,τBoot)×(−U1,U2)×T2, we have:

distflat
(

(n)T −1(q1), (n)T −1(q2)
)
≈ distflat(q1,q2), (15.25)

where distflat(q1,q2) is the standard Euclidean distance between q1 and q2 in the flat space Rτ ×Ru ×T2.
Moreover, (n)M(τ0,τBoot),(−U1,U2) is quasi-convex.

58 That is, every pair of points p1,p2 ∈ (n)M(τ0,τBoot),(−U1,U2) is

connected by a C1
geo curve in

(n)M(τ0,τBoot),(−U1,U2) whose length with respect to the standard flat Euclidean metric

on geometric coordinate space Rt ×Ru ×T2 is ≤ Cdistflat(p1,p2).
7. (Sobolev embedding). There is a constant C > 0 that is independent of τBoot such that the following Sobolev
embedding result holds for scalar functions f on (n)M(τ0,τBoot),(−U1,U2):

∥f ∥C0,1
geo ((n)M[τ0 ,τBoot],[−U1 ,U2])

≤ C∥f ∥W 1,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

. (15.26)

8. ((n)̃Σ
[−U1,U2]
τ is a graph). For τ ∈ [τ0,τBoot], there exists a function tτ,n : [−U1,U2]×T2 → R, depending on τ

and n, such that:

∥tτ,n∥C2,1([−U1,U2]×T2) ≤ C (15.27)

and such that relative to the geometric coordinates, we have:

(n)̃Σ
[−U1,U2]
τ =

{
(t,u,x2,x3) | t = tτ,n(u,x2,x3), (u,x2,x3) ∈ [−U1,U2]×T2

}
. (15.28)

Proof. In (15.18) and just above it, we showed that (n)T −1 extends as a C2,1
rough function to the compact, convex domain

[τ0,τBoot] × [−U1,U2] × T2 such that (15.16) holds on [τ0,τBoot] × [−U1,U2] × T2. In particular, this yields (15.21)
and (15.23). From these facts, (15.12a), and the fact that (t,u,x2,x3) = (n)T −1(τ,u,x2,x3), we conclude that the map
(n)T −1 with domain [τ0,τBoot] × [−U1,U2] ×T2 has a global inverse, i.e., that (n)T extends to the compact domain
(n)M[τ0,τBoot],[−U1,U2] as an invertible map such that (n)τ satisfies (15.20).

We now prove (15.25). For i = 1,2, we set qi
def= (τi ,ui ,x

2
i ,x

3
i ) and pi

def= (n)T −1(qi)
def= (ti ,ui ,x

2
i ,x

3
i ). We define

∆τ
def= τ2 − τ1, ∆u

def= u2 − u1, and |∆q|Taxi
def= |∆τ|+ |∆u|+ |∆x2|

T
+ |∆x3|

T
, where for j = 2,3, |∆xj |

T
is the Euclidean

distance between x
j
2 and x

j
1 in the torus. We similarly define ∆t

def= t2−t1 and |∆p|Taxi
def= |∆t|+|∆u|+|∆x2|

T
+|∆x3|

T
. Note

that |∆q|Taxi ≈ distflat(q1,q2) and |∆p|Taxi ≈ distflat(p1,p2). Without loss of generality, we assume ∆τ ≥ 0. Then by (15.21)
and (15.23), there is a constant C > 1 such that 1

C∆τ−C(|∆u|+|∆x2|
T

+|∆x3|
T

) ≤ ∆t ≤ C∆τ+C(|∆u|+|∆x2|
T

+|∆x3|
T

).
Hence, we see that there exists a (possibly different) constant C > 1 such that:∣∣∣∣∣ 1
C
∆τ−C

(
|∆u|+ |∆x2|

T
+ |∆x3|

T

)∣∣∣∣∣+ |∆u|+ |∆x2|
T

+ |∆x3|
T
≤ |∆p|Taxi ≤ C

(
|∆τ|+ |∆u|+ |∆x2|

T
+ |∆x3|

T

)
. (15.29)

From (15.29), it follows that |∆p|Taxi ≈ |∆q|Taxi, which implies (15.25).
We now prove the quasi-convexity of (n)M(τ0,τBoot),(−U1,U2). Let p1,p2 ∈ (n)M(τ0,τBoot),(−U1,U2), and let q1,q2 ∈

(τ0,τBoot) × (−U1,U2) × T2 be the unique points such that pi = (n)T −1(qi), as above. Let ℓ be a straight line in
(τ0,τBoot) × (−U1,U2) ×T2 whose flat length is equal to distflat(q1,q2). From (15.23), it follows that the image curve
(n)T −1(ℓ) has a Euclidean length that is ≲ distflat(q1,q2), which by (15.25) is ≈ distflat(p1,p2) as desired.

(15.26) is a standard Sobolev embedding result (see, for example, [40, Theorem 7]), which relies on the quantitative
quasi-convexity of (n)M(τ0,τBoot),(−U1,U2) proved in the previous paragraph.

(15.22) follows from (15.13) and (15.26).

58Here, we are not just interested in a qualitative version of quasi-convexity, but rather in obtaining control over the constants “C.” Similar remarks
apply for the Sobolev embedding result (15.26) and for other quasi-convexity and Sobolev embedding results derived throughout the paper.
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The existence of the function tτ,n such that (15.28) holds, as well as the estimate (15.27), follow from the fact that
(t,u,x2,x3) = (n)T −1(τ,u,x2,x3) and the estimate (15.23), i.e., tτ,n(u,x2,x3) is the first component of (n)T −1(τ,u,x2,x3).

□

15.3. Hölder-space extensions to the compact set (n)M[τ0,τBoot],[−U1,U2]. With the help of the bootstrap assumptions

and Lemma 15.5, we now show that various solution variables extend to the compact set (n)M[τ0,τBoot],[−U1,U2] as functions
with substantial Hölder regularity relative to the geometric coordinates.

Lemma 15.6 (Hölder-space extensions to the compact set (n)M[τ0,τBoot],[−U1,U2]). The following quantities extend to the

compact set (n)M[τ0,τBoot],[−U1,U2] as elements of the following Hölder spaces, and their corresponding spacetime Hölder

norms on (n)M[τ0,τBoot],[−U1,U2] are bounded by ≤ C:

• Ψ⃗ ,Ωi , S i , Ci ,D ∈ C3,1
geo ((n)M[τ0,τBoot],[−U1,U2])

• Υ ∈ C3,1
geo ((n)M[τ0,τBoot],[−U1,U2])

• Li , µ ∈ C2,1
geo ((n)M[τ0,τBoot],[−U1,U2])

• (n)τ ∈ C2,1
geo ((n)M[τ0,τBoot],[−U1,U2])

Proof. The results for (n)τ were already proved as (15.22). For the remaining results, we give the proof only for Ψ⃗ since the
other solution variables can be handled using nearly identical arguments. To proceed, we note that Lemma 5.5, Prop. 9.1,

and the bootstrap assumptions imply that ∥Ψ⃗ ∥W 4,∞
geo ((n)M(τ0 ,τBoot),(−U1 ,U2))

≤ C. From this bound and (15.26), we conclude

that ∥Ψ⃗ ∥C3,1
geo ((n)M[τ0 ,τBoot],[−U1 ,U2]) ≤ C as desired. □

15.4. Properties of (n)Φ and related maps. In this section, we provide a detailed analysis of the change of variables

map (n)Φ(τ,u,x2,x3) = (µ, X̆µ,x2,x3) and its Jacobian matrix ((n)Φ)J. We also reveal some key consequences of the
properties of (n)Φ , and we study some related maps.

Lemma 15.7 (Properties of (n)Φ and related maps).

Estimates for and diffeomorphism properties of (n)Φ . The map (n)Φ(τ,u,x2,x3) = (µ, X̆µ,x2,x3) from Def. 5.1 ex-

tends to a C1,1
rough map on [τ0,τBoot]× [−U1,U2]×T2 satisfying:∥∥∥(n)Φ

∥∥∥
C1,1
rough([τ0,τBoot]×[−U1,U2]×T2) ≤ C. (15.30)

Moreover, the Jacobian matrix ((n)Φ)J(τ,u,x2,x3) = ∂(µ,X̆µ,x2,x3)
∂(τ,u,x2,x3) is invertible at every point q ∈ [τ0,τBoot]× [−Uj,Uj]×

T
2 and satisfies:

−C ≤ det ((n)Φ)J ≤ − 1
C
, on [τ0,τBoot]× [−Uj,Uj]×T2, (15.31a)

max
q1,q2∈[τ0,τBoot]×[−Uj,Uj]×T2

∣∣∣∣((n)Φ)J−1(q1)((n)Φ)J(q2)− ID
∣∣∣∣
Euc
≤ 1

2
, (15.31b)

where | · |Euc is the standard Frobenius norm on matrices (equal to the square root of the sum of the squares of the matrix
entries) and ID denotes the 4× 4 identity matrix.
Furthermore, (n)Φ is a diffeomorphism from the compact, convex set [τ0,τBoot] × [−Uj,Uj] ×T2 onto its (compact)

image (n)Φ
(
[τ0,τBoot]× [−Uj,Uj]×T2

)
, where (n)Φ

(
[τ0,τBoot]× [−Uj,Uj]×T2

)
enjoys the following properties, and

we recall that mBoot = −τBoot and m0 = −τ0:

1. It contains [mBoot,m0]× {−n} ×T2.
2. It contains (mBoot,m0)× {−n} ×T2 in its interior.

3. We have the following quasi-convexity result: every pair of points r1, r2 ∈ (n)Φ
(
(τ0,τBoot)× (−Uj,Uj)×T2

)
is

connected by a C1 curve in (n)Φ
(
(τ0,τBoot)× (−Uj,Uj)×T2

)
whose length with respect to the standard Euclidean

metric on R ×R ×T2 is ≲ distflat(r1, r2), where distflat(r1, r2) is the standard Euclidean distance between r1 and
r2 in the flat space R×R×T2.
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Properties of (n)Φ−1. With (n)Φ−1 denoting the inverse map and (n)T −1 denoting the inverse of the change of variables

map (n)T defined in (5.2), the following holds for m ∈ [mBoot,m0]:

(n)T −1 ◦ (n)Φ−1
(
{m} × {−n} ×T2

)
= T̆m,−n ⊂ (n)̃Σ

[− 3
4Uj,

3
4Uj]

−m , (15.32)

and:

(n)T −1 ◦ (n)Φ−1
(
[mBoot,m0]× {−n} ×T2

)
= X̆

[τ0,τBoot]
−n ⊂ (n)M[τ0,τBoot],[− 3

4Uj,
3
4Uj]. (15.33)

In addition, (n)Φ−1 satisfies the following estimate:∥∥∥(n)Φ−1
∥∥∥
C1,1((n)Φ([τ0,τBoot]×[−Uj,Uj]×T2)) ≤ C. (15.34)

Monotonicity and properties of the map u→ X̆µ(τ,u,x2,x3) and consequences. For each fixed (τ,x2,x3) ∈ [τ0,τBoot]×
T

2, the map u→ X̆µ(τ,u,x2,x3) is strictly increasing on [−Uj,Uj].
Furthermore, the map (τ,u,x2,x3)→

(
τ, X̆µ,x2,x3

)
is a C1,1

rough diffeomorphism from [τ0,τBoot] × [−Uj,Uj] ×T2

onto its image, which contains [τ0,τBoot]×
[
−n− M2Uj

16 ,−n+ M2Uj
16

]
×T2. In particular, by (10.8), the image set contains

[τ0,τBoot]× [−2n0,n0]×T2. Moreover,

min
(n)P [τ0 ,τBoot]

Uj

X̆µ ≥ 1
16
M2Uj −n ≥

1
32
M2Uj, (15.35a)

max
(n)P [τ0 ,τBoot]
−Uj

X̆µ ≤ −n− 1
16
M2Uj ≤ −

1
16
M2Uj. (15.35b)

Properties of the µ-adapted tori as graphs over T2 in adapted rough coordinates. There exists a family of functions

{Um,−n}m∈[mBoot,m0] on T
2 that, for m ∈ (mBoot,m0], are equal to the functions from Sect. 12.2.4, such that for each

τ ∈ [τ0,τBoot], we have:

sup
τ∈[τ0,τBoot]

∥U−τ,−n∥C1,1(T2) ≤ C, (15.36)

(n)T
(
T̆−τ,−n

)
=

{(
τ,U−τ,−n(x2,x3),x2,x3

)
| (x2,x3) ∈ T2

}
, (15.37)

where (n)T is the change of variables map defined in (5.2). In particular,

T̆−τBoot,−n ⊂
(n)̃Σ

[− 3
4Uj,

3
4Uj]

τBoot . (15.38)

Proof.
Proof of (15.30): Lemmas 5.5, 9.1, 15.5, and 15.6 yield (15.30).

Proof of (15.31a)–(15.31b): We first use Lemma 15.5 (in particular, (15.21)), Lemma 15.6, (BA ∂
∂tµ neg), and (BA µ cnvx) to

deduce that on the compact, convex set D
def= [τ0,τBoot] × [−Uj,Uj] ×T2, the Jacobian matrix ((n)Φ)J = ∂(µ,X̆µ,x2,x3)

∂(τ,u,x2,x3)

satisfies ∥((n)Φ)J∥C0,1
rough(D ) ≤ C and:

det ((n)Φ)J = det
(
drough

(n)T −1
)
det

∂(µ, X̆µ,x2,x3)
∂(t,u,x2,x3)

= det
(
drough

(n)T −1
){( ∂

∂t
µ

)
∂
∂u
X̆µ−

(
∂
∂u

µ

)
∂
∂t
X̆µ

}
< −1/C, (on D).

(15.39)

(15.39) and the bound ∥((n)Φ)J∥C0,1
rough(D ) ≤ C yield (15.31a) and imply that ((n)Φ)J is invertible on D . Also using the definition

of Lipschitz continuity, we deduce the pointwise bound
∣∣∣∣((n)Φ)J(τ,u,x2,x3)− ((n)Φ)J(τ0,u,x

2,x3)
∣∣∣∣
Euc
≤ C|τ−τ0| ≤ Cm0.

From these bounds and the data-assumption (11.23), we conclude (15.31b) whenever m0 is sufficiently small (see Remark B.1).
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Proof of the diffeomorphism properties of (n)Φ on D and the quasi-convexity of (n)Φ (int(D)): Using (15.30), the
inverse function theorem, and (15.31a)–(15.31b), we deduce that (n)Φ is a C1,1

rough diffeomorphism from D onto its image

such that (n)Φ (int(D)) is quasi-convex (where int(D) is the interior of D ). We clarify that (15.30), (15.31a)–(15.31b), and
the convexity of D together guarantee the injectivity of (n)Φ on D and the quasi-convexity of (n)Φ (int(D)).

Next, we use (BA T̆m,−n − LOCATION), the fact that (n)Φ is a diffeomorphism on D , and the facts that µ|T̆−τ,−n = −τ
and (n)W̆µ|T̆−τ,−n = 0 (i.e., that X̆µ|T̆−τ,−n = −n) to deduce that (n)Φ(D) contains [mBoot,m0] × {−n} × T2 and that

(mBoot,m0)× {−n} ×T2 is contained in the interior of (n)Φ(D).

Proof of (15.32)–(15.33): These results follow from the bootstrap assumptions (BA T̆m,−n − LOCATION)–(BA X̆
[τ0,τBoot)
−n − LOCATION)

and (BA X̆
[τ0,τBoot)
−n − FOLIATED), definitions (4.3c) and (4.7b), definitions (5.2) and (5.3a) (see also (5.5)), the fact that (n)T

is a diffeomorphism on (n)M[τ0,τBoot],[−U1,U2] (see Lemma 15.5), and the fact that (n)Φ is a diffeomorphism from
[τ0,τBoot]× [−Uj,Uj]×T2 onto a set containing [mBoot,m0]× {−n} ×T2.

Proof of (15.34): The estimate (15.34) follows from (15.30), (15.31a), the fact that (n)Φ is a C1,1
rough diffeomorphism from D

onto its image, and the quasi-convexity (n)Φ(D).

Proof of the properties of the map u → X̆µ(τ,u,x2,x3) and (15.35a)–(15.35b): We first recall an estimate from the
bootstrap assumption (BA µ cnvx):

M2

4
≤ min

(n)M[τ0 ,τBoot],[−Uj ,Uj]

∂̃

∂̃u
X̆µ ≤ max

(n)M[τ0 ,τBoot],[−Uj ,Uj]

∂̃

∂̃u
X̆µ ≤ 4

M2
. (15.40)

From (15.40), it follows that for each fixed (τ,x2,x3) ∈ [τ0,τBoot] × T2, the map u → X̆µ(τ,u,x2,x3) is strictly

increasing on [−Uj,Uj]. Hence, the map (τ,u,x2,x3)→
(
τ, X̆µ,x2,x3

)
is a C1,1 diffeomorphism from [τ0,τBoot] ×

[−Uj,Uj] ×T2 onto its image. Since (BA µ− TORI STRUCTURE) and (BA T̆m,−n − LOCATION) imply that there is a
u∗ ∈ [−3

4Uj,
3
4Uj] such that the image of (τ,u∗,x2,x3) under the map is (τ,−n,x2,x3), we further deduce from

the first inequality in (15.40) and the mean value theorem that the image of [−Uj,Uj] ×T2 under the map contains
[τ0,τBoot]× [−n− M2Uj

16 ,−n+ M2Uj
16 ]×T2, as is desired.

To prove (15.35a), we fix τ ∈ [τ0,τBoot], and we let u∗ ∈ [−3
4Uj,

3
4Uj] be as above. Using the estimate (15.40) and the

mean value theorem, we deduce that X̆µ(τ,Uj,x
2,x3) ≥ X̆µ(τ,u∗,x2,x3) + M2

4 (Uj − u∗) ≥ −n+ 1
16M2Uj. From this

estimate and (10.8), we conclude (15.35a). Similarly, to prove (15.35b), we use (15.40) and the mean value theorem to deduce
that X̆µ(τ,−Uj,x

2,x3) ≤ X̆µ(τ,u∗,x2,x3) + M2
4 (−Uj − u∗) ≤ −n− 1

16M2Uj. From this estimate and our assumption
n ≥ 0, we conclude (15.35b).

Proof of the properties of Um,−n and the estimates (15.36)–(15.38): These results follow from the form (5.4a)
of (n)Φ , the fact that (n)Φ−1 is C1,1 on the compact, quasi-convex set (n)Φ(D), and the bootstrap assumption
(BA T̆m,−n − LOCATION), which implies that for m ∈ [mBoot,m0] and (x2,x3) ∈ T2, we have (n)Φ−1(m,−n,x2,x3) ∈
(n)̃Σ

[− 3
4Uj,

3
4Uj]

−m . □

Corollary 15.8 (Quantitative control of the embeddings on the closures of their domains).
Control over (n)E. The map (n)E(m,x2,x3) =

(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
∈ T̆m,−n from (12.4) extends to a

C1,1 embedding from [mBoot,m0] ×T2 onto its image, which is X̆
[τ0,τBoot]
−n . In addition, there is a C > 1 such that the

extended embedding satisfies:

∥(n)E∥C1,1([mBoot,m0]×T2) ≤ C, (15.41)

and:

−C < min
(m,x2,x3)∈[mBoot,m0]×T2

∂
∂m

Tm,−n(x2,x3) ≤ max
(m,x2,x3)∈[mBoot,m0]×T2

∂
∂m

Tm,−n(x2,x3) < − 1
C
. (15.42)

Furthermore, for m ∈ [mBoot,m0], we have:

T̆m,−n =
{(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
| (x2,x3) ∈ T2

}
(15.43)
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and:

X̆
[τ0,τBoot]
−n =

⋃
m∈[mBoot,m0]

T̆m,−n. (15.44)

Control over (n)H and the quasi-convexity of (n)H[mBoot,m0]. The map
(n)H(t,x2,x3) =

(
t, (n)h(t,x2,x3),x2,x3

)
from

Lemma 14.1 extends to a C1,1 embedding from (n)H[mBoot,m0]
def
= {(t,x2,x3) ∈R×T2 | Tm0,−n(x2,x3) ≤ t ≤ TmBoot,−n(x2,x3)}

onto its image, which is X̆
[τ0,τBoot]
−n .

Moreover, (n)H[mBoot,m0] is a quasi-convex subset of Rt × T2 in the following sense: every pair of points r1, r2 ∈
(n)H[mBoot,m0] is connected by a C

1 curve in (n)H[mBoot,m0] whose length with respect to the standard Euclidean metric on
Rt ×T2 is ≲ distflat(r1, r2), where distflat(r1, r2) is the standard Euclidean distance between r1 and r2 in the flat space
Rt ×T2.
Finally, the extended embedding satisfies the following estimate:

∥(n)H∥C1,1((n)H[mBoot ,m0]) ≤ C. (15.45)

Proof. (n)E is the composition of the maps (m,x2,x3)→ (n)Φ−1(m,n,x2,x3) and (n)T −1 (see Def. 5.1) and thus all of
the desired conclusions except for those concerning (n)H and (n)H[mBoot,m0] follow from combining Lemmas 15.5 and 15.7.

To obtain the results for (n)H and (n)H[mBoot,m0], we start by considering the map (n)ı(m,x2,x3) def=
(
Tm,−n(x2,x3),x2,x3

)
on the domain [mBoot,m0]×T2, which has image (n)ı

(
[mBoot,m0]×T2

)
= (n)H[mBoot,m0]. Using the estimates (15.41) and

(15.42) and the inverse function theorem, we solve for its global inverse (n)ı−1 (which has domain equal to (n)H[mBoot,m0]),

and we deduce that ∥(n)ı∥C1,1([mBoot,m0]×T2) ≤ C and that detd(m,x2,x3)
(n)ı ≈ −1 on [mBoot,m0]×T2, where d(m,x2,x3)

(n)ı

denotes the differential of (n)ı with respect to (m,x2,x3). The quasi-convexity of (n)H[mBoot,m0] follows by combining the

estimate ∥(n)ı∥C1,1([mBoot,m0]×T2) ≤ C and the monotonicity estimate (15.42) with arguments similar to the ones we used to

prove (15.25) and the quasi-convexity of (n)M[τ0,τBoot],[−U1,U2]; we omit the details. Next, we note that the inverse function

theorem, the estimates ∥(n)ı∥C1,1([mBoot,m0]×T2) ≤ C and detd(m,x2,x3)
(n)ı ≈ −1, and the quasi-convexity of (n)H[mBoot,m0]

imply that ∥(n)ı−1∥C1,1((n)H[mBoot ,m0]) ≤ C. Combining this estimate with (15.41), and noting that (n)H = (n)E ◦ (n)ı−1, we

conclude the desired bound (15.45). □

15.5. Estimates for (M̆ )J. Recall that M̆ (t,u,x2,x3) = (µ, X̆µ,x2,x3) is the map defined in (5.3a). In the next lemma,
we prove estimates for its Jacobian matrix in the region {|u| ≤Uj}. Near the end of the paper, in Prop. 32.5, we will use
the estimates in our analysis of the invertibility properties of M̆ , which ultimately will help us derive the structure of the
singular boundary.

Lemma 15.9 (Estimates for (M̆ )J). There exists a C > 1 such that the Jacobian matrix (M̆ )J defined in (5.3b) is invertible
on (n)M[τ0,τBoot],[−Uj,Uj] and satisfies the following bounds:

−C ≤ min
(n)M[τ0 ,τBoot],[−Uj ,Uj]

det (M̆ )J ≤ max
(n)M[τ0 ,τBoot],[−Uj ,Uj]

det (M̆ )J ≤ − 1
C
, (15.46)

sup
p1∈T̆−τ0 ,0

p2∈(n)M[τ0 ,τBoot],[−Uj ,Uj]

∣∣∣∣(M̆ )J(p1)(M̆ )J−1(p2)− ID
∣∣∣∣
Euc
≤ 1

2
, (15.47)

where | · |Euc is the standard Frobenius norm on matrices (equal to the square root of the sum of the squares of the matrix
entries) and ID denotes the 4× 4 identity matrix.

Proof. Thanks to the initial data assumption (11.24) and the transversal convexity bootstrap assumption (BA µ cnvx), the
lemma can be proved using the same arguments we used to prove (15.31b) (see especially the estimates in (15.39)), which
in particular relied on the smallness of m0. □
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16. Control of the flow map of (n)̃L

We continue to work under the assumptions of Sect. 13.2. In this section, we derive various estimates tied to the
flow map of the vectorfield (n)̃L. We then use these results to derive preliminary estimates for solutions f to transport
equations of the form (n)̃Lf = F.

16.1. Basic properties of the flow map of (n)̃L.

Lemma 16.1 (Basic properties of the flow map of (n)̃L). Let (n)̃L be the null vectorfield defined in (6.3), and let (n)Λ̃ be
the τ0-normalized flow map of

(n)̃L with respect to the adapted rough coordinates ((n)τ,u,x2,x3), i.e., the solution to the
following initial value problem:

∂̃

∂̃τ
(n)Λ̃(τ,u,x2,x3) = (n)̃L ◦ (n)Λ̃(τ,u,x2,x3), (n)Λ̃(τ0,u,x

2,x3) = (τ0,u,x
2,x3). (16.1)

Then for A = 2,3 there exist functions (n)Λ̃A : [τ0,τBoot]× [−U1,U2]×T2→ T such that:

(n)Λ̃(τ,u,x2,x3) =
(
τ,u, (n)Λ̃2(τ,u,x2,x3), (n)Λ̃3(τ,u,x2,x3)

)
. (16.2)

Moreover, (n)Λ̃ is a C1,1 diffeomorphism from [τ0,τBoot]× [−U1,U2]×T2 onto [τ0,τBoot]× [−U1,U2]×T2 satisfying:∥∥∥(n)Λ̃− I
∥∥∥
C1,1
rough([τ0,τBoot]×[−U1,U2]×T2)

≲ ε1/2,
∥∥∥(n)Λ̃−1 − I

∥∥∥
C1,1
rough([τ0,τBoot]×[−U1,U2]×T2)

≲ ε1/2, (16.3)

where I(τ,u,x2,x3)
def
= (τ,u,x2,x3) is the identity map on adapted rough coordinate space and (n)Λ̃−1 is the inverse func-

tion of (n)Λ̃. In particular, for each fixed (τ,u) ∈ [τ,τBoot]×[−U1,U2], the map (x2,x3) 7→
(

(n)Λ̃2(τ,u,x2,x3), (n)Λ̃3(τ,u,x2,x3)
)

is a C1,1 diffeomorphism from (n)̃ℓτ0,u onto
(n)̃ℓτ,u .

Proof. (16.2) is a trivial consequence of (16.1) the identities (n)̃L(n)τ = 1 and (n)̃Lu = 0.
To prove (16.3), we first note that the functions

(
(n)Λ̃2 − x2, (n)Λ̃3 − x3

)
solve the transport system:

∂̃

∂̃τ
[(n)Λ̃A − xA](τ,u,x2,x3) = (n)̃LA

(
τ,u, (n)Λ̃2, (n)Λ̃3

)
, (A = 2,3) (16.4)

with vanishing data at rough time τ0. Next, we use definition (6.3), Lemma 5.8, the bootstrap assumptions, Lemma 15.5,
and Lemma 15.6 to deduce that: ∥∥∥∥((n)̃L2, (n)̃L3

)∥∥∥∥
C1,1
rough([τ0,τBoot]×[−U1,U2]×T2)

≲ ε1/2. (16.5)

Hence, commuting (16.4) up to one time with the adapted rough coordinate partial derivatives, using (16.5), and integrating
with respect to rough time, we find that for τ ∈ [τ0,τBoot], we have:

max
A=2,3

∥∥∥(n)Λ̃A − xA
∥∥∥
C1,1
rough([τ0,τ]×[−U1,U2]×T2)

≤ Cε1/2

+Cε1/2
∫ τ

τ0

max
A=2,3

∥∥∥(n)Λ̃A − xA
∥∥∥
C1,1
rough([τ0,τ′]×[−U1,U2]×T2)

dτ′ .
(16.6)

From (16.6) and Grönwall’s inequality, we find that maxA=2,3

∥∥∥(n)Λ̃A − xA
∥∥∥
C1,1
rough([τ0,τ]×[−U1,U2]×T2)

≤ Cε1/2. From this

bound and (16.2), we conclude the first bound stated in (16.3). From this bound and the inverse function theorem, we
conclude that (n)Λ̃ is a C1,1

rough diffeomorphism from [τ0,τBoot]×[−U1,U2]×T2 onto itself ((n)Λ̃ is a global diffeomorphism

since it is close to the identity map). The second bound in (16.3) follows from differentiating the identity (n)Λ̃−1 ◦ (n)Λ̃ = I
and using the first bound. □

16.2. Estimate for det g̃/ and Minkowski’s integral inequality. In the next lemma, we control the factor det g̃/(τ,u,x2,x3)
featured in the area form dϖ g̃/ (see (8.8)) on the rough tori (n)̃ℓτ,u . We then prove a Minkowski’s integral inequality-type
estimate.
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Lemma 16.2 (Estimate for det g̃/ and Minkowski’s integral inequality). Recall that g̃/ is the first fundamental form of (n)̃ℓτ,u
(see Def. 6.2) and that (n)Λ̃ is the τ0-normalized flow map of

(n)̃L from Lemma 16.1. Then for every τ1,τ2 ∈ [τ0,τBoot] and
every (u,x2,x3) ∈ [−U1,U2] ×T2, the following estimates hold, where det g̃/ is evaluated relative to the adapted rough
coordinates via the formula (6.11):

det g̃/(τ2,u,x
2,x3) =

{
1 +O(ε1/2)

}
det g̃/(τ1,u,x

2,x3) = 1 +O♦(α̊), (16.7a)

det g̃/ ◦ (n)Λ̃(τ2,u,x
2,x3) =

{
1 +O(ε1/2)

}
det g̃/(τ1,u,x

2,x3) = 1 +O♦(α̊). (16.7b)

Moreover, for any scalar function F on (n)M[τ0,τBoot),[−U1,U2], the function ϕ(τ,u,x2,x3) defined by:

ϕ(τ,u,x2,x3)
def
=

∫ τ

τ′=τ0

F(τ′ ,u,x2,x3)dτ′ (16.8)

satisfies the following estimate, valid for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

∥ϕ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≤ {
1 +O(ε1/2)

}∫ τ

τ′=τ0

∥F∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ . (16.9)

Proof. First, using the expression of the rough metric components g̃/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
in (6.11) and the identity detg/ = 1

c2(X1)2

stated in (3.31c), we compute that:

det g̃/ =

L(n)τ
∂
∂tτ

2
1

c2(X1)2 . (16.10)

Using (16.10), our assumptions on the data from Sect. 11.2.1, and (10.9a), and recalling that c(ρ = 0, s = 0) = 1 and
X1 = −1 +X1

(Small), we deduce that det g̃/(τ0,u,x
2,x3) = 1 +O♦(α̊). Moreover, using (16.10), Lemma 5.5, (5.13a), Prop. 9.1,

Lemma 15.5, and the bootstrap assumptions, we deduce that ∂̃
∂̃τ

det g̃/ = O(ε1/2) which, in view of the mean value theorem,

yields that for any (τ,u,x2,x3) ∈ [τ0,τBoot]×[−U1,U2]×T2, we have det g̃/(τ,u,x2,x3) = det g̃/(τ0,u,x
2,x3)+O(ε1/2) ={

1 +O(ε1/2)
}
det g̃/(τ0,u,x

2,x3). In total, these estimates imply (16.7a).
To prove (16.7b), we first note that definition (6.3) and the estimates cited above yield the following estimate relative to

the adapted rough coordinates: ∂̃
∂̃τ

{
det g̃/ ◦ (n)Λ̃(τ,u,x2,x3)

}
= [(n)̃Ldet g̃/] ◦ (n)Λ̃(τ,u,x2,x3) = O(ε1/2). Using this

estimate, arguing as in the previous paragraph, and using the initial condition (n)Λ̃(τ0,u,x
2,x3) = (τ0,u,x

2,x3),
we deduce the following estimate for every (τ,u,x2,x3) ∈ [τ0,τBoot] × [−U1,U2] × T2: det g̃/ ◦ (n)Λ̃(τ,u,x2,x3) ={
1 +O(ε1/2)

}
det g̃/(τ0,u,x

2,x3). Combining this estimate with (16.7a), we conclude (16.7b).
The inequality (16.9) follows from the following estimates relative to the adapted rough coordinates, which rely on

(16.7a) and Minkowski’s inequality for integrals:

∥ϕ∥2
L2

(
(n)̃Σ

[−U1 ,u]
τ

)
=

∫ u

u′=−U1

∫
(x2,x3)∈T2

(∫ τ

τ′=τ0

F(τ′ ,u′ ,x2,x3)dτ′
)2 √

det g̃/(τ,u′ ,x2,x3)dx2dx3du′

≤
{
1 +O(ε1/2)

}∫ u

u′=−U1

∫
(x2,x3)∈T2

(∫ τ

τ′=τ0

F(τ′ ,u′ ,x2,x3)[det g̃/(τ′ ,u′ ,x2,x3)]1/4 dτ′
)2

dx2dx3du′

≤
{
1 +O(ε1/2)

}
∫ τ

τ′=τ0

[∫ u

u′=−U1

∫
(x2,x3)∈T2

(
F(τ′ ,u′ ,x2,x3)

)2
√

det g̃/(τ′ ,u′ ,x2,x3)dx2dx3du′
]1/2

dτ′


2

=
{
1 +O(ε1/2)

}∫ τ

τ′=τ0

∥F∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′
2

.

(16.11)

□
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16.3. Estimates for solutions to (n)̃Lf = F. In the next lemma, we derive the simple transport equation estimates that
we use to control solutions to (n)̃Lf = F.

Lemma 16.3 (Pointwise, L2, and L∞ estimates tied to the integral curves of (n)̃L). Let f be a function of the adapted
rough coordinates on [τ0,τBoot) × [−U1,U2] × T2, let (n)Λ̃ be the τ0-normalized flow map of (n)̃L from Lemma 16.1.
Then relative to the adapted rough coordinates, the following identity holds for any τ0 ≤ τ1 ≤ τ2 < τBoot and any
(u,x2,x3) ∈ [−U1,U2]×T2:

f ◦ (n)Λ̃(τ2,u,x
2,x3) = f ◦ (n)Λ̃(τ1,u,x

2,x3) +
∫ τ2

τ′=τ1

((n)̃Lf ) ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ . (16.12)

Moreover, relative to the adapted rough coordinates, we have the following estimate for the critically important factor
G0
LL: ∣∣∣G0

LL ◦
(n)Λ̃(τ2,u,x

2,x3)−G0
LL ◦

(n)Λ̃(τ1,u,x
2,x3)

∣∣∣ ≲ ε1/2|τ2 − τ1|. (16.13)

In addition, we have the following L∞ and L2 estimates:

∥f ∥L∞((n)̃ℓτ2 ,u) ≤ ∥f ∥L∞((n)̃ℓτ1 ,u) +m0 sup
τ′∈[τ1,τ2]

∥(n)̃Lf ∥L∞((n)̃ℓτ′ ,u), (16.14a)

esssup
(x2,x3)∈T2

∣∣∣f ◦ (n)Λ̃(τ2,u,x
2,x3)− f ◦ (n)Λ̃(τ1,u,x

2,x3)
∣∣∣ ≤m0 sup

τ′∈[τ1,τ2]
∥(n)̃Lf ∥L∞((n)̃ℓτ′ ,u), (16.14b)

∥f ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ2

) ≤ {
1 +O(ε1/2)

}
∥f ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ1

) +
{
1 +O(ε1/2)

}∫ τ2

τ′=τ1

∥(n)̃Lf ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ . (16.15)

Furthermore, if f is any function of the adapted rough coordinates on [τ0,τBoot) × [−U1,U2] × T2, then for every
(τ,u) ∈ [τ0,τBoot)× [−U1,U2], the following estimate holds:

∥f ◦ (n)Λ̃∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) =
{
1 +O(ε1/2)

}
∥f ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

). (16.16)

Finally, let F be a scalar function of the adapted rough coordinates on [τ0,τBoot)× [−U1,U2]×T2, and let ϕ be the
function of the adapted rough coordinates defined by:

ϕ(τ,u,x2,x3)
def
=

∫ τ

τ′=τ0

F ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ . (16.17)

Then for every (τ,u) ∈ [τ0,τBoot)× [−U1,U2], the following estimate holds:

∥ϕ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≤ {
1 +O(ε1/2)

}∫ τ

τ′=τ0

∥F∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ . (16.18)

Proof. (16.12) follows from (16.1) and the fundamental theorem of calculus.
To prove (16.13), we first note that (6.3), Prop. 9.1, (15.12b), and the bootstrap assumptions imply that

∣∣∣(n)̃LG0
LL

∣∣∣ ≲ ε1/2.

Hence, using this bound and applying (16.12) with G0
LL in the role of f , we conclude (16.13).

We now prove (16.14a). First, from (16.12), we deduce:∣∣∣f ◦ (n)Λ̃(τ2,u,x
2,x3)

∣∣∣ ≤ ∣∣∣f ◦ (n)Λ̃(τ1,u,x
2,x3)

∣∣∣+
∫ τ2

τ′=τ1

∣∣∣((n)̃Lf ) ◦ (n)Λ̃(τ′ ,u,x2,x3)
∣∣∣ dτ′ . (16.19)

We now take the essential supremum norm of both sides of (16.19) over (x2,x3) ∈ T2 and use Lemma 16.1 to deduce
∥f ∥L∞((n)̃ℓτ2 ,u) ≤ ∥f ∥L∞((n)̃ℓτ1 ,u) +

∫ τ2

τ′=τ1
∥(n)̃Lf ∥L∞((n)̃ℓτ′ ,u) dτ′ . From this bound and the fact that |τ2 − τ1| ≤ |τ0| = m0,

we conclude (16.14a). The estimate (16.14b) can be proved via a similar argument, and we omit the details.
To prove (16.15), we first take the ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ2

) norm of both sides of (16.12). We then use Lemma 16.1 (in particular

(16.3)), (16.7b), (16.9), and the standard formula for changing variables in an integral (these estimates allow us in particular
to replace all terms f ◦ (n)Λ̃(τ,u,x2,x3) under the L2 norms with f (τ,u,x2,x3), up to 1+O(ε1/2) multiplicative factors)
to deduce:

∥f ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ2

) ≤ {
1 +O(ε1/2)

}
∥f (τ1, ·)∥L2

(
(n)̃Σ

[−U1 ,u]
τ2

) +
{
1 +O(ε1/2)

}∫ τ2

τ′=τ1

∥∥∥(n)̃Lf
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ . (16.20)
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We then use (16.7a) to deduce that the first term on RHS (16.20) satisfies:

∥f (τ1, ·)∥L2
(

(n)̃Σ
[−U1 ,u]
τ2

) =
{
1 +O(ε1/2)

}
∥f (τ1, ·)∥L2

(
(n)̃Σ

[−U1 ,u]
τ1

), (16.21)

which in total yields (16.15).
The estimate (16.16) follows from (16.3), (16.7b), and the standard formula for changing variables in an integral.
Finally, (16.18) follows from (16.9) and (16.16). □

17. L∞ estimates and improvement of the auxiliary bootstrap assumptions

We continue to work under the assumptions of Sect. 13.2. In this section, we derive L∞ estimates for the fluid variables
and eikonal function quantities that in particular yield improvements of the auxiliary bootstrap assumptions stated in
Sect. 12.3.2.

Proposition 17.1 (L∞ estimates and improvement of the auxiliary bootstrap assumptions). Under the parameter-size and
initial data assumptions of Sects. 10.2 and 11.2 and the bootstrap assumptions of Sects. 12.2 and 12.3, the following estimates

hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2] (where we recall that Ψ⃗ and Ψ⃗ (Partial) are defined in Def. 2.8, that
(n)̃L is defined in

(6.3), and that in Sect. 8.3, we introduced notation for strings of commutation vectorfields).

L∞ estimates for small quantities.
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∥∥∥R(+)

∥∥∥
L∞((n)̃ℓτ,u )

≤ α̊+Cε, (17.1)∥∥∥∥Ψ⃗ (Partial)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε, (17.2)∥∥∥∥(n)̃LP≤Ntop−12X̆Ψ⃗
∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,Ntop−11];1
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LP≤4X̆X̆Ψ⃗
∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,6];2
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LP≤2X̆X̆X̆Ψ⃗
∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,5];3
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LX̆X̆X̆X̆Ψ⃗
∥∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε,

(17.3)

∥∥∥Z≤Ntop−11;1(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤6;2(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤5;3(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥X̆X̆X̆X̆(Ω,S)
∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε,

(17.4)

∥∥∥Z≤Ntop−12;1(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤6;2(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥Z≤5;3(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥X̆X̆X̆X̆(C,D)
∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε,

(17.5)

∥∥∥(n)̃LP [1,Ntop−12]µ
∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥P [1,Ntop−12]
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,5];1
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,5];1
∗∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,4];2
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,4];2
∗∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε,

(17.6)

∥∥∥∥L1
(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ α̊+Cε, (17.7)∥∥∥∥LA(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε, (17.8)∥∥∥∥(n)̃LP≤Ntop−11Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥P [1,Ntop−11]Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,Ntop−12];1Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,Ntop−12];1
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,5];2Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,5];2
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,∥∥∥∥(n)̃LZ[1,4];3Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

,
∥∥∥∥Z[1,4];3
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε.

(17.9)
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L∞ estimates tied to pure transversal derivatives.∥∥∥X̆MR(+)

∥∥∥
L∞((n)̃ℓτ,u )

≤ δ̊+Cε, 1 ≤M ≤ 4,

(17.10)∥∥∥∥X̆MΨ⃗ (Partial)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε, 1 ≤M ≤ 4,

(17.11)∥∥∥X̆Mµ
∥∥∥
L∞((n)̃ℓτ,u )

≤
∥∥∥∥X̆M {

c−1
}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+
3

2δ̊∗

∥∥∥∥X̆M {
c−1(c−1c;ρ + 1)X̆R(+)

}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+Cε, 0 ≤M ≤ 3,

(17.12)∥∥∥(n)̃LX̆Mµ
∥∥∥
L∞((n)̃ℓτ,u )

≤ 1
δ∗

∥∥∥∥X̆M {
c−1(c−1c;ρ + 1)X̆R(+)

}∥∥∥∥
L∞((n)̃ℓτ0 ,u )

+Cε, 0 ≤M ≤ 3,

(17.13)∥∥∥∥X̆ML1
(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ δ̊+Cε, 1 ≤M ≤ 3,

(17.14)∥∥∥∥X̆MLA(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≤ Cε, 1 ≤M ≤ 3.

(17.15)

Proof. We refer to Sect. 13.2 for various results that we will silently use throughout the analysis. We sometimes silently use
the assumptions on the initial data stated in Sect. 11.2, the parameter-relations (10.9a), and the estimate 1

L(n)τ
≈ 1 implied

by ( BA L(n)τ). We also recall that (n)̃L is the null vectorfield defined in (6.3). Finally, we remark that the order in which
we prove the estimates is important.

Proof of (17.1)–(17.2): We use (16.14a) with τ1
def= τ0 and τ2

def= τ, the bootstrap assumptions (BA L∞ FUND), the data-
estimate (11.8a), and (10.9a) to conclude that:

∥R(+)∥L∞((n)̃ℓτ,u ) ≤ ∥R(+)∥L∞((n)̃ℓτ0 ,u ) +m0 sup
τ′∈[τ0,τ]

∥(n)̃LR(+)∥L∞((n)̃ℓτ′ ,u) ≤ α̊+Cε (17.16)

as desired.
The estimate (17.2) follows from a similar argument based on the data-estimate ∥Ψ⃗ (Partial)∥L∞((n)̃ℓτ0 ,u ) ≤ ϵ̊ stated in

(11.8c).

Proof of (17.7)–(17.8): We first use Prop. 9.1 to write the transport equation (3.45) for Li schematically as:

LLi(Small) = f(γ) · P Ψ⃗ . (17.17)

From (17.17) and the bootstrap assumptions, we find that ∥(n)̃LLi∥L∞((n)̃ℓτ,u ) = O(ε). From this bound, the initial data

assumptions, and the same arguments we used to prove (17.1), we conclude (17.7)–(17.8).

Proof of (17.9) for
∥∥∥∥(n)̃LP≤Ntop−11Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

and
∥∥∥∥P [1,Ntop−11]Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

: We commute (17.17) with PN for

N ≤Ntop − 11 to obtain:

LPNLi = [L,PN ]Li +PN
{
f(γ) · P Ψ⃗

}
. (17.18)

From (17.18), the commutator estimate (13.7a), and the bootstrap assumptions, we find that
∥∥∥∥LP≤Ntop−11Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≲

ε and that the same bound holds with (n)̃L in place of L. The remainder of the proof relies on the same arguments used
above.

Proof of (17.3) for
∥∥∥∥(n)̃LP≤Ntop−12X̆Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

and
∥∥∥∥Z[1,Ntop−11];1
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

: We first commute P≤Ntop−12 through

the outermost L operator on LHS (9.18) and use the commutator estimate (13.7a), the bootstrap assumptions, and the

estimate (17.9) for
∥∥∥∥P [1,Ntop−11]Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

to deduce that
∥∥∥LP≤Ntop−12X̆Ψ

∥∥∥
L∞((n)̃ℓτ,u) ≲ ε and that the same bound

holds with (n)̃L in place of L. In particular, this yields (17.3) for the first term on the LHS. Also using the same arguments
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we used to prove (17.1) (including our assumptions on the data), we find that
∥∥∥P [1,Ntop−12]X̆Ψ

∥∥∥
L∞((n)̃ℓτ,u) ≲ ε. From this

bound, the commutator estimate (13.7b), and the bootstrap assumptions, we deduce that
∥∥∥∥Z[1,Ntop−11];1
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

≲∥∥∥P [1,Ntop−12]X̆Ψ
∥∥∥
L∞((n)̃ℓτ,u) +

∥∥∥P [1,Ntop−12]Ψ
∥∥∥
L∞((n)̃ℓτ,u) ≲ ε, which yields (17.3) for the second term on the LHS.

Proof of (17.10)–(17.11) for M = 1: Fix Ψ ∈ Ψ⃗ = (R(+),R(−),v
2,v3, s). From the bounds proved in the previous paragraph

and the bootstrap assumptions, we find that
∥∥∥(n)̃LX̆Ψ

∥∥∥
L∞((n)̃ℓτ,u) ≲ ε. From this bound and the same arguments we used

to prove (17.1), we conclude (17.10) and (17.11) for M = 1.

Proof of (17.6) for
∥∥∥(n)̃LP [1,Ntop−12]µ

∥∥∥
L∞((n)̃ℓτ,u )

and
∥∥∥∥P [1,Ntop−12]
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

: We begin by using Lemmas 3.22 and 9.1

to write the transport equation (3.44) for µ as:

Lµ = −1
2
c−1(c−1c;ρ + 1)X̆R(+) + f(γ) · X̆Ψ⃗ (Partial) + f(γ) · P Ψ⃗ + f(γ) · S, (17.19)

where the first product on RHS (17.19) is written exactly (for use later on) and the remaining ones schematically. Commuting
(17.19) with PN for 1 ≤ N ≤ Ntop − 12 and using (13.7a), the bootstrap assumptions, and the already proven bound∥∥∥P [1,Ntop−12]X̆Ψ

∥∥∥
L∞((n)̃ℓτ,u) ≲ ε, we find that

∥∥∥LP [1,Ntop−12]µ
∥∥∥
L∞((n)̃ℓτ,u) ≲ ε and that the same bound holds with (n)̃L

in place of L. In particular, this yields (17.6) for the first term on the LHS. In the case that PN = PN∗ , we can combine
this bound with the initial data assumptions and the same arguments we used to prove (17.1) in order to conclude∥∥∥∥P [1,Ntop−12]
∗ µ

∥∥∥∥
L∞((n)̃ℓτ,u )

≲ ε, which yields (17.6) for the second term on the LHS.

Proof of (17.12)–(17.13) in the caseM = 0: The bootstrap assumptions and the already proven bound
∥∥∥∥X̆Ψ⃗ (Partial)

∥∥∥∥
L∞((n)̃ℓτ,u )

≲

ε imply that the last three products on RHS (17.19), namely f(γ)·X̆Ψ⃗ (Partial), f(γ)·P Ψ⃗ , and f(γ)·S , are bounded in the norm

∥·∥L∞((n)̃ℓτ,u ) by ≲ ε. Moreover, the bootstrap assumptions and the already proven bound
∥∥∥(n)̃LX̆Ψ

∥∥∥
L∞((n)̃ℓτ,u) ≲ ε imply

that
∥∥∥∥(n)̃L

{
1
2c
−1(c−1c;ρ + 1)X̆R(+)

}∥∥∥∥
L∞((n)̃ℓτ,u )

≲ ε. From this bound and (16.14a), we deduce that the first product on

RHS (17.19) satisfies the following bound:
∥∥∥1

2c
−1(c−1c;ρ + 1)X̆R(+)

∥∥∥
L∞((n)̃ℓτ,u )

≲
∥∥∥1

2c
−1(c−1c;ρ + 1)X̆R(+)

∥∥∥
L∞((n)̃ℓτ0 ,u )

+ ε.

Using all these estimates to control the terms on RHS (17.19), we find that ∥Lµ∥L∞((n)̃ℓτ,u ) ≲
∥∥∥1

2c
−1(c−1c;ρ + 1)X̆R(+)

∥∥∥
L∞((n)̃ℓτ0 ,u )

+

ε. From this bound and (15.12b), we conclude (17.13) in the case M = 0. From this bound and the same arguments we
used to prove (17.1), we find that ∥µ∥L∞((n)̃ℓτ,u ) ≤ ∥µ∥L∞((n)̃ℓτ0 ,u ) +m0

1
δ∗

∥∥∥1
2c
−1(c−1c;ρ + 1)X̆R(+)

∥∥∥
L∞((n)̃ℓτ0 ,u )

+Cε, which,

in view of our data-assumption for ∥µ∥L∞((n)̃ℓτ0 ,u ) (and assuming m0 ≤ 1), yields (17.12) in the case M = 0.

Proof of (17.9) for
∥∥∥∥(n)̃LZ[1,Ntop−12];1Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

and
∥∥∥∥Z[1,Ntop−12];1
∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

: We commute (17.17) with

operators of the form ZN ;1 for 1 ≤N ≤Ntop − 12 to obtain:

LZN ;1Li = [L,ZN ;1]Li +ZN ;1
{
f(γ) · P Ψ⃗

}
. (17.20)

From (17.20), the commutator estimate (13.7b), the bootstrap assumptions, and the already proven bounds
∥∥∥∥P [1,Ntop−11]Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≲

ε and
∥∥∥∥Z[1,Ntop−11];1
∗ Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u )

≲ ε, we find that
∥∥∥∥LZ[1,Ntop−12];1

∗ Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≲ ε and that the same bound holds

with (n)̃L in place of L. In particular, this yields (17.9) for
∥∥∥∥(n)̃LZ[1,Ntop−12];1Li(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

. The remainder of the proof

relies on the same arguments used above.

Proof of (17.14)–(17.15) in the case M = 1: The bounds proved in the previous paragraph and the bootstrap assumptions

imply that
∥∥∥∥LX̆L1

(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≲ ε and
∥∥∥∥LX̆LA(Small)

∥∥∥∥
L∞((n)̃ℓτ,u )

≲ ε, and that the same bound holds with (n)̃L in place

of L. Also using the same arguments we used to prove (17.1) (including our assumptions on the data), we conclude
(17.14)–(17.15) in the case M = 1.
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Proof of (17.4) for
∥∥∥Z≤Ntop−11;1(Ω,S)

∥∥∥
L∞((n)̃ℓτ,u )

and (17.5) for
∥∥∥Z≤Ntop−12;1(C,D)

∥∥∥
L∞((n)̃ℓτ,u )

: We apply P≤Ntop−12 to

(9.6a)–(9.6b) and use the bootstrap assumptions (including (BA L∞ FUND)) to deduce that
∥∥∥P≤Ntop−12X̆(Ω,S)

∥∥∥
L∞((n)̃ℓτ,u )

≲

ε. From this bound, the commutator estimate (13.7b), and the bootstrap assumptions, we conclude (17.4) for the first term
on the LHS.

The estimate (17.5) for
∥∥∥Z≤Ntop−12;1(C,D)

∥∥∥
L∞((n)̃ℓτ,u )

follows from a similar argument based on applying P≤Ntop−13 to

(9.9).

Outline of the remainder of the proof: The remaining estimates in the proposition can be derived by commuting the
equations with one additional X̆ derivative followed by elements of P , using the above arguments and the estimates
already proved, and then repeating the process, adding one additional X̆ derivative each time. The estimates need to be
derived in the same order as above. The commutator terms can be handled with the help of Prop. 13.5. The bootstrap as-
sumptions guarantee that all terms that need to be controlled have sufficient L∞((n)̃ℓτ,u)-regularity. We omit the tedious,

but straightforward details, noting only that the estimates can be proved in the following order: (n)̃LP≤4X̆X̆Ψ⃗ , Z[1,6];2
∗ Ψ⃗ ,

X̆X̆R(+), X̆X̆Ψ⃗ (Partial),
(n)̃LZ[1,5];1

∗ µ, Z[1,5];1
∗∗ µ, (n)̃LX̆µ, X̆µ, (n)̃LZ[1,5];2Li(Small), Z

[1,5];2
∗ Li(Small), X̆X̆L

1
(Small), X̆X̆L

A
(Small),

Z≤6;2(Ω,S), Z≤6;2(C,D), (n)̃LP≤2X̆X̆X̆Ψ⃗ , Z[1,5];3
∗ Ψ⃗ , X̆X̆X̆R(+), X̆X̆X̆Ψ⃗ (Partial),

(n)̃LZ[1,4];2
∗ µ, Z[1,4];2

∗∗ µ, (n)̃LX̆X̆µ,

X̆X̆µ, (n)̃LZ[1,4];3Li(Small), Z
[1,4];3
∗ Li(Small), X̆X̆X̆L

1
(Small), X̆X̆X̆L

A
(Small), Z

≤5;3(Ω,S), Z≤5;3(C,D), (n)̃LX̆X̆X̆X̆Ψ⃗ , X̆X̆X̆X̆R(+),

X̆X̆X̆X̆Ψ⃗ (Partial),
(n)̃LX̆X̆X̆µ, X̆X̆X̆µ, X̆X̆X̆X̆(Ω,S), X̆X̆X̆X̆(C,D).

□

The following corollary is an immediate consequence of the fact that we have improved the auxiliary bootstrap
assumptions.

Corollary 17.2 (α̊1/2 and ε1/2 can be replaced by Cα̊ and Cε). All prior inequalities whose RHS feature an explicit factor
of α̊1/2,ε1/2 remain true with α̊1/2, ε1/2 respectively replaced by Cα̊, Cε.

18. Sharp control of µ, properties of Υ , and pointwise estimates tied to the rough acoustic geometry

We continue to work under the assumptions of Sect. 13.2. In this section, we derive sharp control of µ and its
derivatives, as well as strict improvements of the bootstrap assumptions from Sects. 12.2.1–12.2.2. Because our L2-type
energies feature µ weights, these sharp estimates will play a fundamental role in our proof of the energy estimates. Next,
in Prop. 18.4, we derive homeomorphism and diffeomorphism properties of the change of variables map Υ from geometric
coordinate to Cartesian coordinates, which are crucial for understanding the structure of the singular boundary. The results
of Prop. 18.4 also yield strict improvements of the bootstrap assumptions for Υ stated in Sect. 12.2.3. In Sect. 18.3, we derive
improvements of the bootstrap assumptions for the size of (t,x1) on the rough hypersurfaces. Finally, in Lemma 18.6,
we derive pointwise estimates for various geometric quantities that are tied to the rough acoustic geometry. We will use
these pointwise estimates throughout the paper, notably in Sect. 23, when we derive pointwise estimates for the error
terms in the elliptic-hyperbolic identities that we use to control the top-order derivatives of Ω and S .

18.1. Sharp control of µ and its derivatives.

Proposition 18.1 (Sharp control of µ and its derivatives). The following estimates hold.

Minima of µ occur precisely along T̆−τ,−n. For each fixed τ ∈ [τ0,τBoot] = [−m0,−mBoot], we have:

min
(n)̃Σ

[−U1 ,U2]
τ

µ = −τ, (18.1)

and the minimum value of −τ in (18.1) is achieved by µ precisely on the µ-adapted torus T̆−τ,−n defined in (4.3c). In
particular, mBoot = inf(n)M[τ0 ,τBoot),[−U1 ,U2]

µ, and the infimum is not achieved.

µ is large when |u| ≥Uj. The following lower bound holds, where m1 > 0 is the constant appearing in (11.20):

min
(n)M[τ0 ,τBoot],[−U1 ,U2]\(n)M[τ0 ,τBoot],[−Uj ,Uj]

µ ≥ m1

2
. (18.2)
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Location of X̆
[τ0,τBoot]
−n and T̆−τ,−n. With X̆

[τ0,τBoot]
−n and T̆−τ,−n denoting the sets defined in (4.3b)–(4.3c), we have:

X̆
[τ0,τBoot]
−n ⊂ (n)M[τ0,τBoot],[− 1

2Uj,
1
2Uj], (18.3a)

for each τ ∈ [τ0,τBoot], T̆−τ,−n ⊂ (n)̃Σ
[− 1

2Uj,
1
2Uj]

τ . (18.3b)

Moreover, with (n)Φ−1 denoting the inverse function of the function (n)Φ defined in (5.4a), we have:

For each m ∈ [mBoot,m0], (n)Φ−1
(
{m} × {−n} ×T2

)
⊂ {−m} ×

[
−1

2
Uj,

1
2
Uj

]
×T2. (18.4)

Transversal convexity of µ and its consequences. The following estimates hold, where (n)W̆ is the vectorfield from
Def. 4.1:

M2

2
≤ inf

(n)M[τ0 ,τBoot],[−Uj ,Uj]

{
(n)W̆ (n)W̆µ, (n)W̆ X̆µ, X̆X̆µ, X̆X̆µ− (X̆µ)LX̆µ

Lµ
,

X̆X̆µ+
nLX̆µ
Lµ

,
∂
∂u
X̆µ,

∂
∂u
X̆µ−

( ∂∂uµ) ∂∂t X̆µ
∂
∂tµ

,
∂̃

∂̃u
X̆µ

}
≤ sup

(n)M[τ0 ,τBoot],[−Uj ,Uj]

{
(n)W̆ (n)W̆µ, (n)W̆ X̆µ, X̆X̆µ, X̆X̆µ− (X̆µ)LX̆µ

Lµ
,

X̆X̆µ+
nLX̆µ
Lµ

,
∂
∂u
X̆µ,

∂
∂u
X̆µ−

( ∂∂uµ) ∂∂t X̆µ
∂
∂tµ

,
∂̃

∂̃u
X̆µ

}
≤ 2
M2

.

(18.5)

min
(n)M[τ0 ,τBoot],[−Uj ,Uj]\M

(n)

[τ0 ,τBoot],[− 1
2Uj ,

1
2Uj]

|X̆µ+n| ≥ M2Uj

8
. (18.6)

Moreover, the following pointwise estimates hold on (n)M[τ0,τBoot],[−Uj,Uj], where
(n)R̆ is the vectorfield defined in (6.6):

|(n)W̆µ|, |(n)R̆µ| ≤ C
√
µ. (18.7)

Rough control of null and almost null derivatives of µ in the interesting region. The following estimates hold, where
(n)̃L is the vectorfield defined in (6.3):

−9
8
δ̊∗ ≤ min

(n)M[τ0 ,τBoot],[−Uj ,Uj]

Lµ ≤ max
(n)M[τ0 ,τBoot],[−Uj ,Uj]

Lµ ≤ −7
8
δ̊∗, (18.8a)

−9
8
δ̊∗ ≤ min

(n)M[τ0 ,τBoot],[−Uj ,Uj]

∂
∂t

µ ≤ max
(n)M[τ0 ,τBoot],[−Uj ,Uj]

∂
∂t

µ ≤ −7
8
δ̊∗, (18.8b)

−3
2
≤ min

(n)M[τ0 ,τBoot],[−Uj ,Uj]

(n)̃Lµ ≤ max
(n)M[τ0 ,τBoot],[−Uj ,Uj]

(n)̃Lµ ≤ −2
3
. (18.8c)

Sharp control of ∂
∂t

(n)τ and L(n)τ. The following estimates hold:

7
9
δ̊∗ ≤ min

(n)M[τ0 ,τBoot],[−U1 ,U2]

∂
∂t

(n)τ ≤ max
(n)M[τ0 ,τBoot],[−U1 ,U2]

∂
∂t

(n)τ ≤ 9
7
δ̊∗, (18.9a)

7
9
δ̊∗ ≤ min

(n)M[τ0 ,τBoot],[−U1 ,U2]

L(n)τ ≤ max
(n)M[τ0 ,τBoot],[−U1 ,U2]

L(n)τ ≤ 9
7
δ̊∗. (18.9b)
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Estimates for µ along the flow map of (n)Λ̃. Let (n)Λ̃ denote the τ0-normalized flow map of
(n)̃L from Lemma 16.1. Then

the following estimates hold:

sup
|u|≤Uj

τ0≤τ≤τ+∆τ≤τBoot
(x2,x3)∈T2

µ ◦ (n)Λ̃(τ+∆,u,x2,x3)

µ ◦ (n)Λ̃(τ,u,x2,x3)
≤ 1, (18.10a)

sup
u∈[−U1,U2]\[−Uj,Uj]
τ0≤τ≤τ+∆τ≤τBoot

(x2,x3)∈T2

µ ◦ (n)Λ̃(τ+∆,u,x2,x3)

µ ◦ (n)Λ̃(τ,u,x2,x3)
≤ C. (18.10b)

A lower bound tied to the blowup in the interesting region. The following lower bounds holds:

min
(n)M[τ0 ,τBoot],[−Uj ,Uj]

µ|XR(+)| ≥
δ̊∗

|c̄;ρ + 1|
, (18.11)

where c̄;ρ
def
= c;ρ(ρ = 0, s = 0) is c;ρ evaluated at the trivial solution, c̄;ρ +1 is a non-zero constant by assumption, and the

vectorfield X has Euclidean length satisfying
√∑3

a=1(Xa)2 = 1 +O(α̊).

Especially sharp control in a small neighborhood. Recall that (n)ι∆u is the flow map of (n)W̆ (see Lemma 14.2). There

exists a constant ∆U with 0 < ∆U < 1
2Uj, a neighborhood (in the geometric coordinate topology of

(n)M[τ0,τBoot],[−U1,U2])
(n)N[τ0,τBoot] of X̆

[τ0,τBoot]
−n of the form:

(n)N[τ0,τBoot] = (n)ι(−∆U,∆U )

(
X̆

[τ0,τBoot]
−n

)
def
=

⋃
∆u′∈(−∆U,∆U )

(n)ι∆u′
(
X̆

[τ0,τBoot]
−n

)
(18.12)

such that:
(n)N[τ0,τBoot] ⊂

(n)M[τ0,τBoot],[−Uj,Uj], (18.13)

and a constant µ2 > 0 defined by:

µ2
def
= min

{M2

4
(∆U )2,

m1

2

}
(18.14)

(where m1 is as in (11.20) and M2 is as in (18.5)) such that the following estimates hold:

−1.01 ≤ min
(n)N[τ0 ,τBoot]

(n)̃Lµ ≤ max
(n)N[τ0 ,τBoot]

(n)̃Lµ ≤ −.99, (18.15)

µ2 ≤ min
(n)M[τ0 ,τBoot],[−U1 ,U2]\(n)N[τ0 ,τBoot]

µ. (18.16)

Proof.

Remark 18.2 (Silent use of Lemma 15.6). Throughout this proof, we sometimes silently use the continuous extension
properties shown in Lemma 15.6. In particular, these properties allow us to extend various results that were proved prior
to the lemma on the half-open rough time interval [τ0,τBoot) to the closed rough time interval [τ0,τBoot].

Proof of (18.5): To prove (18.5) for (n)W̆ (n)W̆µ, we use first use (4.2), (6.3), Lemmas 5.5 and 15.6, and the estimate
1

L(n)τ
≈ 1 (see (15.12b)) to deduce that for (τ,u) ∈ [τ0,τBoot] × [−Uj,Uj], we have ∥(n)̃L(n)W̆ (n)W̆µ∥L∞((n)̃ℓτ,u) ≤ C.

From this bound, (16.14b), and the data-assumption (11.18), we deduce that in the region (n)M[τ0,τBoot],[−Uj,Uj], we have

M2 −Cm0 ≤ (n)W̆ (n)W̆µ ≤ 1
M2

+Cm0, which, for m0 sufficiently small, implies (18.5) for (n)W̆ (n)W̆µ (recall that, as
we highlighted in Sect. 10.3, the constants C can be chosen to be independent of m0). The remaining estimates in (18.5)

follow from a nearly identical argument, where we use the identity (5.15) when deriving the estimates involving ∂̃
∂̃u
X̆µ.

Proof of (18.2), (18.6), (18.8a), and (18.8b): To prove (18.6), we first argue as in the proof of (18.5) to deduce that
|(n)̃L(X̆µ+n)| ≤ C. From this bound, the estimate (16.14b), and the data-assumption (11.19b), we find that in the spacetime
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region (n)M[τ0,τBoot],[−Uj,Uj]\M
(n)
[τ0,τBoot],[− 1

2Uj,
1
2Uj]

, we have |X̆µ + n| ≥ M2Uj
4 −Cm0. Assuming m0 is sufficiently

small, we conclude (18.6).
The estimates (18.2) and (18.8a) follow from similar arguments based on the data-assumptions (11.20) and (11.22) and the

estimates |(n)̃Lµ| ≤ C and |(n)̃LLµ| ≤ Cε, which follow from (15.12b) and the estimates of Prop. 17.1. We also conclude (18.8b)
by combining these arguments with the relation ∂

∂tµ = Lµ+O(ε), which follows from the identity ∂
∂tµ = Lµ−LA ∂

∂xA
µ,

Lemma 5.5, Prop. 9.1, and the estimates of Prop. 17.1.

Proof of (18.10b): (18.10b) is a simple consequence of (18.2), (16.2), and the bound max(n)M[τ0 ,τBoot],[−U1 ,U2]
µ ≲ 1 implied by

the third item in Lemma 15.6.

Proof of (18.9a)–(18.9b): These estimates follow from the proof of (15.12a)–(15.12b), except we now use the bound (18.8a) in
place of the bootstrap assumption (BA Lµ neg) used in the proof of (15.12a)–(15.12b).

Proof of (18.8c) and (18.10a): (18.8c) follows from definition (6.3) and the estimates (18.8a) and (18.9b). (18.10a) then follows
from (18.8c), which implies that µ decreases along the integral curves of (n)̃L when |u| ≤Uj.

Proof of (18.11): We use (3.44), (3.46), Prop. 9.1, the estimates of Prop. 17.1, and (18.8a) to deduce that in (n)M[τ0,τBoot],[−Uj,Uj],

we have the estimate 1
2c
−1(c−1c;ρ + 1)|X̆R(+)| ≥ 7

8 δ̊∗ +O(ε) ≥ 3
4 δ̊∗. Also Taylor expanding c−1(c−1c;ρ + 1) around the

background solution Ψ⃗ = 0 and using (2.4) and (2.5), we deduce the estimate c−1(c−1c;ρ + 1)|X̆R(+)| = {1 +O(α̊)} |c̄;ρ +
1||X̆R(+)|. Combining these two estimates, we conclude (18.11).

The fact that
√∑3

a=1(Xa)2 = 1 +O(α̊) follows from (3.13), (9.3e), and the estimates of Prop. 17.1.

Proof of (18.3a)–(18.3b) and (18.4): Since |X̆µ+n| = 0 along X̆
(−n), (18.3a) follows directly from (18.6).

(18.3b) then follows from (18.3a) (since T̆−τ,−n ⊂ X̆
[τ0,τBoot]
−n ).

(18.4) then follows from the equality in (15.32), the definition (5.2) of the change of variables map (n)T , and (18.3b).

Proof of (18.1) and the fact that min(n)̃Σ
[−U1 ,U2]
τ

µ occurs in T̆−τ,−n: Since the construction of the rough time function
(n)τ is such that µ|

X̆
[τ0 ,τBoot]
−n

= −(n)τ|
X̆

[τ0 ,τBoot]
−n

, it follows from (18.2), (18.3a), and (11.21) that for each fixed τ ∈ [τ0,τBoot] =

[−m0,−mBoot], min(n)̃Σ
[−U1 ,U2]
τ

µ is achieved only in the subset (n)̃Σ
[− 1

2Uj,
1
2Uj]

τ , which is interior to (n)̃Σ
[−U1,U2]
τ . Hence,

since (n)W̆ is tangent to (n)̃Σ
[−U1,U2]
τ , it must be that (n)W̆µ = 0 at the minima. Considering also the definition of

X̆
[τ0,τBoot]
−n and the fact that (n)W̆µ = X̆µ + n in (n)̃Σ

[− 1
2Uj,

1
2Uj]

τ , we see that the minima of µ in (n)̃Σ
[−U1,U2]
τ must

belong to X̆
[τ0,τBoot]
−n ∩ (n)̃Σ

[− 1
2Uj,

1
2Uj]

τ . Hence, we conclude that min(n)̃Σ
[−U1 ,U2]
τ

µ = −τ, which is (18.1). Moreover, also

using Lemma 15.7, we conclude that the torus T̆−τ,−n = (n)T −1 ◦ (n)Φ−1
(
{−τ} × {−n} ×T2

)
is exactly the set of points

within (n)̃Σ
[−U1,U2]
τ where µ achieves its minimum value of −τ.

Proof of (18.7): First, we use (4.2), (6.5), (6.6), Lemma 5.5, Lemma 5.8, Prop. 9.1, the estimates of Lemma 15.5, Prop. 17.1,
and Cor. 17.2, and (18.8a) to deduce that |(n)W̆µ| ≤ C and (n)R̆µ = W̆µ+µO(ε) = W̆µ+O(ε), where we clarify that we
will use the relation (n)R̆µ = W̆µ+µO(ε) in the next paragraph. From these bounds and (18.2), we see that the bounds
stated in (18.7) hold in (n)M[τ0,τBoot],[−U1,U2]\(n)M[τ0,τBoot],[−Uj,Uj].

It remains for us to prove the desired bounds in (n)M[τ0,τBoot],[−Uj,Uj]. To this end, we assume that τ ∈ [τ0,τBoot]

and q ∈ (n)̃Σ
[−Uj,Uj]
τ . By Lemma 14.2, there is a unique integral curve of (n)W̆ that joins q to a point q0 ∈ T̆−τ,−n

on the primal torus T̆−τ,−n (along which µ ≡ −τ), which, in view of the already proven result (18.3b), is contained

in (n)̃Σ
[− 1

2Uj,
1
2Uj]

τ . Let ι = ι(u′) denote this integral curve, parameterized by the eikonal function, and let u0 and
u respectively denote the eikonal function values corresponding to q0 and q. In particular, ι(u) = q, ι(u0) = q0,
µ ◦ ι(u0) = −τ, and by (4.2), W̆µ ◦ ι(u0) = 0. Using (18.5), the mean value theorem, and Taylor’s theorem, we see that
|W̆µ ◦ ι(u)| ≤ 2

M2
|u − u0| and µ ◦ ι(u) ≥ −τ+ M2

4 (u − u0)2 ≥ M2
4 (u − u0)2. Combining the above results, we find that

at q, we have |W̆µ| ≤ 2
M2

√
4
M2

√
µ ≤ 4

M3/2
2

√
µ, which yields (18.7) for the first term on the LHS. From this estimate, the

bound (n)R̆µ = W̆µ+µO(ε) noted in the previous paragraph, and the estimate µ ≤ C implied by (17.13), we conclude the
desired estimate (18.7) for the second term on the LHS.
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Proof of (18.15): Recalling that (n)ι∆u is the flow map of (n)W̆ , for real numbers ∆u small and positive, we consider

the set (n)ι(−∆u,∆u)

(
X̆

[τ0,τBoot]
−n

)
def=

⋃
∆u′∈(−∆u,∆u)

(n)ι∆u′
(
X̆

[τ0,τBoot]
−n

)
, which by Lemma 14.2 and (18.3a) is a neighborhood

of X̆
[τ0,τBoot]
−n in (n)M[τ0,τBoot],[−Uj,Uj]. Next, using (4.2), Lemma 5.5, (6.3), Prop. 9.1, the estimates of Lemma 15.5 and

Prop. 17.1, and (18.8a), we deduce that |(n)W̆ (n)̃Lµ| ≤ C. Moreover, since Lemma 15.3 and definition (6.3) imply that
(n)̃Lµ|

X̆−n
= −1, we can use the mean value theorem to deduce that in (n)ι(−∆u,∆u)

(
X̆

[τ0,τBoot]
−n

)
, the following estimates

hold: −1 − C∆u ≤ (n)̃Lµ ◦ ι(u) ≤ −1 + C∆u. Choosing and fixing a value of ∆u, which we denote by ∆U , to be

sufficiently small (and positive) such that C∆U < .01, we arrive at (18.15) with (n)N[τ0,τBoot]
def= (n)ι(−∆U,∆U )

(
X̆

[τ0,τBoot]
−n

)
.

Proof of (18.16): Recall that X̆
[τ0,τBoot]
−n =

⋃
m∈[−τBoot,−τ0] T̆m,−n (see (15.44)) and that for τ ∈ [τ0,τBoot], we have µ|T̆−τ,−n =

−τ. For τ ∈ [τ0,τBoot] and q0 ∈ T̆−τ,−n, the arguments we used in the proof of (18.7) imply that if |∆u| is small enough

such that (n)ι∆u(q0) ∈ (n)M[τ0,τBoot],[−Uj,Uj], then we have M2
4 (∆u)2 ≤ −τ+ M2

4 (∆u)2 ≤ µ ◦ (n)ι∆u(q0). In particular,

by (15.44) and (18.3a)–(18.3b), if |∆U | ≤ 1
2Uj, then

M2

4
(∆U )2 ≤ min

(n)ι(−∆U,∆U )

(
X̆

[τ0 ,τBoot]
−n

)µ. From these observations, the

estimate (18.2), and definition (18.14), we see that (18.16) holds with ∆U defined to be the small constant fixed in the proof
of (18.15).

□

18.2. Homeomorphism and diffeomorphism properties of Υ . Our main goal in this section is to reveal the homeo-
morphism and diffeomorphism properties of the change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3). We start with
the following monotonicity lemma, which plays an important role in controlling Υ .

Lemma 18.3 (Monotonicity of x1). The following identity holds, where φ = φ(u) is the cut-off from Def. 4.1:

∂̃

∂̃u
x1 = µ

X1 +
XAXA

X1 +
XA( ∂

∂xA
(n)τ)LBXB

( ∂∂t
(n)τ)X1

+
XA ∂

∂xA
(n)τ

∂
∂t

(n)τ
L1


+φ

n

Lµ

L1 +
LAXA

X1 +
LA( ∂

∂xA
(n)τ)LBXB

( ∂∂t
(n)τ)X1

+
LA ∂

∂xA
(n)τ

∂
∂t

(n)τ
L1

 .
(18.17)

Moreover, the following estimate holds on (n)M[τ0,τBoot],[−U1,U2]:

∂̃

∂̃u
x1 = −µ {1 +O♦(α̊)}+φ

n

Lµ
{1 +O♦(α̊)} . (18.18)

Finally, for every fixed (τ,x2,x3) ∈ [τ0,τBoot]×T2, the map u→ x1(τ,u,x2,x3) is strictly decreasing on [−U1,U2].

Proof. (18.17) follows from (5.15) and (5.6).
(18.18) then follows from (18.17), Prop. 9.1, the estimates of Lemma 15.4, Prop. 17.1, and Cor. 17.2, and (10.9a), which in

particular imply that X1 = −1 +X1
(Small) = −1 +O♦(α̊), L1 = 1 +L1

(Small) = 1 +O♦(α̊), and XA,LA = O(ε) = O♦(α̊).

To prove the monotonicity of x1, we note that (18.18) and Prop. 18.1 imply that ∂̃
∂̃u
x1 < 0, except in the case τBoot = n =

0, where ∂̃
∂̃u
x1 vanishes precisely along the torus T̆0,0, which is contained in (0)̃Σ

[− 1
2Uj,

1
2Uj]

0 . Moreover, (15.40) implies

that ∂̃
∂̃u
X̆µ|T̆0,0

> 0. Thus, since (15.37) implies that (n)T (T̆0,0) (i.e., the image of the crease in adapted rough coordinate

space Rτ×Ru×T2) is a graph over T2, we see that every integral curve of ∂̃
∂̃u

in (0)̃Σ
[−U1,U2]
0 intersects T̆0,0 in precisely

one point. In total, we have shown that for every fixed (τ,x2,x3) ∈ [τ0,τBoot] ×T2, the map u → x1(τ,u,x2,x3) on
the domain [−U1,U2] has a negative derivative, except at possibly a single point in [−1

2Uj,
1
2Uj]. From this fact, we

conclude that the map is strictly decreasing, as desired.
□
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Proposition 18.4 (Homeomorphism and diffeomorphism properties of Υ and the embedded tori Υ
(
T̆m,−n

)
). The change

of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) is injective on the compact set (n)M[τ0,τBoot],[−U1,U2] and satisfies:

∥Υ ∥C3,1
geo ((n)M[τ0 ,τBoot],[−U1 ,U2])

≤ C. (18.19)

In particular, Υ is a homeomorphism from (n)M[τ0,τBoot],[−U1,U2] onto its image.
Moreover, with dgeoΥ denoting the Jacobian matrix of Υ , we have:

detdgeoΥ = µ
c2

X1 ≈ −µ. (18.20)

In addition, if τBoot < 0, then Υ is a diffeomorphism from (n)M[τ0,τBoot],[−U1,U2] onto its image.

Finally, let T̆m,−n be the µ-adapted torus defined in (4.3c), and let Υ
(
T̆m,−n

)
be the image in Cartesian coordinate

space of T̆m,−n under Υ . Then for m ∈ [mBoot,m0] = [−τBoot,−τ0], Υ
(
T̆m,−n

)
is a C1,1 embedded sub-manifold of

Cartesian space that is diffeomorphic to T2. More precisely, with Tm,−n(x2,x3) and Um,−n denoting the functions on T
2

from (15.43), the map (n)I defined by:

(n)I(x2,x3)
def
= Υ ◦

(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
(18.21)

is a C1,1 embedding, i.e., a C1,1 diffeomorphism from T
2 onto Υ

(
T̆m,−n

)
.

Proof. We already proved the bound (18.19) in Lemma 15.6.

Next, we use (5.6), Prop. 9.1, and Prop. 17.1 to compute that ∂Υ (t,u,x2,x3)
∂(t,u,x2,x3) =


1 0 0 0

L1 + ∗ µ c2

X1 ∗ ∗
0 0 1 0
0 0 0 1

, where here and in the

rest of the proof, “∗” denotes any quantity that is pointwise bounded in magnitude by O(α̊). Thus, det ∂Υ (t,u,x2,x3)
∂(t,u,x2,x3) = µ c2

X1 ,

and therefore, using (3.26a), Prop. 9.1, and Prop. 17.1, we compute that det ∂Υ (t,u,x2,x3)
∂(t,u,x2,x3) = −{1 +O(α̊)}µ, which yields

(18.20).
If τBoot < 0, then by Prop. 18.1, µ is uniformly positive on (n)M[τ0,τBoot],[−U1,U2], and from (18.20) and the inverse

function theorem, we see that Υ is a local diffeomorphism on (n)M[τ0,τBoot],[−U1,U2]. Thus, to complete the proof, we

need to show that Υ is injective on (n)M[τ0,τBoot],[−U1,U2], even if τBoot = 0. We will achieve this by proving the injectivity
of the map ((n)τ,u,x2,x3)→ ((n)τ,x1,x2,x3) on the domain [τ0,τBoot] × [−U1,U2] ×T2, and then the injectivity of
the map ((n)τ,x1,x2,x3)→ (t,x1,x2,x3); since the composition of two injective functions is injective, this would finish
the proof.

To proceed, we first note that the injectivity of the map ((n)τ,u,x2,x3)→ ((n)τ,x1,x2,x3) on [τ0,τBoot]×[−U1,U2]×
T

2 follows from the monotonicity of the map u → x1(τ,u,x2,x3) guaranteed by Lemma 18.3. For use below, we also
note that by (3.10), (3.26b), (5.13a), Lemma 5.5, (15.20), and the estimates of Prop. 17.1, we have:

∂̃

∂̃τ
x1 ≈ ∂

∂t
x1 = Lx1 −LA ∂

∂xA
x1 = 1 +L(Small) −LA

∂

∂xA
x1 ≈ 1. (18.22)

Now for each fixed (x2,x3) ∈ T2, let (n)Ix2,x3 denote the image of the set [τ0,τBoot]× [−U1,U2]× {(x2,x3)} under
the map ((n)τ,u,x2,x3) → ((n)τ,x1,x2,x3). The arguments given above, including the monotonicity guaranteed by
(18.22), imply that for each fixed (u,x2,x3) ∈ [−U1,U2] × T2, the map τ → x1(τ,u,x2,x3) is strictly increasing on
[τ0,τBoot], and that for each fixed (τ,x2,x3) ∈ [τ0,τBoot] ×T2, the map u → x1(τ,u,x2,x3) is strictly decreasing on
[−U1,U2]. It follows that there exist scalar functions τ→ (n)ax2,x3(τ) and τ→ (n)bx2,x3(τ) on [τ0,τBoot] such that
(n)Ix2,x3 = {(τ,x1,x2,x3) | τ ∈ [τ0,τBoot], (n)ax2,x3(τ) ≤ x1 ≤ (n)bx2,x3(τ)}, where (n)ax2,x3(·) and (n)bx2,x3(·) are C1

functions of τ such that (n)ax2,x3(τ) < (n)bx2,x3(τ) and d
dτ

(n)ax2,x3 , d
dτ

(n)bx2,x3 ≈ 1.
To complete the proof, it remains for us to show that the map ((n)τ,x1,x2,x3) → (t,x1,x2,x3) is injective. Let

(n)Ix2,x3 be the set from the previous paragraph. It suffices to show that for each fixed (x2,x3) ∈ T2, any two distinct

points in (n)Ix2,x3 with the same x1 coordinate must be mapped to distinct points under the map ((n)τ,x1,x2,x3)→
(t,x1,x2,x3). The structure of (n)Ix2,x3 revealed in the previous paragraph shows that for any two distinct points in
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(n)Ix2,x3 with the same x1 coordinate, the straight line segment joining them (along which x1,x2,x3 are constant and
(Interesting)τ varies) is contained in (n)Ix2,x3 (this can be thought of as the vertical convexity of (n)Ix2,x3 ). Hence, to

complete the proof, it suffices for us to show that the partial derivative of t with respect to (n)τ in the coordinate system
((n)τ,x1,x2,x3) is positive, except possibly when (n)τ = 0. To proceed, we note that the partial derivative of interest is
equal to 1

∂t (n)τ
, where ∂t is the Cartesian partial derivative. We now use (3.10), (3.13), (3.26a), (4.2), (4.4), (5.9a), Lemma 5.5,

Prop. 9.1, and the estimates of Lemma 15.5, and Prop. 17.1, (18.8a), and (18.9b) to compute that ∂t = L+(1+∗)X+∗Y(2)+∗Y(3)

and that 1
∂t (n)τ

≈ 1
1+ nφ

µ

= µ
µ+nφ , where φ is the cut-off function from Def. 4.1. We now recall that by (18.1), µ can vanish

only when (n)τ = 0. It follows that 1
∂t (n)τ

> 0 except possibly when (n)τ = 0. We have therefore shown that the map

((n)τ,x1,x2,x3)→ (t,x1,x2,x3) is injective, as desired.
Finally, since the map (n)I from (18.21) is the composition of the injective C3,1 map Υ with the C1,1 embedding of

T̆m,−n given by (15.43), it follows that (n)I is a C1,1 injection from T
2 into Cartesian coordinate space. Moreover, its

differential d(x2,x3)
(n)I is a 4× 2 matrix whose lower 2× 2 block is the identity

(
1 0
0 1

)
. That is, d(x2,x3)

(n)I is full rank,

and therefore (n)I is a C1,1 embedding. This concludes the proof of the proposition.
□

18.3. Control of the size of t and x1. In the next lemma, we derive improvements of the bootstrap assumptions of
Sect. 12.2.5.

Lemma 18.5 (Control of the size of t and x1 in (n)M[τ0,τBoot],[−U1,U2]). The following estimates hold for τ ∈ [τ0,τBoot]:

1

3δ̊∗
≤ min

(n)̃Σ
[−U1 ,U2]
τ

t ≤ sup
(n)̃Σ

[−U1 ,U2]
τ

t ≤ 3

δ̊∗
, (18.23a)

−U2 +
1

3δ̊∗
≤ min

(n)̃Σ
[−U1 ,U2]
τ

x1 ≤ sup
(n)̃Σ

[−U1 ,U2]
τ

x1 ≤U1 +
3

δ̊∗
. (18.23b)

Proof. We first prove (18.23a). From (3.21), (6.3), and ( BA L(n)τ), we have (n)̃Lt = 1
L(n)τ

Lt = 1
L(n)τ

≈ 1. Hence, recalling

that (n)̃Lu = 0 and (n)̃Lτ = 1, we can integrate along the integral curves of (n)̃L starting from any point in (n)̃Σ
[−U1,U2]
τ0

and use the data-assumption (11.17a) and the identity |τ0| = m0 to deduce that in (n)M[τ0,τBoot],[−U1,U2], we have
1

2δ̊∗
+ 1
Cm0 ≤ t ≤ 2

δ̊∗
+Cm0, which, for m0 sufficiently small, implies (18.23a).

To prove (18.23b), we first use (3.21), (6.3), ( BA L(n)τ), and (AUX L1
(Small) SMALL) to deduce that we have (n)̃Lx1 =

1
L(n)τ

Lx1 = 1
L(n)τ

(1 + L1
(Small)) ≈ 1. We now argue as in the proof of (18.23a) using the data-assumption (11.17b), thereby

arriving at (18.23b).
□

18.4. Pointwise estimates tied to the rough acoustic geometry. Equation (21.63) below provides the main elliptic-
hyperbolic integral identity that we will use to control the top-order derivatives of Ω and S . In Prop. 23.4, we derive point-
wise estimates for the error integrands on RHS (21.63). Some of these error integrands (e.g., the term E(Lower-order)[V ,V ]
defined in (21.47)) depend on geometric quantities that are tied to the rough acoustic geometry. In Lemma 18.6, we derive
pointwise estimates for these quantities. This serves as a preliminary step for our proof of Prop. 23.4. Moreover, some of
the estimates from Lemma 18.6 have other uses. For example, we use the estimate (18.31) for the deformation tensor of
(n)̃L in our proof of the fundamental theorem of calculus-type estimate (20.5) on rough tori.

Lemma 18.6 (Pointwise estimates tied to the rough acoustic geometry). Let 1{µ<−φ n
Lµ } be the characteristic function of the

set
{
(t,u,x2,x3) | µ(t,u,x2,x3) < −φ(u) n

Lµ(t,u,x2,x3)

}
(where φ is the cut-off function introduced in Def. 4.1) and similarly

for 1{µ≥−φ n
Lµ }. Let

((n)̃L)πππ be the deformation tensor of the vectorfield (n)̃L defined in (6.3), let ((n)R̆)πππ be the deformation

tensor of the vectorfield (n)R̆ defined in (6.6), let tr̃g/
((n)̃L)πππ and tr̃g/

((n)R̆)πππ respectively denote their traces with respect to g̃/ ,

and let d̃iv/ (n)U be the (n)̃ℓτ,u-divergence (see Def. 6.13) of the vectorfield
(n)U defined in (6.5). Then the following pointwise
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estimates hold on (n)M[τ0,τBoot),[−U1,U2]:∑
α=0,1,2,3

|(n)R̆α | ≲ −1{µ<−φ n
Lµ }φ

n

Lµ
+ 1{µ≥−φ n

Lµ }µ, (18.24)∑
α=0,1,2,3

|(n)Uα | ≲ ε, (18.25)

|P≤1(n)Uµ| ≲ ε2, (18.26)

|P≤1(n)r |, |X̆(n)r | ≲ ε2, (18.27)

|(n)R̆Lµ| ≲ 1, (18.28)

|(n)ULµ| ≲ ε2, (18.29)

|d̃iv/ (n)U | ≲ ε, (18.30)

|tr̃g/
((n)̃L)πππ| ≲ 1, (18.31)

|tr̃g/
((n)R̆)πππ| ≲ 1. (18.32)

Proof. Proof of (18.25)–(18.27): To prove (18.27), we first use (7.7), (3.31b), Lemma 5.5, and Prop. 9.1 to deduce that:

(n)r =
1

(L(n)τ)2
(g/−1)AB

(
∂

∂xA
(n)τ

)
∂

∂xB
(n)τ =

1
(L(n)τ)2

f(γ) ·
(
∂

∂x2
(n)τ,

∂

∂x3
(n)τ

)
·
(
∂

∂x2
(n)τ,

∂

∂x3
(n)τ

)
, (18.33)

where the expression on RHS (18.33) is depicted schematically. From (18.33), (15.24), (18.9b), the bootstrap assumptions, and
Cor. 17.2, we deduce that |(n)r | ≲ ε2 as desired. To prove that |P (n)r |, |X̆(n)r | ≲ ε2, we differentiate (18.33) with elements
P ∈ {L,Y(2),Y(3)} and X̆ and apply a similar argument, where we use Lemma 5.5 to express the vectorfield derivatives in

terms of geometric coordinate partial derivatives when they fall on (n)τ.
The estimates (18.25) and (18.26) follow from similar arguments based on the identity (7.8).

Proof of (18.24): Since (BA Lµ neg) implies that −Lµ ≈ 1 on the support of φ, the estimate (18.24) follows from the
decomposition (n)R̆α = µXα+φ n

LµL
α−µ(n)Uα (see (6.6)), Prop. 9.1, the bootstrap assumptions (in particular (BA Lµ neg)),

and (18.25).

Proof of (18.28)–(18.29): These estimates follow from the decompositions (6.6) and (7.8) and the arguments we used in the
proofs of (18.25)–(18.27).

Proof of (18.30): First, computing relative to the coordinates (x2,x3) on the rough tori (n)̃ℓτ,u , we deduce that:

d̃iv/ (n)U =
∂̃

∂̃xA
(n)UA

+
1
2

(n)UA(̃g/ −1)(dxB,dxC)

 ∂̃

∂̃xB
g̃/

 ∂̃

∂̃xA
,
∂̃

∂̃xC

+
∂̃

∂̃xC
g̃/

 ∂̃

∂̃xA
,
∂̃

∂̃xB

− ∂̃

∂̃xA
g̃/

 ∂̃

∂̃xB
,
∂̃

∂̃xC


 .

(18.34)

Next, we use (6.5) to write (n)UA = (̃g/ −1)(dxA,dxB)
∂
∂xB

(n)τ

∂
∂t

(n)τ
. We then use (5.8c)–(5.8d), (5.13c), and Prop. 9.1 to

schematically express ∂̃
∂̃xA

= f
(
γ, 1

∂
∂t

(n)τ
,Y (n)τ

)
Y(2) + f

(
γ, 1

∂
∂t

(n)τ
,Y (n)τ

)
Y(3) + f

(
γ, 1

∂
∂t

(n)τ
,

)
· (Y (n)τ) · L, and we also

use (3.31a), (3.31b) (6.11), (6.14), (6.17), and Prop. 9.1 to deduce the schematic identities g̃/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
= f

(
γ, 1

∂
∂t

(n)τ
,Y (n)τ

)
and (̃g/ −1)(dxA,dxB) = f

(
γ, 1

L(n)τ
,Y (n)τ

)
. From these identities, we deduce the following schematic identity:

d̃iv/ (n)U = f

P≤1γ,
1

L(n)τ
,

1
∂
∂t

(n)τ
,P≤2(n)τ

 · Y [1,2](n)τ. (18.35)

From (18.35), Prop. 9.1, the estimates (15.22), (15.24), and (18.9a)–(18.9b) for the rough time function, the bootstrap assump-
tions, and Cor. 17.2, we arrive at the desired estimate (18.30).
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Proof of (18.32): First, using (6.12) and (9.16), we compute that relative to the coordinates ((n)τ,u,x2,x3), we have

tr̃g/
((n)R̆)πππ = g̃/ −1

(
dxA,dxB

)
(n)R̆̃g/

(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
+ 2 ∂̃

∂̃xA
(n)R̆A. Considering this identity, arguing as in the proof of (18.35),

and also using (5.7b) and (6.6), we deduce the following schematic identity:

tr̃g/
((n)R̆)πππ = f

P≤2γ,Zγ, 1
L(n)τ

,
1

∂
∂t

(n)τ
,φ

n

Lµ
,P≤2(n)τ, X̆P (n)τ

 . (18.36)

From (18.36), Lemmas 5.5 and 9.1, the estimates (15.22) and (18.9a)–(18.9b) for the rough time function, and the bootstrap
assumptions (note in particular that (BA Lµ neg) implies that −Lµ ≈ 1 on the support of φ), we arrive at the desired
estimate (18.32).

Proof of (18.31): Considering definition (6.3) and arguing as in the proof of (18.36), we find that:

tr̃g/
((n)̃L)πππ = f

P≤1γ,
1

L(n)τ
,

1
∂
∂t

(n)τ
,P≤2(n)τ

 . (18.37)

From (18.37), Lemmas 5.5 and 9.1, the estimates (15.11a) and (18.9a)–(18.9b) for the rough time function, and the bootstrap
assumptions, we arrive at the desired estimate (18.31).

□

19. Modified quantities for controlling the acoustic geometry

We continue to work under the assumptions of Sect. 13.2. In this section, we construct “modified” versions of the
eikonal function quantity trg/χ, and we derive the transport equations that they satisfy. There are two kinds of modified
quantities: “partially modified” and “fully modified.” The partially modified quantities, when combined with integration
by parts, will allow us to avoid uncontrollably large error integrals in the wave equation energy identities. The fully
modified quantities, when combined with elliptic estimates on the rough tori (n)̃ℓτ,u , will allow us to control the top-order
Y(A)-derivatives of trg/χ without losing derivatives. The basic ideas behind the modified quantities originated in the works
[24, 26, 45].

19.1. Decompositions of RicLL. In the next lemma, we provide two key decompositions of RicLL, where Ric is the
Ricci curvature of the acoustical metric g. The decompositions are a crucial ingredient in our derivation of the transport
equations satisfied by the modified quantities; see the proofs of Props. 19.4 and 19.5.

Lemma 19.1 (The key identities verified by RicLL). Assume that the entries of Ψ⃗ = (R(+),R(−),v
2,v3, s) solve the

geometric wave equations (2.22a)–(2.22d). Then the following identity holds, where Ric is the Ricci curvature of g:

µRicLL = L
{
−G⃗LL ⋄ X̆Ψ⃗ −

1
2
µtrg/G⃗/ ⋄LΨ⃗ −

1
2
µG⃗LL ⋄LΨ⃗ +µG⃗/ #

L ⋄ ·d/ Ψ⃗
}

+A,
(19.1)

where A has the following schematic structure:

A = µf(Ψ⃗ ) · (C,D) + f(γ,ZΨ⃗ ) · P Ψ⃗ + f(γ,Ω,S,ZΨ⃗ ) · (Ω,S). (19.2)

Moreover, without the assumption that the geometric wave equations (2.22a)–(2.22d) are satisfied, the following identity
holds:

RicLL =
Lµ
µ

trg/χ+L
{
−1

2
trg/G⃗/ ⋄LΨ⃗ + G⃗/ #

L ⋄ ·d/ Ψ⃗
}

− 1
2
G⃗LL ⋄∆/ Ψ⃗ +B,

(19.3)

where B has the following schematic structure:

B = f(γ) · P Ψ⃗ · Pγ. (19.4)

Sketch of a proof. In [50, Lemma 6.1], in the case of two spatial dimensions, analogs of (19.1) and (19.3) were derived.
Analogous identities were also derived in [69, Corollary 11.4] in the case of quasilinear wave equations in three space
dimensions. The proof of (19.3) given in [69, Corollary 11.4] is based on first writing RicLL relative to the Cartesian

coordinates, then writing all derivatives of Ψ⃗ in terms of derivatives with respect to elements of {L,X} and ℓt,u-tangent
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differentiations, and then finally expressing (with the help of Lemma 3.21) all of the principal terms (i.e., the terms that

depend on the second derivatives of Ψ⃗ ) as a perfect L derivative up to lower order terms, except for the term −1
2 G⃗LL⋄∆/ Ψ⃗

on the last line of RHS (19.3). The detailed proof given in [69, Corollary 11.4] goes through nearly verbatim, except we have
used Prop. 9.1 to simplify our schematic presentation of the term B.

Similarly, (19.1) can be proved using the same arguments given in [69, Corollary 11.4], but the new feature of the present
work is the structure of the terms on RHS (19.1). To see how these terms arise, we explain how the proof of (19.1) is
connected to the identity (19.3). To pass from (19.3) to (19.1), one uses the identity (3.51a), the wave equations (2.22a)–(2.22d),

Lemma 3.21, and Prop. 9.1 to express the product of µ and the term −1
2 G⃗LL ⋄∆/ Ψ⃗ on RHS (19.3) as follows:

−1
2
µG⃗LL ⋄∆/ Ψ⃗ = −1

2
L
{
G⃗LL ⋄ (µLΨ⃗ + 2X̆Ψ⃗ )

}
− 1

2
trg/χG⃗LL ⋄ X̆Ψ⃗

+ f(γ) · Inhom+ f(γ,ZΨ⃗ ) · P Ψ⃗ .
(19.5)

In (19.5), “Inhom” denotes the inhomogeneous terms µ× RHS (2.22a)–(2.22d). In a detailed proof (see [69, Corollary 11.4]),

one finds that the term −1
2 trg/χG⃗LL ⋄ X̆Ψ⃗ on RHS (19.5) is canceled (and hence does not appear in (19.1)–(19.2)) by part

of the first product on RHS (19.3), where one uses (3.44) to substitute for the factor Lµ on RHS (19.3). Next, decomposing
µ×RHS (2.22a)–(2.22d) using (9.7b), (9.8a), and (9.8b), we find that the term f(γ) · Inhom on RHS (19.5) can be schematically

expressed as follows: f(γ) · Inhom = µf(Ψ⃗ ) · (C,D) + f(γ,ZΨ⃗ ) · P Ψ⃗ + f(γ,Ω,S,ZΨ⃗ ) · (Ω,S). Placing these terms on
RHS (19.2), and also incorporating the last term on RHS (19.5) into RHS (19.2), we arrive at (19.1)–(19.2). □

19.2. Definition of the modified quantities. We are now ready to define the modified quantities. The definitions are
motivated by the structure of the terms in Lemma 19.1; this will become clear in the proofs of Props. 19.4 and 19.5.

Definition 19.2 (Modified versions of the Pu-tangential derivatives of trg/χ). Let N = Ntop, and let PN ∈ P(N ), where

P(N ) is the set of order N Pu-tangential commutator operators from Def. 8.10. We define the fully modified quantity
(PN )X as follows:

(PN )X
def= µPN trg/χ+PNX, (19.6a)

X
def= −G⃗LL ⋄ X̆Ψ⃗ −

1
2
µtrg/G⃗/ ⋄LΨ⃗ −

1
2
µG⃗LL ⋄LΨ⃗ +µG⃗/ #

L ⋄ ·d/ Ψ⃗ . (19.6b)

Moreover, with N =Ntop − 1 and PN ∈ P(N ), we define the partially modified quantity (PN )X̃ as follows:

(PN )X̃
def= PN trg/χ+ (PN )̃X, (19.7a)

(PN )̃X
def= −1

2
trg/G⃗/ ⋄LPN Ψ⃗ + G⃗/ #

L ⋄ ·d/ P
N Ψ⃗ . (19.7b)

Finally, we define the following “0th-order” version of (19.7b):

X̃
def= −1

2
trg/G⃗/ ⋄LΨ⃗ + G⃗/ #

L ⋄ ·d/ Ψ⃗ . (19.8)

19.3. Transport equations for the modified quantities. In this section, we derive transport equations for the fully
modified quantities from Def. 19.2. We start with the following lemma, which provides the transport equation satisfied by
trg/χ. This transport equation is an analog of the well-known Raychaudhuri equation in General Relativity [63].

Lemma 19.3 (Raychaudhuri-type transport equation for trg/χ). trg/χ obeys the following transport equation:

µLtrg/χ = (Lµ)trg/χ−µRicLL −µ|χ|2g/ . (19.9)

Proof. The same proof of [69, (11.23)] holds in the current setting. □

Proposition 19.4 (Transport equation satisfied by (PN )X ). Assume that Ψ⃗ = (R(+),R(−),v
2,v3, s) solve the geometric

wave equations (2.22a)–(2.22d). Let N = Ntop, and let PN ∈ P(N ), where P(N ) is the set of order N Pu-tangential
commutator operators from Def. 8.10. Let (PN )X be the fully modified quantity defined in (19.6a), let X be as defined in
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(19.6b), and let A be the term on RHS (19.1). Then (PN )X obeys the following transport equation, where PN is the same
differential operator every time it appears in (19.10):

L(PN )X −
(
2
Lµ
µ

)
(PN )X = −

(
2
Lµ
µ

)
PNX+µ[L,PN ]trg/χ

+ [L,PN ]X+ [µ,PN ]Ltrg/χ+ [PN ,Lµ]trg/χ

−PN
(
µ|χ|2g/

)
−PNA.

(19.10)

Sketch of a proof. First, we use (19.1) to substitute for the product µRicLL in (19.9). We then differentiate the resulting
equation with PN and carry out tedious but straightforward commutations. Also taking into account definition (19.6a),
we conclude (19.10). We refer to the proof of [73, Proposition 6.2] for more details. □

Proposition 19.5 (Transport equation satisfied by (PN−1)X̃ ). Let N = Ntop, and let PN−1 ∈ P(N−1), where P(N−1) is the

set of order N −1 Pu-tangential commutator operators from Def. 8.10. Let (PN−1)X̃ be the corresponding partially modified

quantity defined in (19.7a), let (PN−1 )̃X be the term defined in (19.7b), let X̃ be the term defined in (19.8), and let B be the

term on RHS (19.3). Then (PN−1)X̃ obeys the following transport equation, where PN−1 is the same differential operator
every time it appears in (19.11):

L(PN−1)X̃ =
1
2
G⃗LL ⋄∆/ PN−1Ψ⃗ + (PN−1)B, (19.11)

where:

(PN−1)B
def
= −PN−1B−PN−1

(
|χ|2g/

)
+

1
2

[PN−1, G⃗LL] ⋄∆/ Ψ⃗ +
1
2
G⃗LL ⋄ [PN−1,∆/ ]Ψ⃗

+ [L,PN−1]trg/χ+ [L,PN−1]X̃+L
{
(PN−1 )̃X−PN−1X̃

}
.

(19.12)

Proof. Substituting the identity (19.3) into (19.9), dividing the resulting equation by µ, and appealing to the definition (19.8)
of X̃, we deduce that:

L
(
trg/χ+ X̃

)
=

1
2
G⃗LL ⋄∆/ Ψ⃗ − |χ|2g/ −B. (19.13)

The transport equation (19.11) then follows from differentiating (19.13) with PN−1, carrying out straightforward commuta-
tions, and accounting for definitions (19.7a)–(19.8).

□

20. Basic ingredients in the L2 analysis

We continue to work under the assumptions of Sect. 13.2. In this section, we establish some preliminary ingredients that
we will use when we derive energy estimates. In Sect. 21, we will derive one more crucial ingredient: elliptic-hyperbolic
integral identities that we use to control the top-order derivatives of the specific vorticity and entropy gradient. In
Sect. 20.1, we derive some differential and integral identities involving the rough tori (n)̃ℓτ,u . In Sect. 20.2, we establish
some basic Sobolev embedding estimates and fundamental theorem of calculus-type estimates on the rough tori. In
Sect. 20.3, we use the identities from Sect. 20.1 to prove various integration by parts identities that will play a key role
in our energy estimates. Next, in Sect. 20.4, we use the vectorfield multiplier method to construct the building block

L2-based energies and null-fluxes that we will use to control the wave-variables Ψ⃗ . We also construct a companion set of
building block energies and null-fluxes that we will use to control the transport-variables Ω, S , C, and D. Furthermore,
in Prop. 20.9, we establish the fundamental energy-null-flux integral identities that we exploit in our L2 analysis. In
Sect. 20.5, we use the building block energies and null fluxes to define the quantities that we will use to control the

solution in L2. Of particular interest are the spacetime integrals KN (τ,u) and K
(Partial)
N (τ,u) defined in (20.43b) and

(20.44b) respectively. These spacetime integrals appear on the left-hand side of our energy identity (20.26), and they are
fundamental for controlling error integrals that involve the quantities d/ PNΨ . Finally, in Sect. 20.6, we exhibit the key
coerciveness properties of our L2-controlling quantities with respect to the L2 norms from Sect. 8.2.3.
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20.1. Differential and integral identities involving (n)̃ℓτ,u . The following lemma, though standard, plays an important
role in our proof of the energy–null-flux identities for the wave-variables (see Prop. 20.9). Moreover, the identity (20.2)
plays a crucial role in our proof that one of the rough tori error integrals (specifically, the second term on LHS (21.14)) in
our elliptic-hyperbolic identities for the vorticity and entropy has a favorable sign.

Lemma 20.1 (Differential and integral identities involving (n)̃ℓτ,u ). Let f be a scalar function on
(n)M[τ0,τBoot),[−U1,U2], let

(n)̃L be the vectorfield defined in (6.3), and let (n)R̆ be the vectorfield defined in (6.6). For Z ∈ {(n)̃L, (n)R̆}, let tr̃g/
(Z)πππ be the

g̃/-trace (see Def. 6.10) of the deformation tensor (Z)πππ of Z . Then the following integral identities hold for τ ∈ [τ0,τBoot) and
−U1 ≤ u1 ≤ u2 ≤U2:

∂̃

∂̃τ

∫
(n)̃ℓτ,u

f dϖ g̃/

 =
∫

(n)̃ℓτ,u

{
(n)̃Lf +

1
2
f tr̃g/

((n)̃L)πππ
}

dϖ g̃/ , (20.1a)

∂̃

∂̃u

∫
(n)̃ℓτ,u

f dϖ g̃/

 =
∫

(n)̃ℓτ,u

{
(n)R̆f +

1
2
f tr̃g/

((n)R̆)πππ
}

dϖ g̃/ . (20.1b)

Moreover, for u1 ≤ u2, we have:∫
(n)̃Σ

[u1 ,u2]
τ

{
(n)R̆f +

1
2
f tr̃g/

((n)R̆)πππ
}

dϖ =
∫

(n)̃ℓτ,u2

f dϖ g̃/ −
∫

(n)̃ℓτ,u1

f dϖ g̃/ . (20.2)

Proof. We prove only (20.1b) and (20.2) because (20.1a) was proved59 in [4, Lemma 6.3]. Throughout this proof, we use the
same abuse of notation highlighted in in Remark 8.4, for example by identifying (n)̃ℓτ,u with its image {τ} × {u} ×T2 in
adapted rough coordinate space under the map (n)T . To proceed, we let Φ(∆u) = Φ(∆u)(τ,u,x2,x3) be the flow map of
(n)R̆ relative to the adapted rough coordinates. More precisely, for each fixed (τ,u,x2,x3) ∈ [τ0,τBoot]× [−U1,U2]×T2,
Φ(∆u)(τ,u,x2,x3) solves the ODE system ∂

∂∆uΦ(∆u)(τ,u,x2,x3) = (n)R̆ ◦Φ(∆u)(τ,u,x2,x3), with the initial condition

Φ(0)(τ,u,x2,x3) = (τ,u,x2,x3). Since (n)R̆τ = 0 and (n)R̆u = 1, and since (4.2), (6.6), (7.8), Prop. 9.1, Lemma 15.5, and

Lemma 15.6 imply that ∥(n)R̆∥C1,1
rough([τ0,τBoot]×[−U1,U2]×T2) ≤ C , it follows that if τ ∈ [τ0,τBoot], u ∈ (−U1,U2), and |∆u|

is sufficiently small (depending on u), then Φ(∆u) restricts to diffeomorphism from the rough torus (n)̃ℓτ,u onto the

rough torus (n)̃ℓτ,u+∆u ⊂ (n)M[τ0,τBoot],[−U1,U2]. Hence, in view of (8.8), (8.12a), and the standard formula for change of
variables in an integral over T2, we deduce the following identity, where Φ∗(∆u) denotes pullback by the restriction of

Φ(∆u) to (n)̃ℓτ,u (in particular, [Φ∗(∆u)f ](x2,x3) = f ◦Φ(∆u)(τ,u,x2,x3)), and throughout this proof, determinants are

taken relative to the coordinates (x2,x3) on the rough tori:∫
(n)̃ℓτ,u+∆u

f dϖ g̃/ =
∫

(n)̃ℓτ,u

[Φ∗(∆u)f ]dϖ
Φ∗(∆u )̃g/

=
∫
T

2
f ◦Φ(∆u)(τ,u,x

2,x3)
√

det[Φ∗(∆u )̃g/]dx2dx3. (20.3)

Next, using that (n)R̆ is the infinitesimal generator of the flow map Φ(∆u), and using (9.16) and the differentiation identity

d
d∆u ln

(
detM(∆u)

)
=

(
M−1

(∆u)

)AB d
d∆u (M(∆u))AB (which holds for invertible matrices M(∆u) with entries that are func-

tions of ∆u), we note the following differentiation identities: ∂
∂∆u |∆u=0Φ

∗
(∆u)f = (n)R̆f and ∂

∂∆u |∆u=0

√
det[Φ∗(∆u )̃g/] =

1
2

√
det g̃/ tr̃g/

((n)R̆)πππ. Using these identities, we differentiate (20.3) under the integral on the RHS to obtain:

∂̃

∂̃u

∫
(n)̃ℓτ,u

f dϖ g̃/ =
∂
∂∆u

∣∣∣∣∣
∆u=0

∫
(n)̃ℓτ,u+∆u

f dϖ g̃/ =
∫

(n)̃ℓτ,u

{
(n)R̆f +

1
2
f tr̃g/

((n)R̆)πππ
}

dϖ g̃/ . (20.4)

We have therefore proved (20.1b).
(20.2) then follows from integrating (20.1b) with respect to u and using the fundamental theorem of calculus, (8.9), and

(8.12c). □

59Since (n)̃L is g-orthogonal to (n)̃ℓτ,u and (n)̃Lτ = 1, the vectorfield (n)̃L agrees with the vectorfield denoted by “H̆” in [4, Lemma 6.3].
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20.2. Sobolev embedding and fundamental theorem of calculus-type estimates on the rough tori.

Lemma 20.2 (Sobolev embedding and fundamental theorem of calculus-type estimates on (n)̃ℓτ,u ). Let f be a scalar
function on (n)M[τ0,τBoot),[−U1,U2]. Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

∥PN f ∥2
L2((n)̃ℓτ,u) ≲ ∥P

N f ∥2
L2((n)̃ℓτ0 ,u) +

∫
(n)P [τ0 ,τ]

u

1
L(n)τ

|LPN f |2 dϖ, (20.5)

∥f ∥L∞((n)̃ℓτ,u) ≲ ∥P
≤2f ∥L2((n)̃ℓτ,u), (20.6a)

∥f ∥2
L∞((n)̃ℓτ,u) ≲ ∥P

≤2f ∥2
L2((n)̃ℓτ0 ,u) +

∫
(n)P [τ0 ,τ]

u

1
L(n)τ

|LP≤2f |2 dϖ. (20.6b)

Proof. Using (20.1a) with f 2 in place of f , (6.3), the pointwise estimate (18.31), and Young’s inequality, we deduce∣∣∣∣∣ ∂̃∂̃τ∥PN f ∥2L2((n)̃ℓτ,u )

∣∣∣∣∣ ≤ ∥∥∥∥ 1√
L(n)τ

LPN f
∥∥∥∥2

L2((n)̃ℓτ,u )
+C∥PN f ∥2

L2((n)̃ℓτ,u )
. Integrating this inequality with respect to τ, applying

Grönwall’s inequality, and also using the identity
∫ τ

τ′=τ0

∥∥∥∥ 1√
L(n)τ
PN f

∥∥∥∥2

L2((n)̃ℓτ′ ,u )
dτ′ =

∫
(n)P [τ0 ,τ]

u

1
L(n)τ
|LPN f |2 dϖ , we

conclude the inequality (20.5).
We now prove (20.6a)–(20.6b). We begin with the following estimate, which holds at fixed (τ,u) by virtue of the

standard Sobolev embedding result H2(T2) ↪→ L∞(T2):

∥f ∥L∞((n)̃ℓτ,u) ≲
∑
I+J≤2


∫
T

2

∣∣∣∣∣∣∣
 ∂̃

∂̃x2

I  ∂̃

∂̃x3

J f (τ,u,x2,x3)

∣∣∣∣∣∣∣
2

dx2dx3


1/2

. (20.7)

Using (5.13c), Lemma 15.4 to estimate derivatives of τ in (5.13c), the identities (5.8c)–(5.8d), Prop. 9.1, the bootstrap
assumptions, and the area form element comparison estimate (16.7a), we deduce, in view of definitions (8.8) and (8.12a),
that RHS (20.7) ≲ ∥P≤2f ∥L2((n)̃ℓτ,u). We have therefore proved (20.6a). The estimate (20.6b) then then follows from (20.6a)

and (20.5) with N = 0,1,2.
□

20.3. Integration by parts identities. In this section, we establish several integration by parts identities that we will
exploit in our top-order energy estimates. We start with the following lemma, which provides a useful expression for the
covariant divergence of a spacetime vectorfield.

Lemma 20.3 (Covariant divergence identity for spacetime vectorfields). Let J be a spacetime vectorfield. Consider the
decomposition µJ = −µJLL−JX̆L−JLX̆ +µΠ/ J afforded by Lemma 3.9, where JL = g(J ,L), JX̆ = g(J , X̆),
and Π/ J is the ℓt,u-projection of J (see Def. 3.3). Then the following identity holds:

µDαJ α = −L(µJL)−L(JX̆ )− X̆(JL) + div/ (µΠ/ J )−µtrg/k/JL − trg/χJX̆ . (20.8)

Proof. The same proof of [73, Lemma 4.3] holds with minor modifications to account for the third space dimension. □

The following lemma provides some preliminary integration by parts identities.

Lemma 20.4 (Preliminary integration by parts identities). Let (τ,u) ∈ [τ0,τBoot)× [−U1,U2], and let υ and ζ be scalar
functions on (n)M[τ0,τ),[−U1,u]. Then the following integration by parts identities hold, where in (20.9b), A = 2,3, and
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trg/
(Y(A))π/ denotes the g/-trace of the ℓt,u-projection of the deformation tensor of Y(A):∫

(n)M[τ0 ,τ),[−U1 ,u]

((n)̃Lυ)ζdϖ = −
∫

(n)M[τ0 ,τ),[−U1 ,u]

υ((n)̃Lζ)dϖ

− 1
2

∫
(n)M[τ0 ,τ),[−U1 ,u]

tr̃g/
((n)̃L)πππυζdϖ

+
∫

(n)̃Σ
[−U1 ,u]
τ

υζdϖ −
∫

(n)̃Σuτ0

υζdϖ,

(20.9a)

∫
(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

(Y(A)υ)ζdϖ = −
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

υ(Y(A)ζ)dϖ

− 1
2

∫
(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

trg/
(Y(A))π/ υζdϖ

+
∫

(n)̃Σ
[−U1 ,u]
τ

1
L(n)τ

(Y(A)
(n)τ)υζdϖ −

∫
(n)̃Σuτ0

1
L(n)τ

(Y(A)
(n)τ)υζdϖ.

(20.9b)

Proof. The identity (20.9a) follows from setting f
def= υζ in (20.1a), then integrating the resulting identity with respect to τ

and then with respect to u, then using Fubini’s theorem to switch the order of τ and u integrations, and appealing to
the definitions of the forms in Def. 8.3.

We now prove (20.9b). Since Y(A) is Pu-tangent, we can expand it in terms of the adapted rough coordinate partial
derivative vectorfields as follows:

Y(A) = (Y(A)
(n)τ)

∂̃

∂̃τ
+Y vf AB

∂̃

∂̃xB
. (20.10)

Next, using (20.10) and the fact that relative to the adapted rough coordinates, we have
√
|detg| = µ

L(n)τ

√
det g̃/ (see

(8.13b)), we can expand the product of the covariant divergence of the vectorfield 1
µυζY(A) and

√
|detg| as follows (again,

relative to the adapted rough coordinates):√
|detg|Dα

(1
µ
υζY(A)

)α
=
∂̃

∂̃τ

(
1

L(n)τ
(Y(A)

(n)τ)υζ
√

det g̃/
)

+
∂̃

∂̃xB

(
1

L(n)τ
Y B(A)υζ

√
det g̃/

)
. (20.11)

Through a straightforward Leibniz-rule-based expansion, we also have:√
|detg|Dα

(1
µ
υζY(A)

)α
=

{
1

L(n)τ
(Y(A)υ)ζ+

1
L(n)τ

υ(Y(A)ζ)− 1
L(n)τ

Y(A)µ

µ
υζ+

1
L(n)τ

υζ
(
DαY

α
(A)

)}√
det g̃/ . (20.12)

Next, we use (20.8), the fact that Y(A) is ℓt,u-tangent, and Lemma 3.9 to express the term DαY
α
(A) on RHS (20.12) as

follows, where trg/
(Y(A))π/ is the g/-trace of the ℓt,u-projection of the deformation tensor of Y(A):

DαY
α
(A) =

1
µ
Y(A)µ+ div/ Y(A) =

1
µ
Y(A)µ+

1
2
trg/

(Y(A))π/ . (20.13)

Using (20.13) to substitute for the factor DαY
α
(A) on RHS (20.12) and noting that the factor 1

µY(A)µ on RHS (20.13) leads

to the cancellation of the product − 1
L(n)τ

Y(A)µ

µ υζ in (20.12), we deduce that:√
|detg|Dα

(1
µ
υζY(A)

)α
=

{ 1
L(n)τ

(Y(A)υ)ζ+
1

L(n)τ
υ(Y(A)ζ) +

1
2

1
L(n)τ

υζtrg/
(Y(A))π/

}√
det g̃/ . (20.14)

Next, we integrate RHS (20.11) over [τ0,τ) × [−U1,u] ×T2 with respect to dx2 dx3du′dτ′ , equate it to the integral of
RHS (20.14), and use Fubini’s theorem. In view of definitions (8.8) and (8.11), we see that the spacetime integrals of the
terms on RHS (20.14) appear in (20.9b). The integral of the last term on RHS (20.11) vanishes because T

2 is a closed
manifold. Finally, we note that the integral of the first term on RHS (20.11) yields, in view of (8.8), (8.12c), and the
fundamental theorem of calculus, the two hypersurface integrals in (20.9b).

□
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We are now ready to establish the integration by parts identity that we will use to control top-order wave equation
error terms that are tied to the partially modified quantities defined in (19.7a).

Lemma 20.5 (The key integration by parts identity tied to the partially modified quantities). Let (τ,u) ∈ [τ0,τBoot) ×
[−U1,U2], and let ϕ and η be scalar functions on (n)M[τ0,τ),[−U1,u]. Let N = Ntop, and let PN ∈ P(N ), where P(N ) is
the set of order N Pu-tangential commutator operators from Def. 8.10. Let Y(A) ∈ Y . Then the following integration by
parts identity holds:∫

(n)M[τ0 ,τ),[−U1 ,u]

(1 + 2µ)(X̆ϕ)((n)̃LPNϕ)Y(A)ηdϖ

=
∫

(n)M[τ0 ,τ),[−U1 ,u]

(1 + 2µ)(X̆ϕ)(Y(A)PNϕ)(n)̃Lηdϖ

−
∫

(n)̃Σ
[−U1 ,u]
τ

(1 + 2µ)(X̆ϕ)(Y(A)PNϕ)ηdϖ +
∫

(n)̃Σ
[−U1 ,u]
τ

(Y(A)
(n)τ)(1 + 2µ)(X̆ϕ)((n)̃LPNϕ)ηdϖ

+
∫

(n)̃Σuτ0

(1 + 2µ)(X̆ϕ)(Y(A)PNϕ)ηdϖ −
∫

(n)̃Σuτ0

(Y(A)
(n)τ)(1 + 2µ)(X̆ϕ)((n)̃LPNϕ)ηdϖ

+
∫

(n)M[τ0 ,τ),[−U1 ,u]

Error[ϕ;η;PN ;Y(A)]dϖ ,

(20.15)

where:

Error[ϕ;η;PN ;Y(A)]
def
=

1
L(n)τ

(1 + 2µ)(X̆ϕ)([L,Y(A)]PNϕ)η

+ 2
1

L(n)τ
(Lµ)(X̆ϕ)(Y(A)PNϕ)η+

1
L(n)τ

(1 + 2µ)(LX̆ϕ)(Y(A)PNϕ)η

− 2
1

L(n)τ
(Y(A)µ)(X̆ϕ)(LPNϕ)η− 1

L(n)τ
(1 + 2µ)(Y(A)X̆ϕ)(LPNϕ)η

− 1
2

1
L(n)τ

trg/
(Y(A))π/ (1 + 2µ)(X̆ϕ)(LPNϕ)η

+
1
2
tr̃g/

((n)̃L)πππ(1 + 2µ)(X̆ϕ)(Y(A)PNϕ)η.

(20.16)

Proof. We will summarize the tedious but straightforward calculations that yield (20.15). First, we use definition (6.3) and

the integration by parts identity (20.9b) with υ
def= η and ζ

def= (1 + 2µ)(X̆ϕ)LPNϕ to remove the Y(A) operator from η

on LHS (20.15). This produces the main integral −
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

(1 + 2µ)(X̆ϕ)(Y(A)LPNϕ)ηdϖ as well as many

error integrals. We then commute Y(A) and L and appeal to definition (6.3) to rewrite the main integral as follows:

−
∫

(n)M[τ0 ,τ),[−U1 ,u]

(1 + 2µ)(X̆ϕ)((n)̃LY(A)PNϕ)ηdϖ

+
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

(1 + 2µ)(X̆ϕ)([L,Y(A)]PNϕ)ηdϖ .
(20.17)

Finally, we use the integration by parts identity (20.9a) υ
def= Y(A)PNϕ and ζ

def= (1 + 2µ)(X̆ϕ)η to remove the factor of
(n)̃L from the factor (n)̃LY(A)PNϕ in the first integral in (20.17).

□

20.4. Fundamental energy identity. In this section, we derive the fundamental energy-null-flux integral identities that
we will use to derive hyperbolic L2-type estimates for the wave- and transport-variables.

20.4.1. Energy-momentum tensor, energy currents, and the multiplier vectorfield for the wave-variables. To derive energy

identities for the wave-variables Ψ⃗ , which solve the quasilinear wave equations (2.22a)–(2.22d), we rely on the well-known
multiplier method, which we now introduce.
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Let f be a scalar function (in our applications, f will be some vectorfield derivative of one of the wave-variables). We
define the energy-momentum tensor associated to f to be the following symmetric type

(0
2
)
tensorfield, where we recall

that D is the Levi-Civita connection of the acoustical metric g:

Qαβ = Qαβ[f ] def= (Dαf )Dβf −
1
2
gαβ(g−1)κλ(Dκf )Dλf . (20.18)

Given any scalar function f and any multiplier vectorfield Z , we define the corresponding energy current vectorfield
as follows:

(Z)Jα[f ] def= Qαβ[f ]Zβ . (20.19)

Recall that the deformation tensor of Z is the following symmetric type
(0
2
)
tensorfield:

(Z)πππαβ
def= DαZβ +DβZα . (20.20)

The starting point for our derivation of our L2-type integral identities for solutions of covariant wave equations
is the following well-known identity, which follows easily from the definitions, the Leibniz rule, and the fact that
DαDβf = DβDαf for scalar functions f :

Dα
(Z)Jα[f ] = (□g(Ψ⃗ )f )Zf +

1
2
Qαβ (Z)πππαβ . (20.21)

In order to obtain wave equation energy estimates that are sufficient to allow us to track the solution up to the singular
boundary, we use the multiplier vectorfield from the next definition.

Definition 20.6 (The g-timelike multiplier vectorfield T̆ ). We define T̆ to be the following vectorfield:

T̆
def= (1 + 2µ)L+ 2X̆. (20.22)

Simple calculations based on Lemma 3.9 imply that g(T̆ , T̆ ) = −4µ(1 +µ). Hence, T̆ is g-timelike whenever µ > 0.
This property is important because it leads to coercive energy identities.

20.4.2. Building block energies, null-fluxes, and spacetime integrals. We are now ready to define our building block energies
and null-fluxes for the fluid variables. We also define spacetime integrals that play a crucial role in our energy estimates;
see Def. 20.8.

Definition 20.7 (Energies and null-fluxes for the fluid variables). Let f be a scalar function on (n)M[τ0,τBoot),[−U1,U2].

Recall that (n)N̂ denotes the future-directed g-timelike unit normal of (n)̃Σ
[−U1,u]
τ , that T̆ denotes the multiplier vectorfield

defined in (20.22), that the area forms dϖ and dϖ are defined in Def. 8.3, and that |(n)R̆|g is as in (6.20a). For
(τ,u) ∈ [τ0,τBoot)× [−U1,U2], we respectively define the wave energy and the null-flux associated to f as follows:

E(Wave)[f ](τ,u) def=
∫

(n)̃Σ
[−U1 ,u]
τ

Q[f ](T̆ , (n)N̂ )|(n)R̆|g dϖ, (20.23a)

F(Wave)[f ](τ,u) def=
∫

(n)P [τ0 ,τ)
u

1
L(n)τ

Q[f ](T̆ ,L)dϖ. (20.23b)

If f is a scalar function on (n)M[τ0,τBoot),[−U1,U2] and (τ,u) ∈ [τ0,τBoot)× [−U1,U2], then we respectively define the
transport energy and the null-flux associated to f as follows, where φ is the cut-off function introduced in Def. 4.1:

E(Transport)[f ](τ,u) def=
∫

(n)̃Σ
[−U1 ,u]
τ

(
µ−φ n

Lµ

)
f 2 dϖ, (20.24a)

F(Transport)[f ](τ,u) def=
∫

(n)P [τ0 ,τ)
u

1
L(n)τ

f 2 dϖ. (20.24b)

The integrals appearing in the next definition yield spacetime L2-control of d/ f without degenerate µ weights. These
integrals arise from favorable terms in the wave equation energy identities (see Prop. 20.9). They are of crucial importance
for our energy estimates.
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Definition 20.8 (Key coercive spacetime integrals). If f is a scalar function on (n)M[τ0,τBoot),[−U1,U2] and (τ,u) ∈
[τ0,τBoot) × [−U1,U2], then we define the following spacetime integral, where d/ f is as in Def. 3.10, 1[−Uj,Uj] =
1[−Uj,Uj](u′) denotes the characteristic function of the interval [−Uj,Uj], φ = φ(u′) is the cut-off function from

Def. 4.1, the vectorfield (n)̃L is defined in (6.3), and the volume form dϖ = dϖ (τ′ ,u′ ,x2,x3) is defined in (8.11):

K[f ](τ,u) def=
∫

(n)M[τ0 ,τ),[−U1 ,u]

{
−1

2
1[−Uj,Uj](

(n)̃Lµ) +
1

L(n)τ
nφ

}
|d/ f |2g/ dϖ . (20.25)

20.4.3. The fundamental energy–null-flux integral identities. In the next proposition, we provide the fundamental energy–
null-flux integral identities that form the foundation of our hyperbolic energy estimates for the fluid variables.

Proposition 20.9 (Fundamental energy–null-flux identities).
Wave equation energy–null-flux identity. Suppose that on (n)M[τ0,τBoot),[−U1,U2], the scalar function f is a solution
to the inhomogeneous covariant wave equation µ2gf = G. Let E(Wave)[f ](τ,u) and F(Wave)[f ](τ,u) be as defined in
Def. 20.7, and let K[f ](τ,u) be as defined in (20.25). Then for (τ,u) ∈ [τ0,τBoot)× [−U1,U2], the following identity holds:

E(Wave)[f ](τ,u) +F(Wave)[f ](τ,u) +K[f ](τ,u) = E(Wave)[f ](τ0,u) +F(Wave)[f ](τ,−U1)

−
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)Lf + 2X̆f

}
Gdϖ

+
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

(T̆ )B[f ]dϖ .

(20.26)

The error term (T̆ )B[f ] appearing in the last integral on RHS (20.26) can be decomposed as follows, where 1[−Uj,Uj]c =
1[−Uj,Uj]c (u′) denotes the characteristic function of [−Uj,Uj]c = (−∞,−Uj)∪ (Uj,∞):

(T̆ )B[f ]
def
=

1
2
1[−Uj,Uj]c (Lµ)|d/ f |2g/ +

6∑
i=1

(T̆ )B(i)[f ], (20.27)

where:

(T̆ )B(1)[f ]
def
= (Lf )2

{
−1

2
Lµ+ X̆µ− 1

2
µtrg/χ−µ2trg/k/

(Tan–Ψ⃗ ) −µtrg/k/ (Trans–Ψ⃗ )
}
, (20.28a)

(T̆ )B(2)[f ]
def
= −(Lf )(X̆f )

{
trg/χ+ 2µtrg/k/

(Tan–Ψ⃗ ) + 2trg/k/
(Trans–Ψ⃗ )

}
, (20.28b)

(T̆ )B(3)[f ]
def
= |d/ f |2g/

{
(n)R̆µ+µ(n)Uµ+ 2µLµ+

1
2
µtrg/χ+µ2trg/k/

(Tan–Ψ⃗ ) +µtrg/k/
(Trans–Ψ⃗ )

}
, (20.28c)

(T̆ )B(4)[f ]
def
= (Lf )(d/ #f ) ·

{
(1− 2µ)d/ µ+ 2µζ(Tan–Ψ⃗ ) + 2ζ(Trans–Ψ⃗ )

}
, (20.28d)

(T̆ )B(5)[f ]
def
= −2(X̆f )(d/ #f ) ·

{
d/ µ+ 2µζ(Tan–Ψ⃗ ) + 2ζ(Trans–Ψ⃗ )

}
, (20.28e)

(T̆ )B(6)[f ]
def
= −µd/ #f ⊗d/ #f ·

{
χ+ 2µk/ (Tan–Ψ⃗ ) + 2k/ (Trans–Ψ⃗ )

}
. (20.28f)

In (20.28a)–(20.28f) and below in (20.29), the vectorfields (n)R̆ and (n)U are as in Def. 6.4 and the ℓt,u-tangent tensorfields

χ, k/ (Tan–Ψ⃗ ), k/ (Trans–Ψ⃗ ), ζ(Tan–Ψ⃗ ), and ζ(Trans–Ψ⃗ ) are as in Lemma 3.25.

Transport equation energy–null-flux identity. Suppose that on (n)M[τ0,τBoot),[−U1,U2], f is a solution to the inhomoge-
neous transport equation µBf = G, and let E(Transport)[f ](τ,u) and F(Transport)[f ](τ,u) be as defined in Def. 20.7. Then
for (τ,u) ∈ [τ0,τBoot)× [−U1,U2], the following identity holds:

E(Transport)[f ](τ,u) +F(Transport)[f ](τ,u) = E(Transport)[f ](τ0,u) +F(Transport)[f ](τ,−U1)

+ 2
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

f ·Gdϖ

+
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

{
Lµ+µtrg/k/

}
f 2 dϖ .

(20.29)
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Proof.

Proof of (20.26): We will apply the covariant divergence identity (20.21) with Z
def= T̆ , where T̆ is defined in (20.22).

Throughout, we often use the abbreviated notation J def= (T̆ )J[f ] to denote the energy current defined by (20.19). To
proceed, we first write J in terms of the adapted rough coordinate partial derivative vectorfields as follows:

J = Jτ
∂̃

∂̃τ
+ Ju

∂̃

∂̃u
+ JA

∂̃

∂̃xA
. (20.30)

Next, we claim that the following identities hold, where |(n)R̆|g is as in (6.20a):

Jτ = −
(L(n)τ)|(n)R̆|g

µ
Q[f ](T̆ , (n)N̂ ), (20.31a)

Ju = −1
µ
Q[f ](T̆ ,L). (20.31b)

To prove (20.31a), we first note that since (n)N̂ is g-orthogonal to (n)̃Σ
[−U1,u]
τ while ∂̃

∂̃u
and ∂̃

∂̃xA
are tangent to (n)̃Σ

[−U1,u]
τ ,

we have, in view of (20.19) and (20.30):

Q[f ](T̆ , (n)N̂ ) = g
(

(T̆ )J[f ], (n)N̂
)

= Jτg

 ∂̃
∂̃τ
, (n)N̂

 . (20.32)

Next, we use (6.3)–(6.4) and the fact that Lu = ∂̃
∂̃τ
u = 0 to deduce the identity ∂̃

∂̃τ
= 1
L(n)τ

L− 1
L(n)τ

LC ∂̃
∂̃xC

, and we use

Lemma 3.9, (6.7), (6.20d), and (7.9) to deduce the identity g(L, (n)N̂ ) = − µ

|(n)R̆|g
. Combining these two identities with (20.32)

and using that g
(
∂̃
∂̃xC

, (n)N̂
)

= 0, we find that:

Q[f ](T̆ , (n)N̂ ) =
1

L(n)τ
Jτg(L, (n)N̂ ) = − µ

(L(n)τ)|(n)R̆|g
Jτ, (20.33)

which yields (20.31a). The identity (20.31b) can be proved using similar arguments based on taking the g-inner product of
(T̆ )J[f ] with L and using that L is g-orthogonal to Pu as well as the identity ∂̃

∂̃u
= (n)R̆− (n)R̆C ∂̃

∂̃xC
, which follows from

Lemma 3.9 and (6.5)–(6.6).
Next, we note the following formula, which follows by combining the standard identity for the divergence of a

vectorfield expressed relative to the adapted rough coordinates with the identities (8.13b) and (20.31a)–(20.31b):√
|detg|Dα

(T̆ )Jα[f ] =
∂̃

∂̃τ

(√
|detg|Jτ

)
+
∂̃

∂̃u

(√
|detg|Ju

)
+

∂̃

∂̃xA

(√
|detg|JA

)
= − ∂̃

∂̃τ

(
Q[f ](T̆ , (n)N̂ )|(n)R̆|g

√
det g̃/

)
− ∂̃

∂̃u

(
1

L(n)τ
Q[f ](T̆ ,L)

√
det g̃/

)
+

∂̃

∂̃xA

(√
|detg|JA

)
.

(20.34)

Integrating (20.34) over (n)M[τ0,τ),[−U1,u] with respect to dx2 dx3du′dτ′ , using (8.14b) to relate the canonical volume

form dvolg to dϖ , using (20.21) to substitute for Dα
(T̆ )Jα[f ] on LHS (20.34), applying Fubini’s theorem, and using that

the integral of the last term on RHS (20.34) over T2 vanishes (since T
2 is a closed manifold), we deduce, in view of

definitions (20.23a)–(20.23b) and (20.22), the following identity:

E(Wave)[f ](τ,u) +F(Wave)[f ](τ,u) = E(Wave)[f ](τ0,u) +F(Wave)[f ](τ,−U1)

−
∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)Lf + 2X̆f

}
Gdϖ

− 1
2

∫
(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

µQαβ[f ](T̆ )πππαβ dϖ .

(20.35)
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Next, we decompose the integrand in the last integral on RHS (20.35), namely −1
2

1
L(n)τ

µ(g−1)αδ(g−1)βσQδσ [f ](T̆ )πππαβ ,

using definitions (20.18), (20.20), and (20.22), the identity (g−1)αδ = −LαLδ − LαXδ −XαLδ + (g/−1)αδ (see (3.34b)), and
the analogous identity for (g−1)βσ . Among the many terms that arise from the expansion are the following two:60

1
2

1
L(n)τ

(Lµ)|d/ f |2g/ +
1

L(n)τ
(X̆µ)|d/ f |2g/ . (20.36)

We now decompose the first product in (20.36) as follows, where we use definition (6.3):

1
2

1
L(n)τ

(Lµ)|d/ f |2g/ =
1
2
1[−Uj,Uj](

(n)̃Lµ)|d/ f |2g/ +
1
2
1[−Uj,Uj]c

1
L(n)τ

(Lµ)|d/ f |2g/ . (20.37)

Since the spacetime integral of 1
21[−Uj,Uj]((n)̃Lµ)|d/ f |2g/ is found in the negative of the coercive spacetime integral

defined in (20.25) (i.e., −K[f ](τ,u)), we bring this term to LHS (20.35) as part of K[f ](τ,u). The remaining term
1
21[−Uj,Uj]

1
L(n)τ

(Lµ)|d/ f |2g/ in the decomposition (20.37) is manifestly present on RHS (20.26) as the first term in

RHS (20.27). Next, we examine the term 1
L(n)τ

(X̆µ)|d/ f |2g/ present in (20.36). Using (6.6), we express this term as

follows:
1

L(n)τ
(X̆µ)|d/ f |2g/ = − 1

L(n)τ
φn|d/ f |2g/ +

1

L(n)τ

{
(n)R̆µ+µ(n)Uµ

}
|d/ f |2g/ . (20.38)

We bring the integral of the first product − 1
L(n)τ

nφ|d/ f |2g/ on RHS (20.38) over to LHS (20.36) as the remaining part of

K[f ](τ,u) (see definition (20.25)). The terms in the last product on RHS (20.38) are manifestly present in the term
(T̆ )B(3)[f ] defined in (20.28c). The remaining terms in the decomposition of −1

2
1

L(n)τ
µ(g−1)αδ(g−1)βσQδσ [f ](T̆ )πππαβ

can be derived using the same arguments, based on straightforward but tedious calculations, given in the proof of

[73, Lemma 3.3]. We remark that in the last two products −µ2trg/k/
(Tan–Ψ⃗ )−µtrg/k/ (Trans–Ψ⃗ ) on RHS (20.28a), we have added

a factor of µ that was mistakenly omitted from [73, Equation (3.14a)]; this factor will be negligible in the context of our
estimates. We have therefore proved (20.26).

Proof of (20.26): We will apply the divergence theorem to the vectorfield J def= f 2B. We begin by expressing this vectorfield
in terms of the rough geometric coordinate vectorfields as follows:

J = Jτ
∂̃

∂̃τ
+ Ju

∂̃

∂̃u
+ JA

∂̃

∂̃xA
. (20.39)

Next, we claim that the following identities hold:

Jτ = f 2
(
L(n)τ−φ n

µLµ
L(n)τ

)
(20.40a)

Ju =
1
µ
f 2. (20.40b)

To prove (20.40a), we note that Jτ = J(n)τ = f 2B(n)τ, and we use the equations 0 = (n)W̆ (n)τ = X̆(n)τ+φ n
LµL

(n)τ (see

(4.2) and (4.4)) and B = L+X (see (3.24)). Similarly, to prove (20.40b), we note that Ju = Ju = f 2Bu, and then we use
Lemma 3.9.

Next, using (8.13b), and (20.40a)–(20.40b), we deduce that:√
|detg|DαJ

α =
√
|detg|Dα(f 2Bα) =

∂̃

∂̃τ

(√
|detg|Jτ

)
+
∂̃

∂̃u

(√
|detg|Ju

)
+

∂̃

∂̃xA

(√
|detg|JA

)
=
∂̃

∂̃τ

(
f 2

{
µ−φ n

Lµ

}√
det g̃/

)
+
∂̃

∂̃u

(
1

L(n)τ
f 2

√
det g̃/

)
+

∂̃

∂̃xA

(√
|detg|JA

)
.

(20.41)

Next, we note the following covariant divergence identity, which follows from the relation J = f 2B, the Leibniz rule,
Lemma 3.9, and (20.8):

DαJ
α =

1
µ

(Lµ)f 2 + trg/k/ f
2 + 2f Bf . (20.42)

60The precise origin of these terms is −Q[f ](L,X)(T̆ )πππLX̆ , which is found in the expansion of − 1
2µQ

αβ [f ](T̆ )πππαβ .
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Substituting (20.42) into LHS (20.41) and then integrating both sides of the resulting identity over (n)M[τ0,τ),[−U1,u] with

respect to dx2 dx3du′dτ′ , using (8.14b) to relate the canonical volume form dvolg to dϖ , applying Fubini’s theorem,

and using that the integral of the last term on RHS (20.34) over T2 vanishes (since T2 is a closed manifold) we conclude,
in view of definitions (20.24a)–(20.24b), the desired identity (20.29).

□

20.5. The fundamental L2-controlling quantities. In this section, we use the building block quantities from Sect. 20.4.2

to construct the “fundamental L2-controlling quantities” that we use to control Ψ⃗ , Ω, S , C, D, and their derivatives in
L2 in various regions.

Definition 20.10 (The fundamental L2-controlling quantities). Let (τ,u) ∈ [τ0,τBoot) × [−U1,U2]. In terms of the
energy-null-flux quantities of Def. 20.7, the spacetime integrals of Def. 20.8, and the vectorfield differentiation conventions
established in Def. 8.10, we define the following L2-controlling quantities:

• Total wave-controlling quantities.

QN (τ,u) def= max
PN∈P(N )

Ψ ∈{R(+),R(−),v
2,v3,s}

sup
(τ′ ,u′)∈[τ0,τ]×[−U1,u]

{
E(Wave)[PNΨ ](τ′ ,u′) +F(Wave)[PNΨ ](τ′ ,u′)

}
, (20.43a)

KN (τ,u) def= max
PN∈P(N )

Ψ ∈{R(+),R(−),v
2,v3,s}

K[PNΨ ](τ,u), (20.43b)

WN (τ,u) def= max {QN (τ,u),KN (τ,u)} , (20.43c)

• Partial wave-controlling quantities.

Q
(Partial)
N (τ,u) def= max

PN∈P(N )

Ψ ∈{R(−),v
2,v3,s}

sup
(τ′ ,u′)∈[τ0,τ]×[−U1,u]

{
E(Wave)[PNΨ ](τ′ ,u′) +F(Wave)[PNΨ ](τ′ ,u′)

}
, (20.44a)

K
(Partial)
N (τ,u) def= max

PN∈P(N )

Ψ ∈{R(−),v
2,v3,s}

K[PNΨ ](τ,u), (20.44b)

W
(Partial)
N (τ,u) def= max

{
Q

(Partial)
N (τ,u),K(Partial)

N (τ,u)
}
. (20.44c)

• Specific vorticity- and entropy-controlling quantities.

VN (τ,u) def= max
PN∈P(N )

sup
(τ′ ,u′)∈[τ0,τ]×[−U1,u]

{
E(Transport)[PNΩ](τ′ ,u′) +F(Transport)[PNΩ](τ′ ,u′)

}
, (20.45a)

SN (τ,u) def= max
PN∈P(N )

sup
(τ′ ,u′)∈[τ0,τ]×[−U1,u]

{
E(Transport)[PNS](τ′ ,u′) +F(Transport)[PNS](τ′ ,u′)

}
, (20.45b)

V
(Rough Tori)
N (τ,u) def= max

PN∈P(N )

∥∥∥PNΩ∥∥∥2
L2((n)̃ℓτ,u )

, (20.46a)

S
(Rough Tori)
N (τ,u) def= max

PN∈P(N )

∥∥∥PNS∥∥∥2
L2((n)̃ℓτ,u )

. (20.46b)

• Modified fluid variable-controlling quantities.

CN (τ,u) def= max
PN∈P(N )

sup
(τ′ ,u′)∈[τ0,τ]×[−U1,u]

{
E(Transport)[PNC](τ′ ,u′) +F(Transport)[PNC](τ′ ,u′)

}
, (20.47a)

DN (τ,u) def= sup
(τ′ ,u′)∈[τ0,τ]×[−U1,u]

{
E(Transport)[PND](τ′ ,u′) +F(Transport)[PND](τ′ ,u′)

}
, (20.47b)
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C
(Rough Tori)
N (τ,u) def= max

PN∈P(N )

∥∥∥PNC∥∥∥2
L2((n)̃ℓτ,u )

, (20.48a)

D
(Rough Tori)
N (τ,u) def= max

PN∈P(N )

∥∥∥PND∥∥∥2
L2((n)̃ℓτ,u )

. (20.48b)

Remark 20.11 (Differences between QN and Q
(Partial)
N ). Although Q

(Partial)
N might seem to be a redundant quantity, it

plays an important role in our energy estimates. In particular, when controlling the solution’s top-order derivatives, we

will exploit that the partial energy Q
(Partial)
N is only weakly influenced by the full energy QN . Similar remarks apply to

K
(Partial)
N (τ,u) and W

(Partial)
N (τ,u).

Definition 20.12 (Summed L2-controlling quantities). For positive integers N1 < N2 and non-negative integers N , we
define the following summed L2-controlling quantities:

Q[N1,N2](τ,u) def=
N2∑

M=N1

QM (τ,u), V≤N (τ,u) =
N∑
M=0

VM (τ,u), (20.49)

and similarly for the other controlling quantities. When N = 0, we often omit the subscript, e.g., we write V (τ,u) instead
of V0(τ,u).

20.6. The coerciveness of the fundamental L2-controlling quantities. In this section, we exhibit the coerciveness
properties of the L2-controlling quantities from Def. 20.10.

20.6.1. Decomposition of components of the energy-momentum tensor. We start with the following lemma, which yields
identities for various components of the energy-momentum tensor. The components Q[f ](B,L) and Q[f ]((n)N̂ , T̆ ) are
of particular interest since they appear in our energy–null-flux identity (20.26).

Lemma 20.13 (Decomposition of various components of the energy-momentum tensor). Let f be a scalar function,
and let Q be the corresponding energy-momentum tensor defined in (20.18). Then the following identities hold, where
|∇/ f |2g/ = |d/ f |2g/ = (g/−1)AB( ∂

∂xA
f ) ∂

∂xB
f :

Q[f ](L,L) = (Lf )2, (20.50a)

Q[f ](X,L) = −1
2

(Lf )2 +
1
2
|∇/ f |2g/ , (20.50b)

Q[f ](B,L) =
1
2

(Lf )2 +
1
2
|∇/ f |2g/ , (20.50c)

Q[f ](X,B) = (Lf )Xf + (Xf )2, (20.50d)

Q[f ]

L, ∂̃

∂̃xA

 = (Lf )
∂̃

∂̃xA
f , (20.50e)

Q[f ]

X, ∂̃

∂̃xA

 = (Xf )
∂̃

∂̃xA
f +

1
2

∂
∂xA

(n)τ

∂
∂t

(n)τ
(Lf )2 +

∂
∂xA

(n)τ

∂
∂t

(n)τ
(Lf )Xf − 1

2

∂
∂xA

(n)τ

∂
∂t

(n)τ
|∇/ f |2g/ , (20.50f)

Q[f ]

B, ∂̃

∂̃xA

 = (Lf )
∂̃

∂̃xA
f + (Xf )

∂̃

∂̃xA
f +

1
2

∂
∂xA

(n)τ

∂
∂t

(n)τ
(Lf )2 +

∂
∂xA

(n)τ

∂
∂t

(n)τ
(Lf )Xf − 1

2

∂
∂xA

(n)τ

∂
∂t

(n)τ
|∇/ f |2g/ . (20.50g)
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Moreover, the following identities also hold, where T̆ is the multiplier vectorfield defined in (20.22), φ is the cut-off
function from Def. 4.1, (n)R̆ is as in (6.6), (n)N̂ is as in (6.9), |(n)R̆|g is as in (6.20a), and (n)r is defined by (6.20b):

Q[f ](T̆ ,L) = (1 +µ)(Lf )2 +µ|∇/ f |2g/ , (20.51a)

Q[f ]((n)N̂ ,L) =
µ(1− (n)r)− nφ

Lµ

|(n)R̆|g
Q[f ](L,L) +

µ

|(n)R̆|g
Q[f ](X,L)

− µ

|(n)R̆|g
g̃/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ

∂
∂t

(n)τ
Q[f ]

 ∂̃

∂̃xB
,L

 ,
(20.51b)

Q[f ]((n)N̂ ,B) =
µ(1− (n)r)− nφ

Lµ

|(n)R̆|g
Q[f ](B,L) +

µ

|(n)R̆|g
Q[f ](B,X)

− µ

|(n)R̆|g
g̃/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ

∂
∂t

(n)τ
Q[f ]

 ∂̃

∂̃xB
,B

 ,
(20.51c)

Q[f ]((n)N̂ , T̆ ) =
µ2(1− (n)r)−µ nφ

Lµ

|(n)R̆|g

{
(Lf )2 + |∇/ f |2g/

}
+

2µ2

|(n)R̆|g

{
(Lf )Xf + (Xf )2

}
+

µ2

|(n)R̆|g

{
− 2(Lf )

g̃/ −1
(
dxA,dxB

)
∂
∂xA

(n)τ

∂
∂t

(n)τ

∂̃

∂̃xB
f − 2(Xf )̃g/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ

∂
∂t

(n)τ

∂̃

∂̃xB
f

− (n)r(Lf )2 − 2(n)r(Lf )Xf + (n)r |∇/ f |2g/
}

+
µ
(

1
2 −

(n)r
)
−φ n

Lµ

|(n)R̆|g
(Lf )2 +

µ

2|(n)R̆|g
|∇/ f |2g/ −

µ

|(n)R̆|g
g̃/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ

∂
∂t

(n)τ
(Lf )

∂̃

∂̃xB
f .

(20.51d)

Proof. (20.50a)–(20.50d) are straightforward consequences of the definition (20.18) of Q, Lemma 3.9, and the decomposi-
tions of g−1 implied by (3.34b).

(20.50e)–(20.50g) follow from combining similar arguments with the identity (5.13c).
(20.51a) follows from the identity T̆ = L+ 2µB (which is a consequence of (3.24) and (20.22)), (20.50a), and (20.50c).
To derive (20.51b)–(20.51c), we first decompose (n)N̂ as follows using (6.5), (6.6), (6.7), (6.20a), (6.20b), and (6.20d):

(n)N̂ =
µ(1− (n)r)− 2nφ

Lµ

|(n)R̆|g
L+

1

|(n)R̆|g
X̆ +

nφ

|(n)R̆|gLµ
L− µ

|(n)R̆|g
g̃/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ ∂̃
∂̃xB

∂
∂t

(n)τ

=
µ(1− (n)r)−φ n

Lµ

|(n)R̆|g
L+

µ

|(n)R̆|g
X − µ

|(n)R̆|g
g̃/ −1

(
dxA,dxB

) ∂
∂xA

(n)τ ∂̃
∂̃xB

∂
∂t

(n)τ
.

(20.52)

(20.51b)–(20.51c) now follow from (20.52) and the linearity of the map Z→Q[f ]((n)N̂ ,Z).
Finally, (20.51d) follows from (20.50a)–(20.50g), (20.51b)–(20.51c) and the following identity identity, which follows from

the identity T̆ = L+ 2µB mentioned above: Q[f ]((n)N̂ , T̆ ) = Q[f ]((n)N̂ ,L) + 2µQ[f ]((n)N̂ ,B). □

20.6.2. Coerciveness estimates on sub-manifolds. In the next lemma, we exhibit the coerciveness of the L2-controlling

quantities from Def. 20.10. In particular, we exhibit their L2-coerciveness properties on the sub-manifolds (n)̃Σ
[−U1,u]
τ ,

(n)P [τ0,τ)
u , and (n)̃ℓτ,u . We reveal the coerciveness of the spacetime integrals KN (τ,u) and K

(Partial)
N (τ,u) in a separate

lemma, namely Lemma 20.15.

Lemma 20.14 (The coerciveness on sub-manifolds of the fundamental L2-controlling quantities). Let QN (τ,u), · · · ,
DN (τ,u) be the L2-controlling quantities from Def. 20.10, let (τ,u) ∈ [τ0,τBoot) × [−U1,U2], and let (τ′ ,u′) ∈ [τ0,τ] ×
[−U1,u]. Then for 1 ≤ N ≤ Ntop, the following lower bounds hold, where P(N ) is the set of order N Pu-tangential
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commutator operators from Def. 8.10:

QN (τ,u) ≥ max
PN∈P(N )

Ψ ∈{R(+),R(−),v
2,v3,s}

0.49

∥∥∥∥∥∥
√
µ−

2nφ
Lµ

LPNΨ
∥∥∥∥∥∥

2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,

0.49
∥∥∥∥√µ ∣∣∣d/ PNΨ ∣∣∣

g/

∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) , 0.99
∥∥∥X̆PNΨ ∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,∥∥∥∥∥∥ 1
√
L(n)τ

LPNΨ
∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

,

∥∥∥∥∥∥
√
µ

√
L(n)τ

∣∣∣d/ PNΨ ∣∣∣
g/

∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

 ,
(20.53)

Q
(Partial)
N (τ,u) ≥ max

PN∈P(N )

Ψ ∈{R(−),v
2,v3,s}

0.49

∥∥∥∥∥∥
√
µ−

2nφ
Lµ

LPNΨ
∥∥∥∥∥∥

2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,

0.49
∥∥∥∥√µ ∣∣∣d/ PNΨ ∣∣∣

g/

∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) , 0.99
∥∥∥X̆PNΨ ∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,∥∥∥∥∥∥ 1
√
L(n)τ

LPNΨ
∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

,

∥∥∥∥∥∥
√
µ

√
L(n)τ

∣∣∣d/ PNΨ ∣∣∣
g/

∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

 .
(20.54)

Moreover, for N ≤Ntop, the following lower bounds hold:

VN (τ,u) ≥max


∥∥∥∥∥∥
√
µ−φ n

Lµ
PNΩ

∥∥∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,
∥∥∥∥∥∥ 1
√
L(n)τ

PNΩ
∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

 , (20.55a)

SN (τ,u) ≥max


∥∥∥∥∥∥
√
µ−φ n

Lµ
PNS

∥∥∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,
∥∥∥∥∥∥ 1
√
L(n)τ

PNS
∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

 , (20.55b)

CN (τ,u) ≥max


∥∥∥∥∥∥
√
µ−φ n

Lµ
PNC

∥∥∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,
∥∥∥∥∥∥ 1
√
L(n)τ

PNC
∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

 , (20.56a)

DN (τ,u) ≥max


∥∥∥∥∥∥
√
µ−φ n

Lµ
PND

∥∥∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ,
∥∥∥∥∥∥ 1
√
L(n)τ

PND
∥∥∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

 . (20.56b)

In addition, 1 ≤N ≤Ntop, N
′ ≤Ntop, and Ψ ∈ {R(+),R(−),v

2,v3, s}, then the following estimates hold:∥∥∥PNΨ ∥∥∥2
L2((n)̃ℓτ′ ,u′ )

≤ Cϵ̊2 +CQN (τ,u), (20.57a)∥∥∥P≤N ′Ω∥∥∥2

L2((n)̃ℓτ′ ,u′ )
≤ Cϵ̊2 +CV≤N ′+1(τ,u), (20.57b)∥∥∥P≤N ′S∥∥∥2

L2((n)̃ℓτ′ ,u′ )
≤ Cϵ̊2 +CS≤N ′+1(τ,u), (20.57c)

∥∥∥PNΨ ∥∥∥
L2

(
(n)̃Σ

[−U1 ,u′ ]
τ′

) ≤ Cϵ̊+C
∫ τ′

τ′′=τ0

Q
1/2
N (τ′′ ,u′)

|τ′′ |1/2
dτ′′ ≤ Cϵ̊+CQ1/2

N (τ,u). (20.58)

Finally, if 1 ≤N ≤Ntop, Ψ ∈ {R(+),R(−),v
2,v3, s}, PN ∈ P(N ), and ε and m0 are sufficiently small (where m0 > 0 is

the parameter introduced in Sect. 10.1), then the following sharpened coerciveness estimates hold whenever 0 ≤ µ <m0:

QN (τ,u) ≥ E(Wave)[PNΨ ](τ′ ,u′) ≥ 1.99
∥∥∥X̆PNΨ ∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) . (20.59)
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Proof.
Proof of (20.55a)–(20.56b): These estimates follow directly from the definitions (20.24a)–(20.24b), (20.45a)–(20.45b), and
(20.47a)–(20.47b).

Proof of (20.53)–(20.54): We fix any (τ,u) ∈ [τ0,τBoot)×[−U1,U2], (τ′ ,u′) ∈ [τ0,τ]×[−U1,u], Ψ ∈ {R(+),R(−),v
2,v3, s},

and PN ∈ P(N ). First, using (20.23b) and (20.51a) with f
def= PNΨ , (8.15a), and (20.43a), we find that

∥∥∥∥ 1√
L(n)τ

LPNΨ
∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

≤

QN (τ,u) and
∥∥∥∥ √

µ√
L(n)τ

∣∣∣d/ PNΨ ∣∣∣
g/

∥∥∥∥2

L2((n)P [τ0 ,τ′ )
u′ )

≤QN (τ,u) as desired. Next, we note that the product of |(n)R̆|g and the

terms on first line of RHS (20.51d) can be expressed as follows, where PNΨ is in the role of f :{
µ2

(0.001
1.001

− (n)r
)
−µφ n

Lµ

}
(LPNΨ )2 +

{
µ2(1− (n)r)−µφ n

Lµ

}
|d/ PNΨ |2g/

+
(

µ
√

1.001
LPNΨ +

√
1.001X̆PNΨ

)2

+ 0.999(X̆Ψ )2.

(20.60)

Next, we multiply the terms on the second and third lines of RHS (20.51d) by |(n)R̆|g and use (3.31a)–(3.31b), (5.8c)–(5.8d),
(5.13c), (6.11)–(6.13), Prop. 9.1, (13.11a), (15.20), (15.24), the estimates of Prop. 17.1, Cor. 17.2, (18.27), and Young’s inequality to
bound the magnitude of the resulting terms as follows:

≤ Cεµ2(LPNΨ )2 +Cεµ2|d/ PNΨ |2g/ +Cε(X̆PNΨ )2. (20.61)

The same reasoning, in conjunction with (18.8a) (which implies that −Lµ ≈ 1 on the support of φ), yields that all
the terms in (20.60) are positive definite and that the product of |(n)R̆|g and the last term on RHS (20.51d) can be

absorbed by the product of |(n)R̆|g and the two terms
µ( 1

2−
(n)r)−φ n

Lµ

|(n)R̆|g
(LPNΨ )2 + µ

2|(n)R̆|g
|d/ PNΨ |2g/ on the last line of

(20.51d). In total, we see that if ε is small enough, then in the product of |(n)R̆|g and (20.51d), the overall coefficient

of (X̆PNΨ )2 can be bounded from below by 0.99, the overall coefficient of µ(LPNΨ )2 can be bounded from

below by 0.49
(
µ− 2nφ

Lµ

)
, and the overall coefficient of µ|∇/ PNΨ |2g/ can be bounded from below by 0.49. From these

estimates, (20.23a) with f
def= PNΨ , (8.15b), and (20.43a), we deduce that 0.99

∥∥∥X̆PNΨ ∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ≤ QN (τ,u),

0.49
∥∥∥∥∥√µ− 2nφ

Lµ LP
NΨ

∥∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ≤ QN (τ,u), and 0.49
∥∥∥∥√µ ∣∣∣d/ PNΨ ∣∣∣

g/

∥∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u′ ]
τ′

) ≤ QN (τ,u). Combining all

five of the L2 bounds along (n)P [τ0,τ
′)

u′ and (n)̃Σ
[−U1,u

′]
τ′ that we derived in this paragraph, we conclude the desired lower

bound (20.53).
Taking into account definition (20.44a), we can prove the lower bounds stated in (20.54) via exactly the same argument.

Proof of (20.59): We again fix any (τ,u) ∈ [τ0,τBoot)×[−U1,U2], (τ′ ,u′) ∈ [τ0,τ]×[−U1,u], Ψ ∈ {R(+),R(−),v
2,v3, s},

and PN ∈ P(N ). We consider the product of |(n)R̆|g and RHS (20.51d) with f
def= PNΨ . The terms in the second braces

on the first line of RHS (20.51d) generate the terms 2µ(LPNΨ )X̆PNΨ + 2(X̆PNΨ )2, which, by Young’s inequality, can
be pointwise bounded from below by ≥ 1.999(X̆PNΨ )2 − 1000µ2(LPNΨ )2. If m0 ≤ 10−5, then (18.1) implies that
on (n)M[τ0,τBoot),[−U1,U2], we have the pointwise bound |1000µ2(LPNΨ )2| ≤ 1

10µ(LPNΨ )2. Hence, if ε is sufficiently

small, then the same arguments we used in the proof of (20.53) imply that we can absorb the term −1000µ2(LPNΨ )2

into the terms µ
{(

1
2 −

(n)r
)
−φ n

Lµ

}
(LPNΨ )2 generated by the first product on the last line of RHS (20.51d). The

arguments we used in the proof of (20.53) also imply that all remaining terms on RHS (20.51d) are either positive definite
or can be absorbed into the positive definite terms by exploiting the smallness of ε. In total, these arguments yield the
pointwise estimate |(n)R̆|g×RHS (20.51d) ≥ 1.99(X̆PNΨ )2. From this estimate and the same arguments we used to prove
(20.53), we conclude the desired lower bound (20.59).

Proof of (20.57a)–(20.57c): We again fix any (τ,u) ∈ [τ0,τBoot)×[−U1,U2], (τ′ ,u′) ∈ [τ0,τ]×[−U1,u], Ψ ∈ {R(+),R(−),v
2,v3, s},

and PN ∈ P(N ). To prove (20.57a), we first use (20.5) with f
def= PNΨ as well as the already proved coerciveness result

(20.53) to deduce that
∥∥∥PNΨ ∥∥∥2

L2((n)̃ℓτ′ ,u′ )
≤ C

∥∥∥PNΨ ∥∥∥2
L2((n)̃ℓτ0 ,u′ )

+CQN (τ,u). From this estimate and the data-estimate
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(11.13a), we conclude (20.57a). The estimates (20.57b)–(20.57c) follow from a nearly identical argument based on the
coerciveness results (20.55a)–(20.55b) and the data-estimates (11.13b).

Proof of (20.58): We again fix any (τ,u) ∈ [τ0,τBoot)×[−U1,U2], (τ′ ,u′) ∈ [τ0,τ]×[−U1,u], Ψ ∈ {R(+),R(−),v
2,v3, s},

and PN ∈ P(N ). We first use (11.11a) and (16.15) to deduce that:∥∥∥PNΨ ∥∥∥
L2

(
(n)̃Σ

[−U1 ,u′ ]
τ′

) ≲ ϵ̊+
∫ τ

τ′′=τ0

∥∥∥(n)̃LPNΨ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u′ ]
τ′′

) dτ′′ . (20.62)

Then, using (6.3), (18.1), (18.9b), and (20.53), we bound the time integral on RHS (20.62) by ≲
∫ τ′

τ′′=τ0

Q
1/2
N (τ′′ ,u′)
|τ′′ |1/2 dτ′′ , which

yields the first inequality stated in (20.58). The second inequality stated in (20.58) follows from the fact that QN (τ,u) is
increasing in its arguments.

□

20.6.3. Coerciveness of the spacetime integrals K. The next lemma complements Lemma 20.14 by exhibiting the coer-

civeness of the spacetime integrals KN (τ,u) and K
(Partial)
N (τ,u) defined in (20.43b) and (20.44b) respectively; recall that

these spacetime integrals appear on the left-hand side of our energy identity (20.26) for the wave-variables. The key
point is that the integrands on RHSs (20.63a)–(20.63b) are quantitatively positive in the region {|u| ≤ Uj} where the
shock can form and in particular, these integrands do not contain any degenerate factor of µ. We fundamentally need the
non-degenerate coerciveness guaranteed by (20.63a)–(20.63b) in order to control some of the error integrals that arise in
our energy estimates.

Lemma 20.15 (The coerciveness of the spacetime integrals K). Let 1 ≤ N ≤ Ntop, let KN (τ,u) and K
(Partial)
N (τ,u) be

the spacetime integrals defined in (20.43b) and (20.44b) respectively, and let P(N ) be the set of order N Pu-tangential
commutator operators from Def. 8.10. Then the following lower bounds hold for (τ,u) ∈ [τ0,τBoot) × [−U1,U2], where
1[−Uj,Uj] = 1[−Uj,Uj](u′) denotes the characteristic function of the interval [−Uj,Uj] and φ is the cut-off from Def. 4.1:

KN (τ,u) ≥ max
PN∈P(N )

Ψ ∈{R(+),R(−),v
2,v3,s}

1
4

∫
(n)M[τ0 ,τ),[−U1 ,u]

{
1[−Uj,Uj](u

′) + 4
1

L(n)τ
nφ

}∣∣∣d/ PNΨ ∣∣∣2
g/

dϖ , (20.63a)

K
(Partial)
N (τ,u) ≥ max

PN∈P(N )

Ψ ∈{R(−),v
2,v3,s}

1
4

∫
(n)M[τ0 ,τ),[−U1 ,u]

{
1[−Uj,Uj](u

′) + 4
1

L(n)τ
nφ

}∣∣∣d/ PNΨ ∣∣∣2
g/

dϖ . (20.63b)

Proof. Let f be a scalar function, and let K[f ](τ,u) be the corresponding spacetime integral defined in (20.25). Using
the estimate (18.8c), we deduce that:

K[f ](τ,u) ≥ 1
4

∫
(n)M[τ0 ,τ),[−U1 ,u]

{
1[−Uj,Uj](u

′) + 4
1

L(n)τ
nφ

}
|d/ f |2g/ dϖ . (20.64)

The desired bounds (20.63a)–(20.63b) now follow from (20.64) and definitions (20.43b) and (20.44b).
□

21. The elliptic-hyperbolic integral identities

We continue to work under the assumptions of Sect. 13.2. In this section, we set up the top-order elliptic-hyperbolic
regularity theory for the transport-div-curl system satisfied by Ω and S , i.e., for the top-order derivatives of solutions to
equations (2.23a), (2.23c), (2.24a)–(2.24b), and (2.25a)–(2.25b). More precisely, for any Σt-tangent vectorfield V , we derive
coercive integral identities – featuring error terms – that are localized to spacetime regions of the form (n)M[τ1,τ2),[u1,u2];

see Prop. 21.14 for the main identity, which, in view of the coerciveness guaranteed by Lemma 21.9, yields L2 spacetime
control of ∂∂∂V (see definition (21.13)) in terms of error terms. In our forthcoming applications, we will apply the identity
with PNtopΩ and PNtopS in the role of V , and we will use the special structure of the equations of Theorem 2.15 and
commutator estimates to control the error terms. Ultimately, this will yield (see Prop. 27.5) spacetime L2-control over the
top-order terms ∂∂∂PNtopΩ and ∂∂∂PNtopS .

The integral identities are adaptations of the framework we developed in [4] to handle the structure of the singular
boundary of shock-forming solutions. Unlike in [4], our setup here avoids boundary integrals along the characteristics



L. Abbrescia and J. Speck 139

Pu . This allows us to avoid error integrals on Pu that involve the top-order derivatives of µ, which would have been
uncontrollable. Our setup also yields error terms whose singularity strength is controllable under the scope of our
approach. To achieve these goals, we rely on the following key ingredients:

• New well-constructed characteristic currents (see Sect. 21.4), the analysis of which incorporates both the elliptic and
the hyperbolic sub-structures in the equations of Theorem 2.15.

• A delicate integration by parts identity to handle some difficult boundary integrals along (n)̃Σ
[−U1,u]
τ , which

takes into account the rough acoustic geometry and the precise structure of the equations of Theorem 2.15;
see Lemma 21.13 for a differential version of the identity. Ultimately, this leads to an integral identity (see
Prop. 21.14) that provides control (see Prop. 27.5) of the spacetime integrals

∫
(n)M[τ0 ,τ),[−U1 ,u]

|∂∂∂PNtopΩ|2 dϖ and∫
(n)M[τ0 ,τ),[−U1 ,u]

|∂∂∂PNtopS |2 dϖ as well as the rough tori integrals
∫

(n)̃ℓτ,u
|PNtopΩ|2 dϖ g̃/ and

∫
(n)̃ℓτ,u

|PNtopS |2 dϖ g̃/ .

We stress that the delicate integration by parts mentioned above yields rough tori integrals with favorable signs,
and that our proof would not have closed if the integrals had the wrong signs. The availability of good signs for
these terms is a key aspect of the framework developed in [4].

Throughout this section, we will use the observations provided by Remark 3.19.

21.1. Basic geometric constructions and definitions. In this section, we define some basic geometric objects that play
a role in our derivation of the localized integral identities.

Definition 21.1 (Projection onto Pu and Pu-tangency). Let L be the g-null vectorfield defined in (7.1) (which, in view of
(7.4), is transversal to the characteristics Pu ).

1. We define the type
(1
1
)
projection tensorfield Π onto the characteristic hypersurfaces Pu as follows, where δ α

β
denotes the Kronecker delta:

Π
α
β

def= δ α
β +

1
2
LαLβ . (21.1)

2. Given any type
(m
n

)
spacetime tensorfield ξ, we define its Pu-projection Πξ as follows:

(Πξ)α1···αm
β1···βn

def= Π
α1
α̃1
· · ·Π αm

α̃m (g−1)β̃1γ̃1gβ1γ1
Π

γ1

β̃1
· · · (g−1)β̃nγ̃ngβnγnΠ

γn
β̃n

ξ
α̃1···α̃m
γ̃1···γ̃n . (21.2)

3. We say that a spacetime tensorfield ξ is Pu-tangent if Πξ = ξ.

We refer to Remark 7.2 for comments on the role of the vectorfield L in this paper.

Remark 21.2 (Lack of symmetry). The type
(0
2
)
tensorfield gαα̃Π

α̃
β is not symmetric. This is the reason that in equation

(21.2), there are factors of g−1 and g and we were careful about the placement of the indices on Π that are contracted
against the lower indices of ξ, unlike in equations (3.6a), (3.6b), and (6.27).

Definition 21.3 (Additional geometric tensorfields used in the elliptic-hyperbolic identities). We respectively define h and
h−1 to be the type

(0
2
)
and

(2
0
)
tensorfields with the following Cartesian components:

hαβ
def= gαβ + 2BαBβ , (21.3a)

(h−1)αβ def= (g−1)αβ + 2BαBβ . (21.3b)

By using h and h−1 to lower and raise the indices on the projection tensorfield Π, we also define the type
(0
2
)

tensorfield e and the type
(2
0
)
tensorfield E as follows:

eαβ
def= hασΠ

σ
β , (21.4)

E
αβ def= (h−1)ασΠ

β
σ . (21.5)

In the next lemma, we exhibit some basic properties of the tensorfields from Defs. 21.1 and 21.3. Later on, we will use
the positive definiteness of h and h−1 (which are revealed by the lemma) to exhibit the coerciveness properties of various
energies.
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Lemma 21.4 (Basic properties of the tensorfields from Defs. 21.1 and 21.3). The tensorfield Π
α
β is a projection onto Pu in

the following sense: ΠL = 0, while if P is a Pu-tangent vectorfield, then ΠP = P .
Moreover, the tensorfields e and E are symmetric and positive semi-definite, and e restricts to a Riemannian metric on

Pu .
In addition, for all pairs (Y ,Z) of Σt-tangent vectorfields, we have h(Y ,Z) = g(Y ,Z), and if V is a Σt-tangent

vectorfield, then h(V ,B) = 0. Moreover, we have h(B,B) = 1, and h is a Riemannian metric on spacetime. Furthermore,
following identity holds:

(h−1)αγhγβ = δαβ , (21.6)

where δαβ is the Kronecker delta. That is, h
−1 is in fact the inverse metric of h.

In addition, the following identities hold, where g and g−1 are respectively the first fundamental form of Σt and inverse
first fundamental form of Σt from Def. 3.4:

hαβ = gαβ +BαBβ , (21.7a)

(h−1)αβ = (g−1)αβ +BαBβ . (21.7b)

Finally, the following identities hold:

eαβ = hαβ −
1
2
LαLβ = g/αβ +

1
2
LαLβ , (21.8)

E
αβ

= (h−1)αβ − 1
2
LαLβ = (g/−1)αβ +

1
2
LαLβ , (21.9)

E
αγ
eγβ = δαβ +

1
2
LαLβ , (21.10)

eαγE
γβ

= δ
β
α +

1
2
LαL

β , (21.11)

E
αβ

= (h−1)αγ (h−1)βδeγδ, (21.12)

where g/ and g/−1 are respectively the first fundamental form and inverse first fundamental form of the acoustic tori
ℓt,u = Σt ∩Pu from Def. 3.4.

Proof. The facts that ΠL = 0, while if P is Pu-tangent, then ΠP = P follow from (7.3)–(7.4) and the fact that L is
g-orthogonal to Pu .

(21.6) follows from a straightforward computation based on definitions (21.3a)–(21.3b) and the identity (3.23).
(21.7a) follows from definition (21.3a) and the identity (3.32a). Similarly, (21.7b) follows from definition (21.3b) and the

identity (3.32b).
The remaining properties of h stated in the lemma follow in a straightforward fashion from (3.23) and (3.25).
To prove the first equality in (21.8), we substitute the definition (21.3a) of hασ and the definition (21.1) Π

σ
β into of

RHS (21.4) and carry out straightforward algebraic computations using Lemmas 3.9 and 7.3 (in particular, we use (7.2)).
The second equality in (21.8) follows from similar arguments, where we in particular use (7.2) and (7.5). (21.8) also yields
the symmetry of e. The identities in (21.9) and (21.10)–(21.11) as well as the symmetry of E follow from similar arguments
based on definitions (21.5) and (21.1).

The fact that e restricts to a Riemannian metric on Pu follows from (21.8), Lemmas 3.9 and 7.3, the fact that the
tangent space of Pu is the direct sum of the tangent space of ℓt,u and the span of L, and the fact that g/αβ is positive

definite on ℓt,u-tangent vectorfields and satisfies g/(L, ·) = 0. The positive semi-definiteness of e and E follows from the
second identities in (21.8)–(21.9) and the positive semi-definiteness of g/αβ and (g/−1)αβ .

The identity (21.12) follows from definitions (21.4)–(21.5), the identity (21.6), and the symmetry of e and E.
□

21.2. Additional derivatives operators, pointwise norms, and comparison estimates. In this section, we define some
additional derivative operators and pointwise norms, and we establish some simple comparison estimates. Later, we will
use them in our analysis of the terms in the elliptic-hyperbolic integral identity provided by Prop. 21.14.
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21.2.1. The Cartesian gradient of ξ and |ZV |g .

Definition 21.5 (The Cartesian gradient of ξ and |ZV |g ).
Given a type

(m
n

)
spacetime tensorfield ξ, we define its Cartesian gradient ∂∂∂ξ to be the type

( m
n+1

)
spacetime tensorfield

with the following Cartesian components:

(∂∂∂ξ)α1···αm
β1β2···βn+1

def= ∂β1
ξ
α1···αm
β2···βn+1

. (21.13)

Let V be a Σt-tangent vectorfield and let Z be a spacetime vectorfield. Relative to the Cartesian coordinates, we define
(see Remark 3.19) |ZV |g ≥ 0 as follows:

|ZV |2g
def= gab(ZV

a)ZV b, (21.14)

where as usual ZV a = Zα∂αV a.

Note that |ZV |g is the | · |g norm of the Σt-tangent vectorfield with the Cartesian spatial components ZV i , i = 1,2,3.

21.2.2. The h-norm of tensorfields.

Definition 21.6 (The h-norm of tensorfields). Recall that in Lemma 21.4, we showed that h is a Riemannian metric on
spacetime. If ξ is a type

(m
n

)
spacetime tensorfield, then we define |ξ|h ≥ 0 by:

|ξ|2h
def= hα1α̃1

· · ·hαmα̃m(h−1)β1β̃1 · · · (h−1)βnβ̃nξα1···αn
β1···βn ξ

α̃1···α̃m
β̃1···β̃n

. (21.15)

21.2.3. Pointwise comparison results and the h-size of Π, e, and E.

Lemma 21.7 (Pointwise comparison results and the h-size of Π, e, and E). For any type
(m
n

)
spacetime tensorfield ξ

α1···αm
β1···βn ,

the following comparison estimates hold relative to the Cartesian coordinates on (n)M[τ0,τBoot),[−U1,U2]:

|ξ|h ≈
∑

0≤α1,··· ,αm≤3
0≤β1,··· ,βn≤3

∣∣∣∣ξα1···αm
β1···βn

∣∣∣∣ , (21.16a)

|∂∂∂ξ|h ≈
∑

0≤α1,··· ,αm≤3
0≤β1,··· ,βn≤3

0≤γ≤3

∣∣∣∣∂γξα1···αm
β1···βn

∣∣∣∣ . (21.16b)

Moreover, if V is a Σt-tangent vectorfield and Z is a spacetime vectorfield, then the following comparison estimates hold
relative to the Cartesian coordinates on (n)M[τ0,τBoot),[−U1,U2]:

|V |g ≈
∑

a=1,2,3

|V a| , (21.17a)

|ZV |g ≈
∑

a=1,2,3

|ZV a| , (21.17b)

|∂∂∂V |h ≈
∑

α=0,1,2,3
a=1,2,3

|∂αV a| ≈
∑

α=0,1,2,3

|∂αV |g ≈ |BV |g +
∑

a=1,2,3

|∂aV |g . (21.17c)

Finally, the following identities hold:

|Π|h = |e|h = |E|h =
√

3. (21.18)

Proof. We prove (21.16a) when ξ is a type
(1
0
)
tensorfield; the case of general type

(m
n

)
tensorfields can be handled through

similar arguments. To proceed, we first use (3.25), (3.33a), and (21.7a) to derive the following identity relative to the
Cartesian coordinates:

|ξ|2h = hαβξ
αξβ = c−2

∑
a=1,2,3

(ξa)2 +

1 + c−2
∑

a=1,2,3

(va)2

 (ξ0)2 − 2c−2
∑

a=1,2,3

vaξaξ0. (21.19)
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From the bootstrap assumptions and (9.3e), we deduce that |va| ≲ 1 and c ≈ 1. From these estimates and (21.19),
we conclude that |ξ|h ≲

∑
α=0,1,2,3 |ξα |. To prove the reverse inequality, we note that the Cauchy–Schwarz in-

equality and Young’s inequality imply that the cross-term −2c−2vaξaξ0 on RHS (21.19) is bounded in magnitude by
≤ c−2 ∑

a=1,2,3(ξa)2 + c−2 ∑
a=1,2,3(va)2(ξ0)2. From this bound, (21.19), and the estimate c ≈ 1, it follows that:

|ξ|2h ≥ (ξ0)2. (21.20)

Moreover, the Cauchy–Schwarz inequality and Young’s inequality imply that the cross-term −2c−2vaξaξ0 is also bounded
in magnitude by:

≤

 c−2 ∑
d=1,2,3(vd)2

1 + c−2 ∑
b=1,2,3(vb)2

× c−2
∑

a=1,2,3

(ξa)2 +

1 + c−2
∑

a=1,2,3

(va)2

 (ξ0)2.

From this bound, (21.19), and the aforementioned estimates |va| ≲ 1 and c ≈ 1, it follows that:

|ξ|2h ≥
{

1
1 + c−2 ∑

b=1,2,3(vb)2

}
× c−2

∑
a=1,2,3

(ξa)2 ≳
∑

a=1,2,3

(ξa)2. (21.21)

Combining (21.20) and (21.21), we see that
∑
α=0,1,2,3 |ξα | ≲ |ξ|h, which completes the proof of (21.16a). The comparison

estimates (21.17a), (21.17b), and (21.17c) follow from similar arguments, and we omit the straightforward details.
(21.16b) follows as a special case of (21.16a) with ∂∂∂ξ in the role of ξ.

We now prove (21.18). First, using (7.4), definitions (21.4)–(21.5), and (21.11), we compute that |Π|2h = E
αβ
eβα =

δαα + 1
2LαL

α = 4− 1 = 3, as is desired. Next, we use (7.4), (21.1), (21.4), and Lemma 21.4 to compute that:

|e|2h = (h−1)αβ(h−1)γδeαγeβδ = Π
β
γ Π

γ
β =

{
δ
β
γ +

1
2
LβLγ

}{
δ
γ
β +

1
2
LγLβ

}
= 4 +LαLα +

1
4

(LαLα)2 = 3.
(21.22)

A similar calculation based on (21.5) yields that |E|2h = 3. We have therefore proved (21.18).
□

21.3. The coercive elliptic-hyperbolic quadratic form and its coerciveness.

21.3.1. The coercive elliptic-hyperbolic quadratic form. In the next definition, we introduce the solution-adapted quadratic
form Q that we will use to control the top-order derivatives of the specific vorticity and entropy gradient.

Definition 21.8 (The coercive elliptic-hyperbolic quadratic form). Let Π/ a
b denote the Σt-components of the ℓt,u projection

tensorfield defined in (3.5b), and let and e and E be the tensorfields defined in (21.4)–(21.5) respectively. Let V be a
Σt-tangent vectorfield. Then relative to the Cartesian coordinates, we define Q[∂∂∂V ,∂∂∂V ] to be the following quadratic
form associated to V :

Q[∂∂∂V ,∂∂∂V ] def=
(
E
αβ

+ 4BαBβ
)(
eγδ + 4BγBδ

)
(∂αV

γ )∂βV
δ

− 1
16

{
−3(BV α)Lα + (LV α)Lα +Π/ a

b ∂aV
b
}2
.

(21.23)

21.3.2. The coerciveness of the elliptic-hyperbolic quadratic form. In the next lemma, we exhibit the coerciveness of
Q[∂∂∂V ,∂∂∂V ].

Lemma 21.9 (Coerciveness of Q[∂∂∂V ,∂∂∂V ]). On (n)M[τ0,τBoot),[−U1,U2], the quadratic formQ from Def. 21.8 is quantitatively

positive definite on the space of Cartesian gradients of Σt-tangent vectorfields V in the following sense, where |∂∂∂V |2h
def
=

(h−1)αβhγδ(∂αV γ )∂βV δ :

Q[∂∂∂V ,∂∂∂V ] ≈ |∂∂∂V |2h ≈
3∑
α=0

|∂αV |2g . (21.24)
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Proof. Throughout the proof, we will use the observations made in Remark 3.19. To start, we note that Young’s inequality

implies that the terms − 1
16

{
−3(BV α)Lα + (LV α)Lα +Π/ a

b ∂aV
b
}2

on RHS (21.23) are bounded in magnitude by:

≤ 4
16

[3(BV α)Lα]2 +
4
3
× 1

16

{
(LV α)Lα +Π/ a

b ∂aV
b
}2

≤ 9
4

[(BV α)Lα]2 +
1
6

[(LV α)Lα]2 +
1
6

(Π/ a
b ∂aV

b)2.
(21.25)

Moreover, the Cauchy–Schwarz inequality and the fact that |Π/ |2g/ = trg/g/ = 2 together imply that:

1
6

(Π/ a
b ∂aV

b)2 ≤ 1
3

(g/−1)abg/cd(∂aV
c)∂bV

d def=
1
3
|∂V |2g/ . (21.26)

Using Lemma 21.4 (in particular (21.8)–(21.9)), (21.23), and (21.25)–(21.26), we compute that:

Q[∂∂∂V ,∂∂∂V ] ≈
(
E
αβ

+ 4BαBβ
)(
eγδ + 4BγBδ

)
(∂αV

γ )∂βV
δ. (21.27)

From (21.27), the fact that (in Cartesian coordinates) Bγ∂αV γ = −∂αV 0 = 0, the identities L = B −X and L = B+X ,
the identities gab = g/ab + XaXb and (g−1)ab = (g/−1)ab + XaXb proved in (3.34a)–(3.34b), (3.35a), and the identities
(21.7a)–(21.7b) and (21.8)–(21.9), it follows that:

Q[∂∂∂V ,∂∂∂V ] ≈ |BV |2g + |LV |2g + (g/−1)abgcd(∂aV
c)∂bV

d ≈ |BV |2g + |XV |2g + (g/−1)abgcd(∂aV
c)∂bV

d

≈ |BV |2g + (g−1)abgcd(∂aV
c)∂bV

d ≈ |∂∂∂V |2h.
(21.28)

(21.28) implies the first “≈” in (21.24). The second “≈” in (21.24) then follows from Lemma 21.7. □

21.4. The characteristic currents. The Pu-tangent vectorfields J [V ,∂∂∂V ] in the next definition play a key role in our
analysis. In our proof of Prop. 21.14, use them for bookkeeping when integrating by parts. We sometimes refer to the
J [V ,∂∂∂V ] as “characteristic currents” since they are tangent to Pu , or “elliptic-hyperbolic currents” since they are the
basic ingredient for the elliptic-hyperbolic integral identities. In our prior work [4], we used related – but distinct –
(n)̃Σ

[−U1,u]
τ -tangent currents to derive elliptic-hyperbolic integral identities. Compared to the currents in [4], the ones

featured in the next definition are better adapted to the structure of the singularity in the sense that they do not generate
any critical-strength error terms in our top-order L2 estimates. Moreover, when we integrate by parts over the spacetime
region (n)M[τ1,τ2),[u1,u2], the Pu-tangency of the J [V ,∂∂∂V ] allows us to avoid boundary integrals along Pu . This
is important because some of the acoustic geometry error terms (such as the top-order derivatives of µ) do not have
sufficiently regularity to be controlled in L2 along Pu .

21.4.1. The definition of the Pu-tangent characteristic current.

Definition 21.10 (The Pu-tangent characteristic current). Let V be a Σt-tangent vectorfield. We define the characteristic
current to be the vectorfield J = J [V ,∂∂∂V ] with the following components, (α = 0,1,2,3):

J α[V ,∂∂∂V ] def= V γΠ
λ
γ Π

α
κ ∂λV

κ −V γΠ
α
γ Π

κ
λ ∂κV

λ. (21.29)

Remark 21.11 (J α[V ,∂∂∂V ] is Pu-tangent). Since for any vectorfield Z , the vectorfield Π
α
β Z

β is Pu-tangent, it follows
from (21.29) that indeed, J α[V ,∂∂∂V ] is Pu-tangent.

21.4.2. The covariant divergence identity satisfied by the elliptic-hyperbolic current. In the next lemma, we provide the
main covariant divergence identity satisfied by the current J α[V ,∂∂∂V ] from Def. 21.10. The identity forms the starting
point for the divergence-theorem-based proof of Prop. 21.14.

Lemma 21.12 (Covariant divergence identity for the elliptic-hyperbolic current). Let V be a Σt-tangent vectorfield, let
Q[∂∂∂V ,∂∂∂V ] be the quadratic form defined by (21.23), and let W be a “weight function.” Then the following identity holds
relative to the Cartesian coordinates, where D is the Levi-Civita connection of g:

W Q[∂∂∂V ,∂∂∂V ] = Dα(W J α[V ,∂∂∂V ]) + W J(Antisymmetric)[∂∂∂V ,∂∂∂V ] + W J(Div)[∂∂∂V ,∂∂∂V ]

+J(∂∂∂W )[V ,∂∂∂V ] + W J(Absorb-1)[V ,∂∂∂V ] + W J(Absorb-2)[V ,∂∂∂V ]

+ W J(Material)[∂∂∂V ,∂∂∂V ] + W J(Null Geometry)[V ,∂∂∂V ],

(21.30)
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where with (dV♭)αβ
def
= ∂αVβ −∂βVα , we have:

J(Antisymmetric)[∂∂∂V ,∂∂∂V ]
def
=

1
2
E
αβ
E
γδ

(dV♭)αγ (dV♭)βδ, (21.31a)

J(Div)[∂∂∂V ,∂∂∂V ]
def
=

9
16

(∂aV
a)2, (21.31b)

J(∂∂∂W )[V ,∂∂∂V ]
def
= −J α[V ,∂∂∂V ]∂αW , (21.31c)

J(Absorb-1)[V ,∂∂∂V ]
def
= −EαβEγδV κ(∂αgδκ)(dV♭)βγ

+
3
8

(∂aV
a)

{
−3(BV α)Lα + (LV α)Lα +Π/ a

b ∂aV
b
}
,

(21.31d)

J(Absorb-2)[V ,∂∂∂V ]
def
= −ΓΓΓ α

α βJ
β[V ,∂∂∂V ]−EαβΠ δ

γ (∂βgδκ)V κ∂αV
γ +E

αβ
Π

δ
γ V

κ(∂δgβκ)∂αV
γ , (21.31e)

J(Material)[∂∂∂V ,∂∂∂V ]
def
= 4eαβ(BV α)BV β , (21.31f)

J(Null Geometry)[V ,∂∂∂V ]
def
= −V γ

{
∂α

(
Π

λ
γ Π

α
κ

)}
∂λV

κ +V γ
{
∂α

(
Π

α
γ Π

κ
λ

)}
∂κV

λ, (21.31g)

and on RHS (21.31e), ΓΓΓ
γ
α β

def
= 1

2 (g−1)γδ
(
∂αgδβ +∂βgαδ −∂δgαβ

)
are the Cartesian Christoffel symbols of g.

Proof. Throughout the proof, we silently use the simple fact that BαV α = −V 0 = 0 and thus Vα
def= gαβV β = hαβV β

and (g−1)αβVβ = (h−1)αβVβ . We also silently use the simple identity ∂α(h−1)βγ = −(h−1)ββ
′
(h−1)γγ

′
∂αhβ′γ ′ and the

fact that in Cartesian coordinates, ∂αgβγ = ∂αhβγ (this follows easily from (3.25) and (21.3a)). Moreover, we frequently
relabel indices from line to line whenever convenient. We will also silently use the observations made in Remark 3.19 and
the symmetry of e and E shown in Lemma 21.4.

We start by using (21.29) to compute that relative to the Cartesian coordinates, we have:

DαJ α[V ,∂∂∂V ] = ∂αJ α[V ,∂∂∂V ] + ΓΓΓ α
α βJ

β[V ,∂∂∂V ]

= Π
α
κ Π

λ
γ (∂αV

γ )∂λV
κ −

(
Π

α
β ∂αV

β
)2

+ ΓΓΓ α
α βJ

β[V ,∂∂∂V ] +V γ
{
∂α

(
Π

λ
γ Π

α
κ

)}
∂λV

κ −V γ
{
∂α

(
Π

α
γ Π

κ
λ

)}
∂κV

λ,

(21.32)

where we stress that due to cancellations, the second derivatives of V are absent from RHS (21.32). Next, we compute the
following identity:

∂λV
κ = ∂λ[(h−1)κσVσ ] = (h−1)κσ∂λVσ + [∂λ(h−1)κσ ]Vσ

= (h−1)κσ∂σVλ + (h−1)κσ (∂λVσ −∂σVλ) + [∂λ(h−1)κσ ]Vσ

= (h−1)κσ∂σ (hλλ′V
λ′ ) + (h−1)κσ (∂λVσ −∂σVλ)− (h−1)κκ

′
V σ (∂λhκ′σ )

= (h−1)κσhλλ′ (∂σV
λ′ ) + (h−1)κσ (∂λVσ −∂σVλ) + (h−1)κσ (∂σhλλ′ )V

λ′ − (h−1)κκ
′
V σ (∂λhκ′σ ).

(21.33)

Next, taking into account definition (21.5), we compute that the contribution of the second product (h−1)κσ (∂λVσ−∂σVλ)
on RHS (21.33) to the first product on RHS (21.32) is as follows:

Π
α
κ Π

λ
γ (∂αV

γ )(h−1)κσ (∂λVσ −∂σVλ)

= E
ασ

Π
λ
γ

{
∂α[(h−1)γγ

′
Vγ ′ ]

}
(dV♭)λσ

= E
αβ
E
γδ

(∂αVγ )(dV♭)δβ −E
αβ
E
γδ
V κ(∂αhδκ)(dV♭)γβ

= −1
2
E
αβ
E
γδ

(dV♭)αγ (dV♭)βδ +E
αβ
E
γδ
V κ(∂αhδκ)(dV♭)βγ .

(21.34)
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Next, using (21.4), (21.5), (21.33) and (21.34), we rewrite the first product on RHS (21.32) as follows:

Π
α
κ Π

λ
γ (∂αV

γ )∂λV
κ = E

αβ
eγδ(∂αV

γ )∂βV
δ − 1

2
E
αβ
E
γδ

(dV♭)αγ (dV♭)βδ

+E
αβ
E
γδ
V κ(∂αhδκ)(dV♭)βγ

+E
αβ

Π
δ
γ (∂βhδκ)V κ∂αV

γ −EαβΠ δ
γ V

κ(∂δhβκ)∂αV
γ .

(21.35)

Next, using (see Lemma 7.3) the identities B = 1
2 (L+ L), L = B−X , L = B+X , BαV α = 0, and Bα∂βV α = 0, as well

as the identity ∂aV
a = XaXV a +Π/ a

b ∂aV
b (see (3.5b)), we compute that:

LαLV
α = −LαLV

α = LαLV
α − 2LαBV

α , (21.36)

LαLV
α = LαXV

α +LαBV
α = −XaXV a +LαBV

α = Π/ a
b ∂aV

b −∂aV a −LαBV
α . (21.37)

Next, using (21.1), (21.36), and (21.37), we compute that:

Π
α
β ∂αV

β = ∂aV
a +

1
4
LαLV

α +
1
4
LαLV

α (21.38)

=
3
4
∂aV

a − 3
4

(BV α)Lα +
1
4

(LV α)Lα +
1
4
Π/ a
b ∂aV

b. (21.39)

Using (21.38)–(21.39), we rewrite the second product on RHS (21.32) as follows:(
Π

α
β ∂αV

β
)2

=
1

16

{
3∂aV

a − 3(BV α)Lα + (LV α)Lα +Π/ a
b ∂aV

b
}2
. (21.40)

Combining (21.32), (21.35), and (21.40), we deduce the following identity:

E
αβ
eγδ(∂αV

γ )∂βV
δ = DαJ α[V ,∂∂∂V ]

+
1
2
E
αβ
E
γδ

(dV♭)αγ (dV♭)βδ +
1

16

{
3∂aV

a − 3(BV α)Lα + (LV α)Lα +Π/ a
b ∂aV

b
}2

−EαβEγδV κ(∂αhδκ)(dV♭)βγ

−V γ
{
∂α

(
Π

λ
γ Π

α
κ

)}
∂λV

κ +V γ
{
∂α

(
Π

α
γ Π

κ
λ

)}
∂κV

λ

− ΓΓΓ α
α βJ

β[V ,∂∂∂V ]−EαβΠ δ
γ (∂βhδκ)V κ∂αV

γ +E
αβ

Π
δ
γ V

κ(∂δhβκ)∂αV
γ .

(21.41)

Next, using (21.23), we observe that:

Q[∂∂∂V ,∂∂∂V ] = E
αβ
eγδ(∂αV

γ )∂βV
δ + 4eαβ(BV α)BV β

+ 4
(
E
αβ

+ 4BαBβ
)
BγBδ(∂αV

γ )∂βV
δ

− 1
16

{
−3(BV α)Lα + (LV α)Lα +Π/ a

b ∂aV
b
}2
.

(21.42)

Hence, noting that the terms on the second line of RHS (21.42) vanish, we can add

4eαβ(BV α)BV β − 1
16

{
−3(BV α)Lα + (LV α)Lα +Π/ a

b ∂aV
b
}2

to each side of (21.41) to obtain the following identity:

Q[∂∂∂V ,∂∂∂V ] = DαJ α[V ,∂∂∂V ]

+
1
2
E
αβ
E
γδ

(dV♭)αγ (dV♭)βδ +
9

16
(∂aV

a)2

−EαβEγδV κ(∂αhδκ)(dV♭)βγ +
3
8

(∂aV
a)

{
−3(BV α)Lα + (LV α)Lα +Π/ a

b ∂aV
b
}

+ 4eαβ(BV α)BV β

−V γ
{
∂α

(
Π

λ
γ Π

α
κ

)}
∂λV

κ +V γ
{
∂α

(
Π

α
γ Π

κ
λ

)}
∂κV

λ

− ΓΓΓ α
α βJ

β[V ,∂∂∂V ]−EαβΠ δ
γ (∂βhδκ)V κ∂αV

γ +E
αβ

Π
δ
γ V

κ(∂δhβκ)∂αV
γ .

(21.43)
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We have therefore proved (21.30) in the special case W
def= 1. To obtain (21.30) for a general weight W , we simply

multiply this special case identity by W and use the commutation identity W DαJ α[V ,∂∂∂V ] = Dα(W J α[V ,∂∂∂V ]) +
J(∂∂∂W )[V ,∂∂∂V ], where J(∂∂∂W )[V ,∂∂∂V ] is defined by (21.31c).

□

21.4.3. Key identity for the elliptic-hyperbolic boundary terms. To derive our main elliptic-hyperbolic integral identities,
which we state as Prop. 21.14, we will start by integrating (21.30) over the spacetime region (n)M[τ1,τ2),[u1,u2] and applying

the divergence theorem. This procedure leads to boundary integrals, including the integral of (n)N̂αJ α[V ,∂∂∂V ] over
(n)̃Σ

[u1,u2]
τ2 , where (n)N̂ is the future-directed g-unit normal to (n)̃Σ

[u1,u2]
τ2 . To avoid uncontrollable error terms in

the boundary integral, we will integrate by parts over (n)̃Σ
[u1,u2]
τ2 with the help of the identity for (n)N̂αJ α[V ,∂∂∂V ]

provided by the next lemma. Of crucial importance for our top-order L2 estimates is the sign of the first two terms
(n)R̆P[V ,V ] + 1

2P[V ,V ]tr̃g/
((n)R̆)πππ on RHS (21.44); in the proof of the integral identity (21.63), we will integrate by parts

and exploit the sign of these terms as well as the positive definiteness of the quadratic form P[V ,V ] shown in (21.48).

Lemma 21.13 (Key identity for the elliptic-hyperbolic boundary terms). Let V be a Σt-tangent vectorfield, let V/ be its

g-orthogonal projection onto the acoustic tori ℓt,u , let (dV♭)αβ
def
= ∂αVβ −∂βVα , and let J α[V ,∂∂∂V ] be the corresponding

characteristic current defined in (21.29). Then relative to the Cartesian coordinates, the following identity holds, where Π/
is the ℓt,u-projection from Def. 3.3, ∇/ is as in Def. 3.11, | · |g/ and | · |g are as in Def. 3.17, φ = φ(u) is the cut-off function
from Def. 4.1, φ′ is its derivative, (n)U , (n)N̂ and (n)R̆ are as in Def. 6.4, |(n)R̆|g̃ is as in (6.20a), (n)r is as in (6.20b), (̃g/ −1)AB

is as in Lemma 6.5, d̃iv/ is the (n)̃ℓτ,u-divergence operator from Def. 6.13, and tr̃g/
((n)R̆)πππ is the g̃/-trace (see Def. 6.10) of the

deformation tensor ((n)R̆)πππ of (n)R̆:

|(n)R̆|g̃
µ

(n)N̂αJ α[V ,∂∂∂V ] = (n)R̆P[V ,V ] +
1
2
P[V ,V ]tr̃g/

((n)R̆)πππ

− d̃iv/
 µ

µ−φ n
Lµ

[
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

]
(n)U


+E(Principal)[V ,∂∂∂V ] +E(Lower-order)[V ,V ],

(21.44)

where:

P[V ,V ]
def
=

1
4

 1
µ−φ n

Lµ

[
(XaV

a)2 + (1 + 2(n)r)|V |2g/ − 2
1

L(n)τ
XaV

aV/ α∇/ α (n)τ

] , (21.45)

E(Principal)[V ,∂∂∂V ]
def
=

1
µ

(n)R̆αΠ
α
β V

γ (g−1)βδ(dV♭)γδ −
1
µ
V βLβL

γ (n)R̆δ(dV♭)γδ

− 1
µ

(n)R̆αΠ
α
β V

β∂aV
a +

1
µ

(n)R̆αV
βLβBV

α − 1
µ

(n)R̆αV
αLβBV

β

− 1
2(µ−φ n

Lµ )
(n)R̆α(BV α)V aXa −

1
2(µ−φ n

Lµ )
(n)R̆αV

α(BV a)Xa +
1

2(µ−φ n
Lµ )

(n)R̆αL
αVaBV

a,

(21.46)
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and:

E(Lower-order)[V ,V ]
def
= −1

2
P[V ,V ]tr̃g/

((n)R̆)πππ

+
1
2

((n)R̆µ)
µ2 |V/ |2g/ +

1
2

((n)R̆µ)φ n
Lµ

µ2(µ−φ n
Lµ )
|V/ |2g/ +

((n)R̆µ)
µ(µ−φ n

Lµ )2

{1
2

(n)R̆αV
αV aXa −

1
4

(n)R̆αL
α |V |2g

}
+

(Lµ)
µ2

{
−1

2
(n)R̆αV

αV aXa +
1
4

(n)R̆αL
α |V |2g

}
+

1
2

(Lµ)φ n
Lµ

µ2 |V/ |2g/

−

 ((n)Uµ)φ n
Lµ

(µ−φ n
Lµ )2 +

µφn
(n)ULµ
(Lµ)2

(µ−φ n
Lµ )2


{
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

}
+

1
2

((n)Uµ)φ n
Lµ

µ(µ−φ n
Lµ )
|V/ |2g/

+

 1
µ−φ n

Lµ

[
−1

2
(n)R̆αV

αV aXa +
1
4

(n)R̆αL
α |V |2g

] d̃iv/ (n)U

−
φn ((n)R̆Lµ)

(Lµ)2

µ(µ−φ n
Lµ )2

{
−1

2
(n)R̆αV

αV aXa +
1
4

(n)R̆αL
α |V |2g

}
+

1
2
φ

n(X̆Lµ)
µ(µ−φ n

Lµ )(Lµ)2 |V/ |
2
g/ +

1
2
φ

n(LLµ)
(µ−φ n

Lµ )(Lµ)2 |V/ |
2
g/

+
1

4µ(µ−φ n
Lµ )

(n)R̆α(X̆Lα)|V |2g +
1
µ

((n)R̆Lα)LβV
αV β − 1

2µ(µ−φ n
Lµ )

(n)R̆αV
αV aX̆Xa

+
1

µ−φ n
Lµ

{
−1

2
(X̆Xα)V αV aXa +

1
4

(X̆Xα)Lα |V |2g
}

+
1

µ−φ n
Lµ

(
φ

n

µLµ
+ (n)r

){
−1

2
(X̆Lα)V αV aXa +

1
4

(X̆Lα)Lα |V |2g
}
− 1

2
(X̆(n)r)
µ−φ n

Lµ
|V/ |2g/

+
1

(µ−φ n
Lµ )

(X̆L(n)τ)

(L(n)τ)2

{
−1

2
(Π/ β

α ∂β
(n)τ)V αV aXa +

1
4

(Π/ β
α ∂β

(n)τ)Lα |V |2g
}

+
1

(µ−φ n
Lµ )

1
L(n)τ

{1
2

[X̆(Π/ β
α ∂β

(n)τ)]V αV aXa −
1
4

[X̆(Π/ β
α ∂β

(n)τ)]Lα |V |2g
}

− 1
2

1
µ

(L(n)R̆α)V αLβV
β − 1

4
1
µ

{
L((n)R̆αL

α)
}
|V |2g −

1
2

1
µ

(n)R̆αV
α(LLβ)V β +

1
4(µ−φ n

Lµ )
(n)R̆α(LLα)|V |2g

− 1
2(µ−φ n

Lµ )
(n)R̆αV

αV aLXa +
µ

µ−φ n
Lµ

{
−1

2
(LXα)V αV aXa +

1
4

(LXα)Lα |V |2g
}

+
µ

µ−φ n
Lµ

(
φ

n

µLµ
+ (n)r

){
−1

2
(LLα)V αV aXa +

1
4

(LLα)Lα |V |2g
}

+
µ

(µ−φ n
Lµ )

(LL(n)τ)

(L(n)τ)2

{
−1

2
(Π/ β

α ∂β
(n)τ)V αV aXa +

1
4

(Π/ β
α ∂β

(n)τ)Lα |V |2g
}

+
µ

(µ−φ n
Lµ

1

L(n)τ

{1
2

[
L(Π/ β

α ∂β
(n)τ)

]
V αV aXa −

1
4

[
L(Π/ β

α ∂β
(n)τ)

]
Lα |V |2g

}
− 1

2
µ(L(n)r)
µ−φ n

Lµ
|V/ |2g/

− 1
µ

((n)R̆gαβ)LαLγV
γV β − 1

2
1
µ

((n)R̆gαβ)V αV β +
1

4µ(µ−φ n
Lµ )

(n)R̆αL
α(X̆gab)V

aV b

+
1
µ

(n)R̆α(Lgαβ)LγV
γV β − 1

4
1
µ

(n)R̆αL
α(Lgβγ )V βV γ +

1
4(µ−φ n

Lµ )
(n)R̆αL

α(Lgab)V
aV b

+
1
µ

(n)R̆αΠ
α
β (g−1)βγ (∂γgδκ)V δV κ − 1

µ
(n)R̆αΠ

α
β (g−1)βγ (∂δgγκ)V δV κ

+
φ′ n

Lµ

µ(µ−φ n
Lµ )2

{
−1

2
(n)R̆αV

αV aXa +
1
4

(n)R̆αL
α |V |2g

}
− 1

2

φ′ n
Lµ

µ(µ−φ n
Lµ )
|V/ |2g/ .

(21.47)
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Moreover, on (n)M[τ0,τBoot),[−U1,U2], the term P[V ,V ] defined in (21.45) is quantitatively positive definite in the following
sense:

P[V ,V ] ≈ 1
µ−φ n

Lµ
|V |2g . (21.48)

Proof. First, using (21.1) and (21.29), we compute that:

J α[V ,∂∂∂V ] = V βΠ
α
γ ∂βV

γ +
1
2
V βLβLV

α − 1
2
V αLβLV

β −V βΠ
α
β ∂aV

a. (21.49)

Next, we note the following identity, where we recall that (dV♭)αβ
def= ∂αVβ −∂βVα :

∂βV
γ = gβκ(g−1)γλ∂λV

κ + (g−1)γκ(dV♭)βκ + (g−1)γκ(∂κgβλ)V λ − (g−1)γκ(∂βgκλ)V λ. (21.50)

Using (21.50), we rewrite the first product on RHS (21.49) as follows:

V βΠ
α
γ ∂βV

γ = Π
α
β (g−1)βγVδ∂γV

δ +Π
α
β V

γ (g−1)βδ(dV♭)γδ

+Π
α
β (g−1)βγ (∂γgδκ)V δV κ −Π α

β (g−1)βγ (∂δgγκ)V δV κ.
(21.51)

Next, using the identity L = 2B−L (see Lemma 7.3), we rewrite the second and third products on RHS (21.49) as follows:

1
2
V βLβLV

α − 1
2
V αLβLV

β = −1
2
V βLβLV

α +
1
2
V αLβLV

β +V βLβBV
α −V αLβBV

β . (21.52)

Differentiating by parts in the second term on RHS (21.52), we rewrite (21.52) as follows:

1
2
V βLβLV

α − 1
2
V αLβLV

β = −V βLβLV
α +

1
2
L(V αLβV

β)

− 1
2
V α(LLβ)V β +V βLβBV

α −V αLβBV
β .

(21.53)

Next, with the help of (21.50), we rewrite the first product on RHS (21.53) as follows:

V βLβLV
α = V βLβ(g−1)αγ (∂γV

δ)Lδ +V βLβL
γ (g−1)αδ(dV♭)γδ

+ (g−1)αβ(∂βgγδ)LγLκV
κV δ − (g−1)αβ(Lgβγ )LδV

δV γ .
(21.54)

Combining (21.49)–(21.54), we find that:

J α[V ,∂∂∂V ] =
1
2
L(V αLβV

β) +Π
α
β (g−1)βγVδ∂γV

δ −V βLβ(g−1)αγ (∂γV
δ)Lδ

+Π
α
β V

γ (g−1)βδ(dV♭)γδ −V βLβL
γ (g−1)αδ(dV♭)γδ

+Π
α
β (g−1)βγ (∂γgδκ)V δV κ −Π α

β (g−1)βγ (∂δgγκ)V δV κ

− (g−1)αβ(∂βgγδ)LγLκV
κV δ + (g−1)αβ(Lgβγ )LδV

δV γ − 1
2
V α(LLβ)V β

+V βLβBV
α −V αLβBV

β −Π α
β V

β∂aV
a.

(21.55)

Next, taking into account definition (21.1) and differentiating by parts, we express the second and third products on
RHS (21.55) as follows:

Π
α
β (g−1)βγVδ∂γV

δ −V βLβ(g−1)αγ (∂γV
δ)Lδ

=
1
2

(g−1)αβ∂β(|V |2g ) +
1
4
LαL(|V |2g )− 1

2
(g−1)αβ∂β

{
(V γLγ )2

}
− 1

2
(g−1)αβ(∂βgγδ)V γV δ − 1

4
Lα(Lgγδ)V γV δ + (g−1)αβ(∂βLγ )V γV δLδ.

(21.56)
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Using (21.56) to substitute for the second and third products on RHS (21.55), we deduce that:

J α[V ,∂∂∂V ] =
1
2

(g−1)αβ∂β(|V |2g )− 1
2

(g−1)αβ∂β
{
(V γLγ )2

}
+

1
2
L(V αLβV

β) +
1
4
LαL(|V |2g )

+Π
α
β V

γ (g−1)βδ(dV♭)γδ −V βLβL
γ (g−1)αδ(dV♭)γδ

+Π
α
β (g−1)βγ (∂γgδκ)V δV κ −Π α

β (g−1)βγ (∂δgγκ)V δV κ

− (g−1)αβ(∂βgγδ)LγLκV
κV δ + (g−1)αβ(Lgβγ )LδV

δV γ − 1
2
V α(LLβ)V β

+V βLβBV
α −V αLβBV

β −Π α
β V

β∂aV
a

− 1
2

(g−1)αβ(∂βgγδ)V γV δ − 1
4
Lα(Lgγδ)V γV δ + (g−1)αβ(∂βLγ )V γV δLδ.

(21.57)

Next, we note that since J [V ,∂∂∂V ] is tangent to Pu , we have LαJ α[V ,∂∂∂V ] = 0. From this fact and equations (6.7) and

(6.20d), it follows that
|(n)R̆|g̃
µ

(n)N̂αJ α[V ,∂∂∂V ] = 1
µ

(n)R̆αJ α[V ,∂∂∂V ]. Using this identity, (21.57), the identity V γLγ =

−V aXa implied by the fact that V γBγ = 0 and the identity B = L+X (see (3.24)), and using that |V |2g − (V aXa)2 = |V |2g/
(see (3.34a)) we deduce that:

|(n)R̆|g̃
µ

(n)N̂αJ α[V ,∂∂∂V ] =
1
2

1
µ

(n)R̆
{
|V/ |2g/

}
+

1
2

1
µ

(n)R̆αL(V αLβV
β) +

1
4

1
µ

(n)R̆αL
αL(|V |2g )

+
1
µ

(n)R̆αΠ
α
β V

γ (g−1)βδ(dV♭)γδ −
1
µ
V βLβL

γ (n)R̆δ(dV♭)γδ

+
1
µ

(n)R̆αΠ
α
β (g−1)βγ (∂γgδκ)V δV κ − 1

µ
(n)R̆αΠ

α
β (g−1)βγ (∂δgγκ)V δV κ

− 1
µ

((n)R̆gαβ)LαLγV
γV β +

1
µ

(n)R̆α(Lgαβ)LγV
γV β − 1

2
1
µ

(n)R̆αV
α(LLβ)V β

+
1
µ

(n)R̆αV
βLβBV

α − 1
µ

(n)R̆αV
αLβBV

β − 1
µ

(n)R̆αΠ
α
β V

β∂aV
a

− 1
2

1
µ

((n)R̆gαβ)V αV β − 1
4

1
µ

(n)R̆αL
α(Lgβγ )V βV γ +

1
µ

((n)R̆Lα)LβV
αV β .

(21.58)

Next, using the identity LβV
β = −V aXa noted above and differentiating by parts, we rewrite the terms on the first line

of RHS (21.58) as follows:

1
2

1
µ

(n)R̆
{
|V/ |2g/

}
+

1
2

1
µ

(n)R̆αL(V αLβV
β) +

1
4

1
µ

(n)R̆αL
αL(|V |2g )

=
1
2

(n)R̆
{1
µ
|V/ |2g/

}
+L

{
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

}
+

1
2

((n)R̆µ)
µ2 |V/ |2g/ +

(Lµ)
µ2

{
−1

2
(n)R̆αV

αV aXa +
1
4

(n)R̆αL
α |V |2g

}
− 1

2
1
µ

(L(n)R̆α)V αLβV
β − 1

4
1
µ

{
L((n)R̆αL

α)
}
|V |2g .

(21.59)
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Next, we use the identities (7.12a), (7.14b), (7.10), and (7.11), and differentiation by parts to rewrite the terms on the first line
of RHS (21.59) as follows, where d̃iv/ is the divergence operator on (n)̃ℓτ,u-tangent vectorfields from Def. 6.13:

1
2

(n)R̆
{1
µ
|V/ |2g/

}
+L

{
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

}
=

1
4

(n)R̆

 1
µ−φ n

Lµ

[
(XaV

a)2 + (1 + 2(n)r)|V |2g/ − 2
1

L(n)τ
XaV

aV/ α∇/ α (n)τ

]
+

−
(n)R̆µ

(µ−φ n
Lµ )2 +

n
φ′

Lµ

(µ−φ n
Lµ )2 −

φn
(n)R̆Lµ
(Lµ)2

(µ−φ n
Lµ )2


{
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

}
− d̃iv/

 µ

µ−φ n
Lµ

[
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

]
(n)U


+

 1
µ−φ n

Lµ

[
−1

2
(n)R̆αV

αV aXa +
1
4

(n)R̆αL
α |V |2g

] d̃iv/ (n)U

−

 ((n)Uµ)φ n
Lµ

(µ−φ n
Lµ )2 +

µφn
(n)ULµ
(Lµ)2

(µ−φ n
Lµ )2


{
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

}
+

µ

µ−φ n
Lµ

B
{
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

}
.

(21.60)

Before proceeding, we note the following identity, which follows from substituting RHS (7.9) (after lowering indices on

both sides via g) for the factor of
(n)R̆α
µ on LHS (21.61), from using the Leibniz and chain rules, from using (7.12a) to

re-express the vectorfield differential operator µ
µ−φ n

Lµ
B as differentiation with respect to L + 1

µ−φ n
Lµ

(n)R̆ + µ
µ−φ n

Lµ

(n)U

when the operator falls on the factor of 1
µ on RHS (7.9), from using (3.24) to re-express the vectorfield differential operator

µ
µ−φ n

Lµ
B as differentiation with respect to 1

(µ−φ n
Lµ ) X̆ + µ

µ−φ n
Lµ
L when the operator falls on any other factor besides

1
µ on RHS (7.9), from using that ∇/ α (n)τ = Π/

β
α ∂β

(n)τ, from using that X̆φ = φ′ , and from using that Pφ = 0 for any
Pu-tangent vectorfield P :

µ

(µ−φ n
Lµ )

B
{ (n)R̆α

µ

}
= −

((n)R̆µ)φ n
Lµ

µ2(µ−φ n
Lµ )

Lα −
(Lµ)φ n

Lµ

µ2 Lα −
((n)Uµ)φ n

Lµ

µ(µ−φ n
Lµ )

Lα +
φ′ n

Lµ

µ(µ−φ n
Lµ )

Lα

−φ n(X̆Lµ)
µ(µ−φ n

Lµ )(Lµ)2Lα −φ
n(LLµ)

(µ−φ n
Lµ )(Lµ)2Lα

+
1

µ−φ n
Lµ
X̆Xα +

µ

(µ−φ n
Lµ )

LXα +
1

µ−φ n
Lµ

(
φ

n

µLµ
+ (n)r

)
X̆Lα

+
µ

µ−φ n
Lµ

(
φ

n

µLµ
+ (n)r

)
LLα +

(X̆(n)r)
µ−φ n

Lµ
Lα +

µ(L(n)r)
µ−φ n

Lµ
Lα

+
1

(µ−φ n
Lµ )

(X̆L(n)τ)

(L(n)τ)2
(Π/ β

α ∂β
(n)τ) +

µ

(µ−φ n
Lµ )

(LL(n)τ)

(L(n)τ)2
(Π/ β

α ∂β
(n)τ)

− 1
(µ−φ n

Lµ )
1

L(n)τ
X̆(Π/ β

α ∂β
(n)τ)− µ

(µ−φ n
Lµ )

1
L(n)τ

L(Π/ β
α ∂β

(n)τ).

(21.61)

Next, we rewrite the terms on the last line of RHS (21.60) using the following strategy. First, we use the Leibniz and
chain rules to expand the differentiation with respect to µ

µ−φ n
Lµ

B in Cartesian coordinates. Second, when this derivative

operator falls on a Cartesian component of V , we make no further adjustments. Third, when the derivative operator
µ

µ−φ n
Lµ

B falls on either of the two factors of 1
µ

(n)R̆α in braces on LHS (21.62), we use (21.61) for substitution. Finally,

when the derivative operator µ
µ−φ n

Lµ
B falls on any other quantity in braces on LHS (21.62), we use (3.24) to re-express
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the operator as differentiation with respect to 1
µ−φ n

Lµ
X̆ + µ

µ−φ n
Lµ
L. These four steps allow us to deduce the following

identity:

µ

µ−φ n
Lµ

B
{
−1

2
1
µ

(n)R̆αV
αV aXa +

1
4

1
µ

(n)R̆αL
α |V |2g

}
= − 1

2(µ−φ n
Lµ )

(n)R̆α(BV α)V aXa −
1

2(µ−φ n
Lµ )

(n)R̆αV
α(BV a)Xa +

1
2(µ−φ n

Lµ )
(n)R̆αL

αVaBV
a

− 1
2µ(µ−φ n

Lµ )
(n)R̆αV

αV aX̆Xa −
1

2(µ−φ n
Lµ )

(n)R̆αV
αV aLXa

+
1

4µ(µ−φ n
Lµ )

(n)R̆α(X̆Lα)|V |2g +
1

4(µ−φ n
Lµ )

(n)R̆α(LLα)|V |2g

+
1

4µ(µ−φ n
Lµ )

(n)R̆αL
α(X̆gab)V

aV b +
1

4(µ−φ n
Lµ )

(n)R̆αL
α(Lgab)V

aV b

+
((n)R̆µ)φ n

Lµ

µ2(µ−φ n
Lµ )

{1
2
LαV

αV aXa −
1
4
LαL

α |V |2g
}

+
(Lµ)φ n

Lµ

µ2

{1
2
LαV

αV aXa −
1
4
LαL

α |V |2g
}

+
((n)Uµ)φ n

Lµ

µ(µ−φ n
Lµ )

{1
2
LαV

αV aXa −
1
4
LαL

α |V |2g
}

+
φ′ n

Lµ

µ(µ−φ n
Lµ )

{
−1

2
LαV

αV aXa +
1
4
LαL

α |V |2g
}

+φ
n(X̆Lµ)

µ(µ−φ n
Lµ )(Lµ)2

{1
2
LαV

αV aXa −
1
4
LαL

α |V |2g
}

+φ
n(LLµ)

(µ−φ n
Lµ )(Lµ)2

{1
2
LαV

αV aXa −
1
4
LαL

α |V |2g
}

+
1

µ−φ n
Lµ

{
−1

2
(X̆Xα)V αV aXa +

1
4

(X̆Xα)Lα |V |2g
}

+
µ

µ−φ n
Lµ

{
−1

2
(LXα)V αV aXa +

1
4

(LXα)Lα |V |2g
}

+
1

µ−φ n
Lµ

(
φ

n

µLµ
+ (n)r

){
−1

2
(X̆Lα)V αV aXa +

1
4

(X̆Lα)Lα |V |2g
}

+
µ

µ−φ n
Lµ

(
φ

n

µLµ
+ (n)r

){
−1

2
(LLα)V αV aXa +

1
4

(LLα)Lα |V |2g
}

+
(X̆(n)r)
µ−φ n

Lµ

{
−1

2
LαV

αV aXa +
1
4
LαL

α |V |2g
}

+
µ(L(n)r)
µ−φ n

Lµ

{
−1

2
LαV

αV aXa +
1
4
LαL

α |V |2g
}

+
1

(µ−φ n
Lµ )

(X̆L(n)τ)

(L(n)τ)2

{
−1

2
(Π/ β

α ∂β
(n)τ)V αV aXa +

1
4

(Π/ β
α ∂β

(n)τ)Lα |V |2g
}

+
µ

(µ−φ n
Lµ )

(LL(n)τ)

(L(n)τ)2

{
−1

2
(Π/ β

α ∂β
(n)τ)V αV aXa +

1
4

(Π/ β
α ∂β

(n)τ)Lα |V |2g
}

+
1

(µ−φ n
Lµ )

1
L(n)τ

{1
2

[X̆(Π/ β
α ∂β

(n)τ)]V αV aXa −
1
4

[X̆(Π/ β
α ∂β

(n)τ)]Lα |V |2g
}

+
µ

(µ−φ n
Lµ )

1
L(n)τ

{1
2

[L(Π/ β
α ∂β

(n)τ)]V αV aXa −
1
4

[L(Π/ β
α ∂β

(n)τ)]Lα |V |2g
}
.

(21.62)

Combining (21.58)–(21.62), using the identity 1
2LαV

αV aXa− 1
4LαL

α |V |2g = 1
2 |V/ |

2
g/ (which follows from (7.4) and the identi-

ties V γLγ = −V aXa and |V |2g−(V aXa)2 = |V/ |2g/ mentioned above) to substitute for the factors
{

1
2LαV

αV aXa − 1
4LαL

α |V |2g
}
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on RHS (21.62), and carrying out straightforward algebraic calculations, we deduce the desired identity (21.44). We clarify
that we explicitly placed the perfect (n)R̆-derivative and d̃iv/ -derivative terms as the first and third terms on RHS (21.44), that
we placed the remaining terms involving a first derivative of V on RHS (21.46), that we placed all terms that are quadratic

in V (without depending on the first derivatives of V ) on RHS (21.47), and that we added the term 1
2P[V ,V ]tr̃g/

((n)R̆)πππ to
RHS (21.44) (as the second term) and subtracted it on RHS (21.47) (as the first term).

To prove (21.48), we first use (3.31b), Lemma 5.5, and Prop. 9.1 to deduce that |∇/ (n)τ|2g/ = (g/−1)AB( ∂
∂xA

(n)τ) ∂
∂xB

(n)τ = f(γ)·
( ∂
∂x2

(n)τ, ∂
∂x3

(n)τ) · ( ∂
∂x2

(n)τ, ∂
∂x3

(n)τ), where the last expression is schematic. From this expression, (15.11b), the bootstrap

assumptions, and Cor. 17.2, we deduce that |∇/ (n)τ|g/ ≲ ε. From this estimate, (18.9b), the g/ Cauchy–Schwarz inequality,

and Young’s inequality, we deduce the following bound for the last product on RHS (21.45):
∣∣∣∣ 1
L(n)τ

XaV
aV/ α∇/ α (n)τ

∣∣∣∣ ≲
ε(XaV a)2 + ε|V/ |2g/ . From this estimate, the estimate (18.27) for |(n)r |, definition (21.45), and the identity |V |2g = (V aXa)2 +

|V |2g/ noted just above (21.58), we conclude (21.48).
□

21.5. The main elliptic-hyperbolic integral identity. We now state and prove the main elliptic-hyperbolic integral
identity.

Proposition 21.14 (The main elliptic-hyperbolic integral identity). Let V be a Σt-tangent vectorfield on
(n)M[τ0,τBoot),[−U1,U2],

and let Q[∂∂∂V ,∂∂∂V ] be the quadratic form from Def. 21.8. Then the following integral identity holds for any τ0 ≤ τ1 ≤ τ2 <
τBoot and −U1 ≤ u1 ≤ u2 ≤U2:∫

(n)M[τ1 ,τ2),[u1 ,u2]

1
L(n)τ

Q[∂∂∂V ,∂∂∂V ]dϖ +
∫

(n)̃ℓτ2 ,u2

P[V ,V ]dϖ g̃/

=
∫

(n)̃ℓτ2 ,u1

P[V ,V ]dϖ g̃/ +
∫

(n)̃ℓτ1 ,u2

P[V ,V ]dϖ g̃/ −
∫

(n)̃ℓτ1 ,u1

P[V ,V ]dϖ g̃/

+
∫

(n)̃Σ
[u1 ,u2]
τ1

{
E(Principal)[V ,∂∂∂V ] +E(Lower-order)[V ,V ]

}
dϖ

−
∫

(n)̃Σ
[u1 ,u2]
τ2

{
E(Principal)[V ,∂∂∂V ] +E(Lower-order)[V ,V ]

}
dϖ +

∫
(n)M[τ1 ,τ2),[u1 ,u2]

M[V ,∂∂∂V ]dϖ ,

(21.63)

where P[V ,V ] is defined by (21.45) and is positive definite in the sense that the pointwise estimate (21.48) holds, the error
terms E(Principal)[V ,∂∂∂V ] and E(Lower-order)[V ,V ] are defined in (21.46)–(21.47),

M[V ,∂∂∂V ]
def
=

1
L(n)τ

{
J(Antisymmetric)[∂∂∂V ,∂∂∂V ] +J(Div)[∂∂∂V ,∂∂∂V ] +µJ(∂∂∂ 1

µ )[V ,∂∂∂V ]

+J(Absorb-1)[V ,∂∂∂V ] +J(Absorb-2)[V ,∂∂∂V ] +J(Material)[∂∂∂V ,∂∂∂V ] +J(Null Geometry)[V ,∂∂∂V ]
}
,
(21.64)

and the error terms J(Antisymmetric)[∂∂∂V ,∂∂∂V ], · · · ,J(Null Geometry)[V ,∂∂∂V ] on RHS (21.64) are defined in (21.31a)–(21.31g).

Proof. We consider the divergence identity (21.30) with W
def= 1

µ . We integrate the identity over (n)M[τ1,τ2),[u1,u2] with
respect to the canonical volume form (8.14b) of g in adapted rough coordinates, apply the divergence theorem, and take
into account Def. 8.3 and the identity (8.14a), thereby obtaining the following identity, where (n)N̂ is the future-directed

g-unit normal to the g-spacelike hypersurfaces (n)̃Σ
[u1,u2]
τ (see Prop. 6.7):∫

(n)M[τ1 ,τ2),[u1 ,u2]

1
L(n)τ

Q[∂∂∂V ,∂∂∂V ]dϖ

= −
∫

(n)̃Σ
[u1 ,u2]
τ2

|(n)R̆|g̃
µ

(n)N̂αJ α[V ,∂∂∂V ]dϖ +
∫

(n)̃Σ
[u1 ,u2]
τ1

|(n)R̆|g̃
µ

(n)N̂αJ α[V ,∂∂∂V ]dϖ

+
∫

(n)M[τ1 ,τ2),[u1 ,u2]

M[V ,∂∂∂V ]dϖ .

(21.65)
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We emphasize that there are no null hypersurface boundary integrals in (21.65) because the current J α[V ,∂∂∂V ] defined
in (21.29) is tangent to the null hypersurface Pu (and thus LαJ α[V ,∂∂∂V ] = 0), and the signs of the first two integrals on
RHS (21.65) are tied to the Lorentzian nature of g and the fact that the g-timelike vectorfield (n)N̂α is future-pointing (and

thus outward-pointing to (n)M[τ1,τ2),[u1,u2] along
(n)̃Σ

[u1,u2]
τ2 and inward-pointing to (n)M[τ1,τ2),[u1,u2] along

(n)̃Σ
[u1,u2]
τ1 ).

Next, we use the identities (21.44) and (20.2) to re-express the integral
∫

(n)̃Σ
[u1 ,u2]
τ2

· · · on RHS (21.65) as follows, where we

note that integral of the perfect divergence term −d̃iv/ · · · on RHS (21.44) vanishes when integrated over any rough torus
(n)̃ℓτ,u :

−
∫

(n)̃Σ
[u1 ,u2]
τ2

|(n)R̆|g̃
µ

(n)N̂αJ α[V ,∂∂∂V ]dϖ = −
∫

(n)̃ℓτ2 ,u2

P[V ,V ]dϖ g̃/ +
∫

(n)̃ℓτ2 ,u1

P[V ,V ]dϖ g̃/

−
∫

(n)̃Σ
[u1 ,u2]
τ2

{
E(Principal)[V ,∂∂∂V ] +E(Lower-order)[V ,V ]

}
dϖ.

(21.66)

Moreover, we note that (21.66) also holds with τ1 in place of τ2. Using these two identities to substitute for the first two
integrals on RHS (21.65), we arrive at the identity (21.63).

□

22. Pointwise estimates for the error terms in the commuted wave equations

We continue to work under the assumptions of Sect. 13.2. In this section, we derive pointwise estimates for the error
terms that arise when we commute the wave equations (2.22a)–(2.22d) up to Ntop times, where we recall that Ntop is a fixed
integer satisfying (10.6). More precisely, for Ψ ∈ {R(+),R(−),v

2,v3, s} and 1 ≤ N ≤ Ntop, we derive pointwise estimates

for the inhomogeneous term (PN ;Ψ )G in the µ-weighted geometric wave equation µ2gPNΨ = (PN ;Ψ )G satisfied by

PNΨ . These pointwise estimates are a preliminary ingredient for the L2 estimates that we derive later on. Many of the

terms appearing in (PN ;Ψ )G are harmless from the point of view of regularity and the strength of their singularity; the
bulk of our effort goes towards the most difficult terms, which involve the top-order derivatives of the eikonal function
and which we handle by using the modified quantities from Def. 19.2.

22.1. Identification of the most difficult error terms in the commuted wave equations. Most of the terms in the
commuted wave equations are harmless from the point of view of regularity and the strength of their singularity. The
next definition captures these “harmless” error terms.

22.1.1. Harmless wave equation error terms.

Definition 22.1 (Harmless wave equation error terms). Let 1 ≤ N ≤ Ntop. We define Harmless
[1,N ]
(Wave) to be any term that

satisfies the following pointwise estimate on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣∣Harmless
[1,N ]
(Wave)

∣∣∣∣ ≲ ∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣+
∣∣∣∣Z[1,N ];1
∗ γ

∣∣∣∣+
∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ . (22.1)

The following simple lemma shows that Harmless
[1,Ntop−12]
(Wave) terms are small in the norm ∥ · ∥L∞((n)̃ℓτ,u ).

Lemma 22.2 (L∞ estimates for Harmless
[1,Ntop−12]
(Wave) ). Let Harmless

[1,Ntop−12]
(Wave) be as in Def. 22.1. Then the following estimate

holds for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]: ∥∥∥∥Harmless
[1,Ntop−12]
(Wave)

∥∥∥∥
L∞((n)̃ℓτ,u )

≲ ε. (22.2)

Proof. The estimate (22.2) follows from definition (22.1) and Prop. 17.1. □

22.1.2. The most difficult error terms. In the following proposition, we identify the most difficult error terms in the

commuted wave equations satisfied by the wave-variables Ψ⃗ .

Proposition 22.3 (Identification of the most difficult error terms in the commuted wave equations). Let Ψ⃗
def
= (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4)

def
=

(R(+),R(−),v
2,v3, s) be solutions to the covariant wave equations (2.22), and let N ≤ Ntop − 1. We denote the product of
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µ and the RHS of the covariant wave equation satisfied by Ψι by Gι, i.e., µ2gΨι = Gι. Then the following wave equations
hold for ι = 0,1,2,3,4 and A = 2,3:

µ2g(YN−1LΨι) = d/ ♯Ψι ·µd/YN−1trg/χ+YN−1LGι +Harmless
[1,N ]
(Wave), (22.3a)

µ2g(YN−1Y(A)Ψι) = (X̆Ψι)YN−1Y(A)trg/χ+ (c−2XA)d/ ♯Ψι ·µd/YN−1trg/χ

+YN−1Y(A)Gι +Harmless
[1,N ]
(Wave).

(22.3b)

Moreover, if 1 ≤ N ≤ Ntop and PN denotes any order N string of Pu-tangent commutator vectorfields other than the
ones appearing on LHSs (22.3a)–(22.3b), (i.e., if PN features at least two copies of L or only a single L that does not hit Ψι
first), then PNΨι obeys the following wave equation:

µ2g(PNΨι) = PNGι +Harmless
[1,N ]
(Wave). (22.3c)

Proof. In 2D , a detailed proof was provided in [50, Proposition 13.2], except there are no vorticity-involving or entropy-

involving terms in our definition of Harmless
[1,N ]
(Wave) because we have soaked such terms into our definition of Gι. Only

minor changes are needed to account for the third space dimension, so we omit the details here. □

22.2. Pointwise estimates for the difficult product (X̆Ψι)YN trg/χ. In this section, we derive pointwise estimates tied

to the most difficult terms appearing in the commuted wave equations, specifically the products (X̆Ψι)YN trg/χ on

RHS (22.3b) (note that YN−1Y(A) can be expressed as YN ). Our analysis relies on the fully modified quantities (YN )X
from Def. 19.2.

22.2.1. Pointwise estimates for the inhomogeneous terms in the transport equations satisfied by the modified quantities.
We start with the following lemma, which provides pointwise estimates for the inhomogeneous terms in the transport
equations satisfied by the fully modified quantities. The lemma also provides, for use in Sect. 22.3, pointwise estimates
for the inhomogeneous terms in the transport equations satisfied by the partially modified quantities.

Lemma 22.4 (Pointwise estimates for inhomogeneous terms tied to the modified quantities). Let N =Ntop.

Estimates tied to the fully modified quantities. Let YN ∈ Y(N ) where Y(N ) is the set of order N ℓt,u-tangential com-
mutator operators from Def. 8.10. Let X be the term defined in (19.6b), and let A be the term appearing on RHS (19.1) and
enjoying the schematic structure (19.2). Then the following pointwise estimates hold on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣∣YNX+ G⃗LL ⋄ X̆YN Ψ⃗

∣∣∣∣ ≲ µ
∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+
∣∣∣∣Z[1,N ];1
∗ Ψ⃗

∣∣∣∣+
∣∣∣P [1,N ]γ

∣∣∣+
∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ , (22.4a)∣∣∣PNX∣∣∣ ≲ ∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣+
∣∣∣P [1,N ]γ

∣∣∣+
∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ , (22.4b)

|YNA| ≲ µ|YN (C,D)|+ |Y≤N−1(C,D)|+ |Y≤N (Ω,S)|

+ |Z[1,N+1];1
∗ Ψ⃗ |+ |P [1,N ]γ|+ |P [1,N ]

∗ γ|.
(22.4c)

Estimates tied to the partially modified quantities. If YN−1 ∈ Y(N−1) and X̃, (YN−1 )̃X, (YN−1)B are as defined in (19.8),

(19.7b) (with YN−1 in the role of PN ), and (19.12) (with YN−1 in the role of PN−1) respectively, then the following pointwise
estimates hold on (n)M[τ0,τBoot),[−U1,U2]: ∣∣∣∣(YN−1 )̃X

∣∣∣∣ ≲ ∣∣∣∣P [1,N ]Ψ⃗

∣∣∣∣ , (22.5a)∣∣∣∣L(YN−1 )̃X

∣∣∣∣ , ∣∣∣∣Y(A)
(YN−1 )̃X

∣∣∣∣ ≲ ∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣ , (22.5b)∣∣∣∣(YN−1)B

∣∣∣∣ ≲ ∣∣∣P [1,N ]γ
∣∣∣ . (22.5c)

Proof. All estimates stated in the lemma are straightforward consequences of Lemma 3.13, Prop. 9.1, Lemma 9.7, the
commutator estimate (13.6a), and the estimates of Prop. 17.1. □
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22.2.2. Preliminary pointwise estimates for (YN )X . In the next lemma, we use the transport equation (19.10) to derive

a preliminary pointwise estimate for the fully modified quantity (PN )X in the case PN = YN with N = Ntop, which
in practice is the only case in which we need to use the fully modified quantities. The estimates in the lemma are
crucial ingredient in our proof of Prop. 22.8, in which we derive the main pointwise estimate for the difficult product
(X̆R(+))YN trg/χ. The proof of the lemma is similar to the proof of [73, Lemma 11.9], but due to our reliance on the
adapted rough coordinates, which are a new feature of the present paper, we provide complete details here.

Remark 22.5 (Boxed constants affect high order energy blowup-rates). In Lemma 22.6 and its proof, and also throughout
the rest of the paper, the important boxed constants such as 2 affect the blowup-rate of our top-order energies with
respect to powers of |τ|−1; see Prop. 24.1. We therefore carefully track these boxed constants.

Lemma 22.6 (Pointwise estimates for (YNtop )X ). Let N = Ntop, and let Y
(N ) and L/ (N )

Y
be the sets of order N ℓt,u-

tangential commutator operators from Def. 8.10. Let YN ∈ Y(N ), and let (YN )X be the corresponding fully modified
quantity defined in (19.6a) (with YN in the role of PN ). Let (n)̃L be the rough null vectorfield defined in (6.3), and let
(n)Λ̃ be the τ0-normalized flow map of (n)̃L with respect to the adapted rough coordinates ((n)τ,u,x2,x3) appearing in
Lemma 16.1. Moreover, let (n)N[τ0,τBoot] be the spacetime neighborhood constructed in Prop. 18.1 (specifically, in (18.12)), on
which we have derived especially sharp control of µ. In addition, if K is a spacetime subset, let 1K denote the characteristic
function K. Then relative to the adapted rough coordinates (τ,u,x2,x3) (see Remark 5.3), the following pointwise estimate
holds on (n)M[τ0,τBoot),[−U1,U2] (i.e., for (τ,u,x2,x3) ∈ [τ0,τBoot)× [−U1,U2]×T2), where YN denotes the same operator
in each term in (22.6) (except for the one term in which maxL/YN ∈L/

(N )
Y

is taken):∣∣∣∣(YN )X
∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

≤ C
∣∣∣∣(YN )X

∣∣∣∣ (τ0,u,x
2,x3)

+ 2
∫ τ

τ′=τ0

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣YNX∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ ∩(n)N[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+Cε
∫ τ

τ′=τ0

 max
L/NY ∈L/

(N )
Y

∣∣∣µL/NY χ∣∣∣
 ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C
∫ τ

τ′=τ0

{
µ|YN (C,D)|+ |Y≤N−1(C,D)|

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C
∫ τ

τ′=τ0

|Y≤N (Ω,S)| ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C
∫ τ

τ′=τ0

{
|Z[1,N+1];1
∗ Ψ⃗ |+ |P [1,N ]γ|+ |P [1,N ]

∗ γ|
}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.6)

Proof. Our analysis relies on the transport equation (19.10). To control solutions to this equation, we will use the integrating
factor I , which we define as follows relative to the adapted rough coordinates:

I (τ,u,x2,x3) def=
µ2 ◦ (n)Λ̃(τ0,u,x

2,x3)

µ2 ◦ (n)Λ̃(τ,u,x2,x3)

= exp
{
−2

∫ τ

τ0

( (n)̃Lµ
µ

)
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

}
,

(22.7)

where to obtain the second equality in (22.7), we have used (16.1) and the fundamental theorem of calculus. We also recall
that by (16.1), we have (n)Λ̃(τ0,u,x

2,x3) = (τ0,u,x
2,x3) and thus I (τ0,u,x

2,x3) = 1.
We now fix YN ∈ Y(N ). Since (n)̃L = 1

L(n)τ
L (see (6.3)), we can multiply both sides of (19.10) (with YN in the role of

PN ) by 1
L(n)τ

, evaluate at (n)Λ̃(τ′ ,u,x2,x3), then multiply both sides by I (τ′ ,u,x2,x3), integrate in rough time, use

(16.1) and the fundamental theorem of calculus, use that I (τ0,u,x
2,x3) = 1, and finally divide the resulting identity by
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I (τ,u,x2,x3) to deduce the following equation, valid for (τ,u,x2,x3) ∈ [τ0,τBoot)× [−U1,U2]×T2:

(YN )X ◦ (n)Λ̃(τ,u,x2,x3) =
1

I (τ,u,x2,x3)
(YN )X (τ0,u,x

2,x3)

+
∫ τ

τ0

I (τ′ ,u,x2,x3)
I (τ,u,x2,x3)

×
{ 1

L(n)τ
× (RHS (19.10))

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.8)

Next, we note the following estimate, which follows from (18.10a)–(18.10b):

sup
τ∈[τ0,τBoot]

(τ′ ,u,x2,x3)∈[τ0,τ]×[−U1,U2]×T2

µ2 ◦ (n)Λ̃(τ,u,x2,x3)

µ2 ◦ (n)Λ̃(τ′ ,u,x2,x3)
≤ C. (22.9)

From (22.9) and definition (22.7), we see that:

sup
(τ,u,x2,x3)∈[τ0,τBoot]×[−U1,U2]×T2

1
I (τ,u,x2,x3)

≤ C. (22.10)

We will now derive pointwise estimates for the terms on RHS (22.8). First, we use (22.10) to deduce that the first term
on RHS (22.8) is bounded in magnitude by the first term on RHS (22.6) as desired.

We now bound the term on RHS (22.8) generated by the first term on RHS (19.10) (with YN in the role of PN ) as
follows, where throughout the rest of the proof, we use that I (τ′ ,u,x2,x3)

I (τ,u,x2,x3) = µ2◦(n)Λ̃(τ,u,x2,x3)
µ2◦(n)Λ̃(τ′ ,u,x2,x3)

:∣∣∣∣∣∣−2
∫ τ

τ0

µ2 ◦ (n)Λ̃(τ,u,x2,x3)

µ2 ◦ (n)Λ̃(τ′ ,u,x2,x3)

{ (n)̃Lµ
µ
YNX

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

∣∣∣∣∣∣
≤ 2

∫ τ

τ0

µ2 ◦ (n)Λ̃(τ,u,x2,x3)

µ2 ◦ (n)Λ̃(τ′ ,u,x2,x3)

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣YNX∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ ∩(n)N[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+ 2
∫ τ

τ0

µ2 ◦ (n)Λ̃(τ,u,x2,x3)

µ2 ◦ (n)Λ̃(τ′ ,u,x2,x3)

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣YNX∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ \(n)N[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.11)

To handle the first integral on RHS (22.11), we use (18.10a) to bound it by:

≤ 2
∫ τ

τ0

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣YNX∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ ∩(n)N[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ , (22.12)

which is ≤ the second term on RHS (22.6) as desired. To handle the second integral on RHS (22.11), we use the crude
bounds |(n)̃Lµ| ≲ 1 and |µ| ≲ 1 (which follow from the bootstrap assumptions), as well as (18.16) and (22.4b), to bound it
by the last integral on RHS (22.6) as desired.

Next, to handle the term on RHS (22.8) generated by the second term on RHS (19.10), we first use (22.9) to bound it in
magnitude as follows:

≤ C
∫ τ

τ′=τ0

∣∣∣∣∣ 1
L(n)τ

×µ[L,YN ]trg/χ
∣∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ . (22.13)

Next, using the commutator estimate (13.6a), Lemma 13.3, Prop. 13.7, Prop. 17.1, Cor. 17.2, and (18.9b), we deduce the following
bound:

|RHS (22.13)| ≤ Cε
∫ τ

τ′=τ0

 max
L/NY ∈L/

(N )
Y

∣∣∣µL/NY χ∣∣∣
 ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C
∫ τ

τ′=τ0

{
|Z[1,N+1];1
∗ Ψ⃗ |+ |P [1,N ]γ|+ |P [1,N ]

∗ γ|
}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.14)

The first term on RHS (22.14) is bounded by the Cε-multiplied term on RHS (22.6), while the last term on RHS (22.14) is
bounded by the last term on RHS (22.6).
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To handle the terms on RHS (22.8) generated by the three commutator terms on the second line of RHS (19.10), we can
use the same arguments given above to bound them as follows:

≤ C
∫ τ

τ′=τ0

{
|Z[1,N+1];1
∗ Ψ⃗ |+ |P [1,N ]γ|+ |P [1,N ]

∗ γ|
}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ , (22.15)

which in turn is bounded by the last term on RHS (22.6) as desired.
To handle the terms on RHS (22.8) arising from the term YN (µ|χ|2g/ ) on RHS (19.10), we expand this term using the

Leibniz rule for the operators L/Y(A)
. Then using the same arguments we used in proving (22.14) (except no commutator

estimates are needed), we find that:

∣∣∣∣YN (µ|χ|2g/ )
∣∣∣∣ ≲ ε

∣∣∣µL/NY χ∣∣∣g/ +
∣∣∣P [1,N ]γ

∣∣∣+
∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ . (22.16)

Using (18.9b) and (22.16), we see that the time integral of the terms in (22.8) generated by the term YN (µ|χ|2g/ ) can be

bounded as follows:

≤ Cε
∫ τ

τ′=τ0

{
|µL/NY χ|

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C
∫ τ

τ′=τ0

{
|P [1,N ]γ|+ |P [1,N ]

∗ γ|
}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ ,

(22.17)

which in turn is bounded by RHS (22.6) as desired.
Finally, to handle the terms on RHS (22.8) arising from the term YNA on RHS (19.10), we use (18.9b) and the pointwise

estimate (22.4c) to bound the magnitude of the time integral of the product of 1
L(n)τ

and YNA by the sum of the last
three integrals on RHS (22.6) as desired. We have therefore proved the lemma. □

22.2.3. The main pointwise estimates for (X̆R(+))YN trg/χ. We are now ready to prove Prop. 22.8, which provides the main

pointwise estimate for the product (X̆R(+))YN trg/χ on RHS (22.3b) (with ι = 0) in the case N = Ntop. The proof relies

on the pointwise estimates for (YNtop )X provided by Lemma 22.6.

Remark 22.7 (The role of the notation C∗). The constants C∗ on RHS (22.18) have the same properties as the constants C
appearing throughout the paper. We have used the notation C∗ for some of the constants in (22.18) because this will aid
our analysis of the coupling of the different wave energies, especially in in Sect. 29.7.1, when we prove our Grönwall-type
estimates. Similar remarks apply for constants C∗ appearing throughout the rest of the paper.

Proposition 22.8 (The key pointwise estimate for (X̆R(+))YN trg/χ). Let N =Ntop, let Y
(N ) and L/ (N )

Y
be the sets of order

N ℓt,u-tangential commutator operators from Def. 8.10, and let YN ∈ Y(N ). Recall that the arrays Ψ⃗ and Ψ⃗ (Partial) are
defined in (2.11a)–(2.11b) respectively. Then relative to the adapted rough coordinates (τ,u,x2,x3) (see Remark 5.3), the
following pointwise estimate holds on (n)M[τ0,τBoot),[−U1,U2] (i.e., for (τ,u,x2,x3) ∈ [τ0,τBoot) × [−U1,U2] ×T2), where
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YN is the same in all appearances in (22.18), (except for the one term in which maxL/YN ∈L/
(N )
Y

is taken):

∣∣∣∣∣ 1
L(n)τ

(X̆R(+))YN trg/χ
∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

≤ 2

∣∣∣∣∣∣ (n)̃Lµ
µ

1(n)̃Σ
[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3) · |X̆YNR(+)| ◦ (n)Λ̃(τ,u,x2,x3)

+
C∗
|τ|
|X̆YN Ψ⃗ (Partial)| ◦ (n)Λ̃(τ,u,x2,x3)

+ 4

∣∣∣∣∣∣ (n)̃Lµ
µ

1(n)̃Σ
[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

×
∫ τ

τ′=τ0

{∣∣∣∣∣∣ (n)̃Lµ
µ

1(n)̃Σ
[−U1 ,u]
τ′ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣∣ ∣∣∣X̆YNR(+)

∣∣∣} ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
C∗
|τ|

∫ τ

τ′=τ0

1
|τ′ |
|X̆YN Ψ⃗ (Partial)| ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
Cε
|τ|

∫ τ

τ′=τ0

µ max
L/NY ∈L/

(N )
Y

∣∣∣L/NY χ∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
C
|τ|

∫ τ

τ′=τ0

{
µ|YN (C,D)|+ |Y≤N−1(C,D)|

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
C
|τ|

∫ τ

τ′=τ0

|Y≤N (Ω,S)| ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+ Error ◦ (n)Λ̃(τ,u,x2,x3),

(22.18)

and the error term Error ◦ (n)Λ̃ satisfies the following bound:

|Error| ◦ (n)Λ̃(τ,u,x2,x3) ≲
1
|τ|

∣∣∣∣(YN )X
∣∣∣∣ (τ0,u,x

2,x3)

+
ε

|τ|

∣∣∣∣X̆YN Ψ⃗ ∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3) +
∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

+
1
|τ|

∣∣∣∣Z[1,N ];1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3) +
1
|τ|

∣∣∣∣∣∣
P [1,N ]γ

P [1,N ]
∗ γ

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

+
ε

|τ|

∫ τ

τ′=τ0

1
|τ′ |

∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
1
|τ|

∫ τ

τ′=τ0

∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
1
|τ|

∫ τ

τ′=τ0

1
|τ′ |

∣∣∣∣Z[1,N ];1
∗ Ψ⃗

∣∣∣∣+

∣∣∣∣∣∣
P [1,N ]γ

P [1,N ]
∗ γ

∣∣∣∣∣∣
 ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.19)
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Moreover, the following less precise pointwise estimate holds on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣µYN trg/χ∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3) ≲
∣∣∣∣(YN )X

∣∣∣∣ (τ0,u,x
2,x3) +

{
µ
∣∣∣∣PN+1Ψ⃗

∣∣∣∣+
∣∣∣∣X̆PN Ψ⃗ ∣∣∣∣} ◦ (n)Λ̃(τ,u,x2,x3)

+

∣∣∣∣Z[1,N ];1
∗ Ψ⃗

∣∣∣∣+

∣∣∣∣∣∣
P [1,N ]γ

P [1,N ]
∗ γ

∣∣∣∣∣∣
 ◦ (n)Λ̃(τ,u,x2,x3)

+
∫ τ

τ′=τ0

1
|τ′ |

∣∣∣∣X̆PN Ψ⃗ ∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
∫ τ

τ′=τ0

∣∣∣∣ZN+1;1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
∫ τ

τ′=τ0

1
|τ′ |

∣∣∣∣Z[1,N ];1
∗ Ψ⃗

∣∣∣∣+

∣∣∣∣∣∣
P [1,N ]γ

P [1,N ]
∗ γ

∣∣∣∣∣∣
 ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+ ε

∫ τ

τ′=τ0

µ max
L/NY ∈L/

(N )
Y

∣∣∣L/NY χ∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
∫ τ

τ′=τ0

{
µ|YN (C,D)|+ |Y≤N−1(C,D)|

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
∫ τ

τ′=τ0

|Y≤N (Ω,S)| ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.20)

Proof. Throughout this proof, Error denotes any term such that |Error| ◦ (n)Λ̃(τ,u,x2,x3) satisfies (22.19). To prove

(22.18), we begin by using the definition (19.6a) of (YN )X and the estimates (17.10), (18.1), (18.9b), and (22.4a) to deduce:

1
L(n)τ

(X̆R(+))YN trg/χ =

 X̆R(+)

µL(n)τ

 (YN )X +

 X̆R(+)

µL(n)τ

 G⃗LL ⋄ X̆YN Ψ⃗ + Error, (22.21)

where in (22.21), we view all terms as being evaluated at (n)Λ̃(τ,u,x2,x3). Next, using the transport equation

(3.44), (6.3), the fact that G⃗LL ⋄ X̆Ψ⃗
def= G0

LLX̆R(+) + G1
LLX̆R(−) + G2

LLX̆v
2 + G3

LLX̆v
3 + G4

LLX̆s, and the identity
1 = 1(n)̃Σ

[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

+1(n)̃Σ
[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

, we deduce the following identity for the second product on RHS (22.21): X̆R(+)

µL(n)τ

 G⃗LL ⋄ X̆YN Ψ⃗
= 2

(n)̃Lµ
µ

1(n)̃Σ
[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

X̆YNR(+)

+ 2
(n)̃Lµ
µ

1(n)̃Σ
[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

X̆YNR(+)

− 1
µL(n)τ

G1
LL(X̆R(−))X̆YNR(+) −

3∑
A=2

1
µL(n)τ

GALL(X̆vA)X̆YNR(+) −
1

µL(n)τ
G4
LL(X̆s)X̆YNR(+)

+
(
G⃗LL ⋄ (n)̃LΨ⃗

)
X̆YNR(+) + 2

(
G⃗LX ⋄ (n)̃LΨ⃗

)
X̆YNR(+)

+

 X̆R(+)

µL(n)τ

G1
LLX̆Y

NR(−) +

 X̆R(+)

µL(n)τ

GALLX̆YNvA +

 X̆R(+)

µL(n)τ

G4
LLX̆Y

N s.

(22.22)

Clearly, the first product 2
(n)̃Lµ
µ 1(n)̃Σ

[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

X̆YNR(+) on RHS (22.22) is bounded in magnitude by the first

product on RHS (22.18) as desired. Similarly, using Prop. 9.1, (18.1), (18.9b), and the estimates of Prop. 17.1, we see that the
products on the last line of RHS (22.22) are bounded by the C∗-multiplied product on the second line of RHS (22.18).

Also using the estimate (18.16), we see that the product 2
(n)̃Lµ
µ 1(n)̃Σ

[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

X̆YNR(+) on RHS (22.22) is bounded

by the second term
∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3) on the second line of RHS (22.19). Finally, using Prop. 9.1, (18.1),
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(18.9b), and the estimates of Prop. 17.1, we see that the remaining products on RHS (22.22) are bounded in magnitude

by ≲ ε
|τ|

∣∣∣∣X̆YN Ψ⃗ ∣∣∣∣ (and thus are of type Error), where we have used that all these remaining products gain an overall

smallness factor of ε from the factors X̆R(−), X̆v
A, X̆s, and (n)̃LΨ⃗ .

We now bound the first product
(
X̆R(+)

µL(n)τ

)
(YN )X on RHS (22.21). We start by multiplying the inequality (22.6) by(

X̆R(+)

µL(n)τ

)
◦ (n)Λ̃(τ,u,x2,x3). To bound the product corresponding to the term 2 · · · on RHS (22.6), we first use Prop. 9.1,

(18.1), (18.9b), the estimates of Prop. 17.1, and (22.4a) to express the product as follows:

2

∣∣∣∣∣∣ X̆R(+)

µL(n)τ

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

×
∫ τ

τ′=τ0

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣∣G⃗LL ⋄ X̆YN Ψ⃗ ∣∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ ∩(n)N[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+ Error.

(22.23)

We now decompose the second factor in the integrand in (22.23) as follows:

G⃗LL ⋄ X̆YN Ψ⃗ = G0
LLX̆Y

NR(+) +G1
LLX̆Y

NR(−) +
3∑

A=2

GALLX̆Y
NvA +G4

LLX̆Y
N s, (22.24)

where we view (22.24) as being evaluated at (n)Λ̃(τ′ ,u,x2,x3). We now use (22.24) to substitute for the integrand factor
in (22.23). Using Prop. 9.1, (18.1), (18.9b), and the estimates of Prop. 17.1, we see that the time integral corresponding to
all the products on RHS (22.24) except the first one G0

LLX̆Y
NR(+) in (22.24) are bounded in magnitude by the term

C∗
|τ|

∫ τ

τ′=τ0

1
|τ′ | |X̆Y

N Ψ⃗ (Partial)| ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ on RHS (22.18). We now handle the one remaining integral, which is:

2

∣∣∣∣∣∣ X̆R(+)

µL(n)τ

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

×
∫ τ

τ′=τ0

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣G0
LLX̆Y

NR(+)

∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ ∩N (n)

[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.25)

To proceed, we first use (16.13) and Cor. 17.2 to obtain the following relation, valid for τ′ ∈ [τBoot,τ]:(
G0
LL ◦

(n)Λ̃(τ′ ,u,x2,x3)
)(
X̆YNR(+) ◦ (n)Λ̃(τ′ ,u,x2,x3)

)
=

(
G0
LL ◦

(n)Λ̃(τ,u,x2,x3)
)(
X̆YNR(+) ◦ (n)Λ̃(τ′ ,u,x2,x3)

)
+O(ε)X̆YNR(+) ◦ (n)Λ̃(τ′ ,u,x2,x3),

(22.26)

where we emphasize that the G0
LL factor on RHS (22.26) is evaluated at rough-time τ (as opposed to τ′ ). We now

substitute (22.26) into the integral (22.25). Using Prop. 9.1, (18.1), (18.9b), and the estimates of Prop. 17.1, we see that the
integral corresponding to the last product on RHS (22.26) is bounded by ≲ the ε-multiplied time integral on RHS (22.19)
and thus is of type Error. Next, we consider the time integral corresponding to the first product on RHS (22.26). Since
the factor G0

LL ◦
(n)Λ̃(τ,u,x2,x3) does not depend on the integration variable τ′ , we can pull it out of the integral to

obtain the following integral:

2

∣∣∣∣∣∣ X̆R(+)

µL(n)τ
G0
LL

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)∫ τ

τ′=τ0

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣X̆YNR(+)

∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ ∩(n)N[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.27)
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Using the transport equation (3.44) satisfied by µ, (6.3), Prop. 9.1, (18.1), (18.9b), and the estimates of Prop. 17.1, we rewrite
the product in (22.27) that is outside of the integral as follows:

X̆R(+)

µL(n)τ
G0
LL = 2

(n)̃Lµ
µ
− 1
µL(n)τ

G1
LLX̆R(−) −

3∑
A=2

1
µL(n)τ

GALLX̆v
A − 1

µL(n)τ
G4
LLX̆s

+ G⃗LL ⋄ (n)̃LΨ⃗ + 2G⃗LX ⋄ (n)̃LΨ⃗

= 2
(n)̃Lµ
µ

+O(ε)
1
|τ|
.

(22.28)

Substituting (22.28) for the product outside the integral in (22.27), and using the bound
∣∣∣∣ (n)̃Lµ

µ

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3) ≲ 1
|τ′ |

(which follows from (18.1), and the estimates of Prop. 17.1), we bound the resulting term as follows:

≤ 4

∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)
∫ τ

τ′=τ0

{∣∣∣∣∣∣ (n)̃Lµ
µ

∣∣∣∣∣∣ · ∣∣∣X̆YNR(+)

∣∣∣ · 1(n)̃Σ
[−U1 ,u]
τ′ ∩(n)N[τ0 ,τBoot]

}
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+ Error.
(22.29)

Next, we consider the simple estimate
∣∣∣∣ (n)̃Lµ

µ

∣∣∣∣ ≤ ∣∣∣∣∣ (n)̃Lµ
µ 1(n)̃Σ

[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣ +
∣∣∣∣∣ (n)̃Lµ

µ 1(n)̃Σ
[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

∣∣∣∣∣, which we

substitute into the factor outside the integral in (22.29). The term corresponding to

∣∣∣∣∣ (n)̃Lµ
µ 1(n)̃Σ

[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣ is

bounded by the term spanning the third and fourth lines of RHS (22.18). Moreover, using (18.16), and the estimates of

Prop. 17.1, we bound the term corresponding to

∣∣∣∣∣ (n)̃Lµ
µ 1(n)̃Σ

[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

∣∣∣∣∣ by:
≤ C

∫ τ

τ′=τ0

1
|τ′ |

∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

≤ C 1
|τ|

∫ τ

τ′=τ0

∣∣∣∣Z[1,N+1];1
∗ Ψ⃗

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ ≤ Error
(22.30)

as desired. Finally, we use (18.1), (18.9b), and (17.10) to deduce

∣∣∣∣∣ X̆R(+)

µL(n)τ
◦ (n)Λ̃(τ,u,x2,x3)

∣∣∣∣∣ ≲ 1
|τ| , and from this pointwise

estimate, it is easy to see that the products of
X̆R(+)

µL(n)τ
(n)Λ̃(τ,u,x2,x3) and the remaining terms on RHS (22.6) are bounded

in magnitude by ≤ RHS (22.18) as desired. We have therefore proved (22.18).
The proof of (22.20) is similar, but much less delicate because it does not rely on careful decompositions like (22.22)

and (22.28); we omit the details. □

22.3. Pointwise estimates for the partially modified quantities. In this section, we derive pointwise estimates for the
partially modified quantities from Def. 19.2.

Lemma 22.9 (Pointwise estimates for partially modified quantities and their L-derivative). Let N =Ntop, and let YN−1 ∈
Y(N−1), where Y(N−1) is the set of order N − 1 ℓt,u-tangential commutator operators from Def. 8.10. Let (YN−1)X̃ be
the corresponding partially modified quantity defined in (19.7a) (with N − 1 in the role of N and YN−1 in the role of

PN ). Recall that the arrays Ψ⃗ and Ψ⃗ (Partial) are defined in (2.11a)–(2.11b) respectively. Let (n)̃L be the rough null vectorfield
defined in (6.3), and let (n)Λ̃ be the τ0-normalized flow map of (n)̃L with respect to the adapted rough coordinates
((n)τ,u,x2,x3) appearing in Lemma 16.1. Then there exist constants C > 0 and C∗ > 0 such that relative to the adapted
rough coordinates (see Remark 5.3), the following pointwise estimate holds on (n)M[τ0,τBoot),[−U1,U2] (i.e., for (τ,u,x2,x3) ∈
[τ0,τBoot)× [−U1,U2]×T2):∣∣∣∣(n)̃L(YN−1)X̃

∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3) ≤ 1
2

∣∣∣∣∣ 1

L(n)τ
(G0

LL)∆/YN−1R(+)

∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

+C∗
∣∣∣∣∆/YN−1Ψ⃗ (Partial)

∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

+C
∣∣∣P [1,N ]γ

∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3).

(22.31a)
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Moreover, the following pointwise estimate holds relative to the adapted rough coordinates on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣∣(YN−1)X̃
∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3) ≤

∣∣∣∣(YN−1)X̃
∣∣∣∣ (τ0,u,x

2,x3)

+
1
2

∣∣∣∣∣ 1
L(n)τ

G0
LL

∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)

×
∫ τ

τ′=τ0

∣∣∣∆/YN−1R(+)

∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C∗

∫ τ

τ′=τ0

∣∣∣∣∆/YN−1Ψ⃗ (Partial)

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C
∫ τ

τ′=τ0

{
ε

∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣+
∣∣∣P [1,N ]γ

∣∣∣} ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(22.31b)

Proof. To prove (22.31a), we first expand the first term on RHS (19.11) as follows:

1
2
G0
LL∆/Y

N−1R(+) +
1
2
G1
LL∆/Y

N−1R(−) +
∑
A=2,3

1
2
GALL∆/Y

N−1vA +
1
2
G4
LL∆/Y

N−1s. (22.32)

Multiplying (19.11) by 1
L(n)τ

(in view of (6.3)) and evaluating at (n)Λ̃(τ,u,x2,x3), we see that the first product 1
2G

0
LL∆/Y

N−1R(+)

in (22.32) yields precisely the first term on RHS (22.31a). Next, using the bound
∑4
ι=1 |GιLL| ≲ 1 (which follows from Prop. 9.1

and Prop. 17.1), as well as the estimate 1
|L(n)τ| ≈ 1 (see (18.9b)), we see that the terms generated by the remaining products

in (22.32) are bounded in magnitude by the C∗-multiplied term on RHS (22.31a). Also using (22.5c), we conclude (22.31a).

To prove (22.31b), we first use (16.12) with f
def= (YN−1)X̃ , τ1

def= τ0, and τ2
def= τ. We take the absolute value and then

substitute the estimate (22.31a) into the integrand. The (rough) time integrals of all products on RHS (22.31a) except the
first one are clearly bounded in magnitude by RHS (22.31b). To handle the remaining the integral of the remaining product
1
2

∣∣∣∣ 1
L(n)τ

(G0
LL)∆/YN−1R(+)

∣∣∣∣ ◦ (n)Λ̃, we use (16.13) and Cor. 17.2 to replace the integrand factor |G0
LL ◦

(n)Λ̃(τ′ ,u,x2,x3)|
with |G0

LL ◦
(n)Λ̃(τ,u,x2,x3)| (which we can pull out of the integral, as is indicated in the second term on RHS (22.31b))

factor from the τ′-integral, at the expense of error terms featuring a small ε factor. Using the comparison estimates
(13.11a)–(13.11b), we bound these error terms by the terms on the last line of RHS (22.31b) as desired. □

23. Pointwise estimates for controlling the specific vorticity, entropy gradient, and modified fluid variables

We continue to work under the assumptions of Sect. 13.2. In this section, we derive a variety of pointwise estimates
that we will use in Sects. 26–(27), when we derive L2 estimates for Ω, S , C, and D up to top-order. Among the estimates
we derive are pointwise estimates for the error terms in the elliptic-hyperbolic integral identity (21.63).

23.1. Pointwise estimates for Ω, S , C, D, and their derivatives. In this section, we derive pointwise estimates for Ω,
S , C, D, and various derivatives of these quantities. We provide the main estimates in Prop. 23.3.

23.1.1. A simple identity for dV♭. In our proof of Prop. 23.3, we will use the following lemma, which provides an identity
for dV♭ when V is Σt-tangent.

Lemma 23.1. Let V be a Σt-tangent vectorfield, and let dV♭ be the two-form with the following components: (dV♭)αβ
def
=

∂αVβ − ∂βVα . Then relative to the Cartesian coordinates, the following identity holds, where c = c(ρ, s) is the speed of
sound:

(dV♭)αβ = ∂αVβ −∂βVα = 2(∂β lnc)Vα − 2(∂α lnc)Vβ + δ0
αVa∂βv

a − δ0
βVa∂αv

a

+
{
δ0
αgβγ − δ0

βgαγ
}
BV γ + c−2ϵαβγδB

γ (curlV )δ.
(23.1)

Proof. The same proof of [4, Lemma 5.6] holds. □
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23.1.2. Simple commutator estimates involving Ω and S . We will use the following simple commutator estimates in our
proof of Prop. 23.3.

Lemma 23.2 (Commuting µ-weighted Cartesian derivatives with the geometric vectorfields). Let 1 ≤N ≤Ntop. Then the

following commutator estimates hold on (n)M[τ0,τBoot),[−U1,U2]:∣∣∣[µ∂i ,PN ](Ω,S)
∣∣∣ , ∣∣∣[µcurl,PN ](Ω,S)

∣∣∣ , ∣∣∣[µdiv,PN ](Ω,S)
∣∣∣

≲
∣∣∣P≤N (Ω,S)

∣∣∣+
∣∣∣X̆P≤N−1(Ω,S)

∣∣∣+ ε|X̆P [1,N−1]Ψ⃗ |+ εµ|PN Ψ⃗ |+ ε|P [1,N ]
∗ γ|.

(23.2)

Proof. To derive the estimates for
∣∣∣[µ∂i ,PN ](Ω,S)

∣∣∣, we first use Lemma 5.6 to express the µ-weighted Cartesian partial

derivatives in terms of the geometric commutation vectorfields {L,X̆,Y(2),Y(3)}. Also using Prop. 9.1, the commutator esti-

mates (13.6a)–(13.6b), and the estimates of Prop. 17.1, we conclude the desired estimate (23.2) for
∣∣∣[µ∂i ,PN ](Ω,S)

∣∣∣. The de-
sired estimates for

∣∣∣[µcurl,PN ](Ω,S)
∣∣∣ and ∣∣∣[µdiv,PN ](Ω,S)

∣∣∣ follow immediately from the estimate for
∣∣∣[µ∂i ,PN ](Ω,S)

∣∣∣.
□

23.1.3. The main pointwise estimates.

Proposition 23.3 (Pointwise estimates for Ω,S,C,D, and their derivatives). The following pointwise estimates hold on
(n)M[τ0,τBoot),[−U1,U2]:

Transport estimates. For 0 ≤N ≤Ntop, we have:

|µBPN (Ω,S)| ≲ |P≤N (Ω,S)|+ ε|X̆P [1,N ]Ψ⃗ |+ εµ|PN+1Ψ⃗ |+ ε|P [1,N ]
∗ γ|, (23.3)

|µBPNC| ≲ |P≤NC|+ |P≤N+1(Ω,S)|+ ε|X̆P [1,N ]Ψ⃗ |+ ε|PN+1Ψ⃗ |+ ε|P [1,N ]
∗ γ|, (23.4a)

|µBPND| ≲ |P≤ND|+ |P≤N+1(Ω,S)|+ ε|X̆P [1,N ]Ψ⃗ |+ ε|PN+1Ψ⃗ |+ ε|P [1,N ]
∗ γ|. (23.4b)

Algebraic estimates for transversal derivatives in terms of tangential derivatives. For 0 ≤N ≤Ntop, we have:

|X̆PNΩ|, |PN X̆Ω| ≲ µ|LPNΩ|+ |P≤N (Ω,S)|+ ε|X̆P [1,N ]Ψ⃗ |+ εµ|PN+1Ψ⃗ |+ ε|P [1,N ]
∗ γ|, (23.5a)

|X̆PNS |, |PN X̆S | ≲ µ|LPNS |+ |P≤N (Ω,S)|+ ε|X̆P [1,N ]Ψ⃗ |+ εµ|PN+1Ψ⃗ |+ ε|P [1,N ]
∗ γ|. (23.5b)

Algebraic estimates for (divΩ,divS) and (curlΩ,curlS) in terms of (C,D). For 0 ≤N ≤Ntop, we have:∣∣∣curlPNΩ
∣∣∣ ≲ ∣∣∣PNC∣∣∣+

1
µ

∣∣∣P≤N−1C
∣∣∣+

1
µ

∣∣∣P≤N (Ω,S)
∣∣∣

+
ε

µ

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣PN+1Ψ⃗

∣∣∣∣+
ε

µ

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ , (23.6a)

∣∣∣divPNS
∣∣∣ ≲ ∣∣∣PND∣∣∣+

1
µ

∣∣∣P≤N−1D
∣∣∣+

1
µ

∣∣∣P≤N (Ω,S)
∣∣∣

+
ε

µ

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣PN+1Ψ⃗

∣∣∣∣+
ε

µ

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ , (23.6b)

∣∣∣divPNΩ
∣∣∣ , ∣∣∣curlPNS

∣∣∣ ≲ 1
µ
|P≤N (Ω,S)|+ ε

µ
|X̆P [1,N ]Ψ⃗ |+ ε|PN+1Ψ⃗ |+ ε

µ
|P [1,N ]
∗ γ|. (23.6c)

Estimates for the exterior derivative of (PNtopΩ)♭ and (PNtopS)♭. The following estimates hold, where (dPNtopΩ)♭ is

the two-form with the Cartesian components components ∂α(PNtopΩ)β−∂β(PNtopΩ)α (where (PNtopΩ)α = gαγPNtopΩγ ),
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and similarly for d(PNtopS)♭, and h is the Riemannian metric from Def. 21.3 and Lemma 21.4:

|d(PNtopΩ)♭|h ≲
∣∣∣PNtopC

∣∣∣+
1
µ

∣∣∣P≤Ntop−1C
∣∣∣+

1
µ

∣∣∣P≤Ntop(Ω,S)
∣∣∣

+
ε

µ

∣∣∣∣X̆P [1,Ntop]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣PNtop+1Ψ⃗

∣∣∣∣+
ε

µ

∣∣∣∣P [1,Ntop]
∗ γ

∣∣∣∣ , (23.7a)

|d(PNtopS)♭|h ≲
1
µ

∣∣∣P≤Ntop(Ω,S)
∣∣∣+

ε

µ

∣∣∣∣X̆P [1,Ntop]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣PNtop+1Ψ⃗

∣∣∣∣+
ε

µ

∣∣∣∣P [1,Ntop]
∗ γ

∣∣∣∣ . (23.7b)

Proof.

Proof of (23.3): We first prove the estimate (23.3) for Ωi . We start by multiplying the transport equation (2.23a) by µ

and commuting with PN to deduce that |µBPNΩi | ≲ |PN (µLi(Ω))| + |[µB,P
N ]Ωi |. Next, using Lemma 13.11, we see

that |PN (µLi(Ω))| ≲ RHS (23.3). Next, using the relation µB = µL + X̆ (see (3.24)), we derive the commutator identity

[µB,PN ] = µ[L,PN ] + [µ,PN ]L + [X̆,PN ]. Using the Leibniz rule, the commutator estimates (13.6a)–(13.6b), and the
estimates of Prop. 17.1, we find that |[µB,PN ]Ωi | ≲ RHS (23.3). Combining these estimates, we conclude the desired
estimate (23.3) for Ωi . Using similar arguments, based on the transport equation (2.23c), we also conclude (23.3) for S i .

Proof of (23.5a) and (23.5b): To deduce (23.5a) for PN X̆Ω we differentiate the identity (9.6a) with PN and use the
estimates of Prop. 17.1 and the commutator estimate (13.6a) (to commute PN under the factor of L in the first term on
RHS (9.6a)). From this estimate for PN X̆Ω, the commutator estimate (13.6b), and the estimates of Prop. 17.1, we also
conclude the desired bound (23.5a) for X̆PNΩ. The estimates stated in (23.5b) follow from a nearly identical argument
based on the identity (9.6b).

Proof of (23.4a) and (23.4b): To prove (23.4a), we first multiply the transport equation (2.24b) by µ and commute with

PN to deduce that |µBPNCi | ≲
∣∣∣∣PN {

µMi
(C) +µQi

(C) +µLi(C)

}∣∣∣∣ + |[µB,PN ]C|. Next, using Lemmas 13.10 and 13.11, we

see that
∣∣∣∣PN {

µMi
(C) +µQi

(C) +µLi(C)

}∣∣∣∣ ≲ RHS (23.4a). To show that |[µB,PN ]C| ≲ RHS (23.4a), we can use the same

argument that we used in the proof of (23.3). We have therefore proved the estimate (23.4a). The estimate (23.4b) can be
proved by applying nearly identical arguments based on the transport equation (2.25a).

Proof of (23.6a)–(23.6c): To prove (23.6a), we first multiply (2.10a) by µ and use Lemmas 5.6 and 9.1 to write the resulting

equation in the schematic form µ(curlΩ)i def= F = µf(Ψ⃗ )Ci + f(γ) · Sa · X̆Ψ⃗ +µf(γ) · Sa · P Ψ⃗ . Hence, if 0 ≤ N ≤ Ntop,

we can commute this equation with PN and then divide by µ to deduce curlPNΩi = 1
µ [µcurl,PN ]Ωi + 1

µP
NF.

The bootstrap assumptions and the estimates of Prop. 17.1 imply that 1
µ |P

NF| ≲
∣∣∣PNC∣∣∣+ 1

µ

∣∣∣P≤N−1C
∣∣∣+ 1

µ

∣∣∣P≤N (Ω,S)
∣∣∣+

ε
µ

∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣ + ε

∣∣∣∣PN+1Ψ⃗

∣∣∣∣ + ε
µ

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣ ≲ RHS (23.6a) as desired. To show that 1
µ

∣∣∣[µcurl,PN ]Ωi
∣∣∣ ≲ RHS (23.6a),

we use the commutator estimate (23.2), the estimates (23.5a)–(23.5b), and the estimate |µ| ≲ 1 (which follows from the
bootstrap assumptions).

To prove (23.6b), we first multiply (2.10b) by µ and use Lemmas 5.6 and 9.1 to deduce the schematic equation

µdivS = µf (Ψ⃗ )D + f(γ) · Sa · X̆Ψ⃗ +µf(γ) · Sa · P Ψ⃗ . We now argue as in the proof of (23.6a), where we use (23.2), the
estimates (23.5a)–(23.5b), and the estimate |µ| ≲ 1 to bound the commutator term 1

µ

∣∣∣[µdiv,PN ]S i
∣∣∣, thereby concluding

(23.6b).
We now prove (23.6c) for divPNΩ. Multiplying (2.24a) by µ, commuting with PN , and then dividing by µ, we

find that |divPNΩ| ≲ 1
µ |P

N (µL(divΩ))|+ 1
µ |[µdiv,PN ]Ω|. The desired estimate now follows from Lemma 13.11, the

commutator estimate (23.2), (23.5a)–(23.5b), and the estimate |µ| ≲ 1. The proof of (23.6c) for curlPNS follows from a
similar argument based on equation (2.25b), the commutator estimate (23.2), the estimates (23.5a)–(23.5b), and the estimate
|µ| ≲ 1.

Proof of (23.7a)–(23.7b): To prove (23.7a), we first use the identity (23.1) with PNtopΩ in the role of V , Lemmas 5.6 and
9.1, the estimates of Prop. 17.1, and (21.16a) to deduce that |(dPNtopΩ)♭|h ≲ 1

µ |P
NtopΩ|+ |BPNtopΩ|+ |curlPNtopΩ|. From

this estimate and the pointwise estimates (23.3) and (23.6a) with N
def= Ntop, we conclude the desired estimate (23.7a).

The estimate (23.7b) follows from a similar argument that relies on the pointwise estimate (23.3) for |BPNtopS | and the
pointwise estimate (23.6c) for

∣∣∣curlPNtopS
∣∣∣.

□
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23.2. Pointwise estimates for the elliptic-hyperbolic integral identity error terms. Recall that to prove our top-order
L2 estimates for the specific vorticity and entropy gradient, we will rely on the elliptic-hyperbolic integral identity (21.63)
with PNtopΩ and PNtopS in the role of V . In the next proposition, we derive pointwise estimates for the error terms
appearing in the identity.

Proposition 23.4 (Pointwise estimates for the elliptic-hyperbolic integral identity error terms). Let ς ∈ (0,1]. Then the
error terms appearing in the elliptic-hyperbolic integral identity (21.63) (with PNtopΩ and PNtopS in the role of V ) satisfy
the following pointwise estimates on (n)M[τ0,τBoot),[−U1,U2], where the implicit constants are independent of ς.

Estimates for controlling spacetime error integrals.

∣∣∣J(Antisymmetric)[∂∂∂PNtopΩ,∂∂∂PNtopΩ]
∣∣∣ ≲ ∣∣∣PNtopC

∣∣∣2 +
1
µ2

∣∣∣P≤Ntop−1C
∣∣∣2 +

1
µ2

∣∣∣P≤Ntop(Ω,S)
∣∣∣2

+
ε2

µ2

∣∣∣∣X̆P [1,Ntop]Ψ⃗

∣∣∣∣2 + ε2
∣∣∣∣PNtop+1Ψ⃗

∣∣∣∣2 +
ε2

µ2

∣∣∣∣P [1,Ntop]
∗ γ

∣∣∣∣2 , (23.8a)

∣∣∣J(Antisymmetric)[∂∂∂PNtopS,∂∂∂PNtopS]
∣∣∣ ≲ 1

µ2

∣∣∣P≤Ntop(Ω,S)
∣∣∣2

+
ε2

µ2

∣∣∣∣X̆P [1,Ntop]Ψ⃗

∣∣∣∣2 + ε2
∣∣∣∣PNtop+1Ψ⃗

∣∣∣∣2 +
ε2

µ2

∣∣∣∣P [1,Ntop]
∗ γ

∣∣∣∣2 , (23.8b)

∣∣∣J(Div)[∂∂∂PNtopΩ,∂∂∂PNtopΩ]
∣∣∣ ≲ 1

µ2 |P
≤Ntop(Ω,S)|2

+
ε2

µ2 |X̆P
[1,Ntop]Ψ⃗ |2 + ε2|PNtop+1Ψ⃗ |2 +

ε2

µ2 |P
[1,Ntop]
∗ γ|2,

(23.9a)

∣∣∣J(Div)[∂∂∂PNtopS,∂∂∂PNtopS]
∣∣∣ ≲ ∣∣∣PNtopD

∣∣∣2 +
1
µ2

∣∣∣P≤Ntop−1D
∣∣∣2 +

1
µ2 |P

≤Ntop(Ω,S)|2

+
ε2

µ2 |X̆P
[1,Ntop]Ψ⃗ |2 + ε2|PNtop+1Ψ⃗ |2 +

ε2

µ2 |P
[1,Ntop]
∗ γ|2,

(23.9b)

µ
∣∣∣∣J(∂∂∂ 1

µ )[P
NtopΩ,∂∂∂PNtopΩ]

∣∣∣∣ ≲ ς 1
L(n)τ

Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ] +
1
ς

1
µ2 |P

≤NtopΩ|2, (23.10a)

µ
∣∣∣∣J(∂∂∂ 1

µ )[P
NtopS,∂∂∂PNtopS]

∣∣∣∣ ≲ ς 1
L(n)τ

Q[∂∂∂PNtopS,∂∂∂PNtopS] +
1
ς

1
µ2 |P

≤NtopS |2, (23.10b)
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∣∣∣J(Absorb-1)[PNtopΩ,∂∂∂PNtopΩ]
∣∣∣ ≲ ς 1

L(n)τ
Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ]

+
(
1 +

1
ς

) 1
µ2 |P

≤Ntop(Ω,S)|2

+
(
1 +

1
ς

)
ε2

µ2 |X̆P
[1,Ntop]Ψ⃗ |2 +

(
1 +

1
ς

)
ε2|PNtop+1Ψ⃗ |2

+
(
1 +

1
ς

)
ε2

µ2 |P
[1,Ntop]
∗ γ|2,

(23.11a)

∣∣∣J(Absorb-1)[PNtopS,∂∂∂PNtopS]
∣∣∣ ≲ ς 1

L(n)τ
Q[∂∂∂PNtopS,∂∂∂PNtopS]

+
(
1 +

1
ς

) ∣∣∣PNtopD
∣∣∣2 +

(
1 +

1
ς

) 1
µ2

∣∣∣P≤Ntop−1D
∣∣∣2

+
(
1 +

1
ς

) 1
µ2 |P

≤Ntop(Ω,S)|2

+
(
1 +

1
ς

)
ε2

µ2 |X̆P
[1,Ntop]Ψ⃗ |2 +

(
1 +

1
ς

)
ε2|PNtop+1Ψ⃗ |2

+
(
1 +

1
ς

)
ε2

µ2 |P
[1,Ntop]
∗ γ|2,

(23.11b)

∣∣∣J(Absorb-2)[PNtopΩ,∂∂∂PNtopΩ]
∣∣∣ ≲ ς 1

L(n)τ
Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ] +

1
ς

1
µ2 |P

NtopΩ|2, (23.12a)∣∣∣J(Absorb-2)[PNtopS,∂∂∂PNtopS]
∣∣∣ ≲ ς 1

L(n)τ
Q[∂∂∂PNtopS,∂∂∂PNtopS] +

1
ς

1
µ2 |P

NtopS |2, (23.12b)

∣∣∣J(Material)[PNtopΩ,∂∂∂PNtopΩ]
∣∣∣ ≲ 1

µ2 |P
≤Ntop(Ω,S)|2

+
ε2

µ2 |X̆P
[1,Ntop]Ψ⃗ |2 + ε2|PNtop+1Ψ⃗ |2 +

ε2

µ2 |P
[1,Ntop]
∗ γ|2,

(23.13a)

∣∣∣J(Material)[PNtopS,∂∂∂PNtopS]
∣∣∣ ≲ 1

µ2 |P
≤Ntop(Ω,S)|2

+
ε2

µ2 |X̆P
[1,Ntop]Ψ⃗ |2 + ε2|PNtop+1Ψ⃗ |2 +

ε2

µ2 |P
[1,Ntop]
∗ γ|2,

(23.13b)

∣∣∣J(Null Geometry)[PNtopΩ,∂∂∂PNtopΩ]
∣∣∣ ≲ ς 1

L(n)τ
Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ] +

1
ς

1
µ2 |P

NtopΩ|2, (23.14a)∣∣∣J(Null Geometry)[PNtopS,∂∂∂PNtopS]
∣∣∣ ≲ ς 1

L(n)τ
Q[∂∂∂PNtopS,∂∂∂PNtopS] +

1
ς

1
µ2 |P

NtopS |2. (23.14b)

Estimates for controlling spatial error integrals.
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∣∣∣E(Principal)[PNtopΩ,∂∂∂PNtopΩ]
∣∣∣ ≲ {

µ−φ n

Lµ

}∣∣∣PNtopC
∣∣∣2 +

1
µ3/2

{
µ−φ n

Lµ

}∣∣∣P≤Ntop−1C
∣∣∣2

+
1

µ5/2

{
µ−φ n

Lµ

}∣∣∣P≤Ntop(Ω,S)
∣∣∣2

+
ε2

µ3/2

∣∣∣∣X̆P [1,Ntop]Ψ⃗

∣∣∣∣2 + ε2
{
µ−φ n

Lµ

}∣∣∣∣PNtop+1Ψ⃗

∣∣∣∣2
+

ε2

µ3/2

∣∣∣∣P [1,Ntop]
∗ γ

∣∣∣∣2 ,
(23.15a)

∣∣∣E(Principal)[PNtopS,∂∂∂PNtopS]
∣∣∣ ≲ {

µ−φ n

Lµ

}∣∣∣PNtopD
∣∣∣2 +

1
µ3/2

{
µ−φ n

Lµ

}∣∣∣P≤Ntop−1D
∣∣∣2

+
1

µ5/2

{
µ−φ n

Lµ

}∣∣∣P≤Ntop(Ω,S)
∣∣∣2

+
ε2

µ3/2

∣∣∣∣X̆P [1,Ntop]Ψ⃗

∣∣∣∣2 + ε2
{
µ−φ n

Lµ

}∣∣∣∣PNtop+1Ψ⃗

∣∣∣∣2
+

ε2

µ3/2

∣∣∣∣P [1,Ntop]
∗ γ

∣∣∣∣2 ,
(23.15b)

∣∣∣E(Lower-order)[PNtopΩ,PNtopΩ]
∣∣∣ ≲ 1

µ5/2

{
µ−φ n

Lµ

}∣∣∣PNtopΩ
∣∣∣2 , (23.16a)∣∣∣E(Lower-order)[PNtopS,PNtopS]

∣∣∣ ≲ 1
µ5/2

{
µ−φ n

Lµ

}∣∣∣PNtopS
∣∣∣2 . (23.16b)

Proof. We recall that h is the Riemannian metric from Def. 21.3 and Lemma 21.4.

Proof of (23.8a)–(23.8b) and (23.9a)–(23.9b): First, using (21.18) and (21.31a), we deduce that |J(Antisymmetric)[∂∂∂V ,∂∂∂V ]| ≲
|dV♭|2h. From this bound with PNtopΩ and PNtopS in the role of V and the pointwise estimates (23.7a)–(23.7b), we
conclude the desired bounds (23.8a)–(23.8b).

(23.9a)–(23.9b) follow from similar arguments based on (21.31b) and the pointwise estimates (23.6b)–(23.6c).

Proof of (23.10a)–(23.10b): Let V be any Σt-tangent vectorfield. We first note that since the elliptic hyperbolic current
J α[V ,∂∂∂V ] defined by (21.29) is tangent to Pu , we can use the identity (7.6) to obtain the following decomposition, where
Π/ is the ℓt,u-projection tensorfield from Def. 3.3: J α[V ,∂∂∂V ] = −1

2LβJ
β[V ,∂∂∂V ]Lα + Π/ α

β J β[V ,∂∂∂V ]. From this

decomposition and definition (21.31c), we deduce the following pointwise bound, where Π/ J [V ,∂∂∂V ] is the ℓt,u-projection
of J [V ,∂∂∂V ]:

µ|J(∂∂∂ 1
µ )[V ,∂∂∂V ]| ≲ 1

µ
|Lµ||LβJ

β[V ,∂∂∂V ]|+ |∇/ µ|g/ |Π/ J [V ,∂∂∂V ]|g/ . (23.17)

Next, using (23.17), definition (21.29), Prop. 9.1, the estimates of Prop. 17.1, and the pointwise comparison estimates provided
by Lemma 21.7, we deduce the following pointwise bound:

µ|J(∂∂∂ 1
µ )[V ,∂∂∂V ]| ≲ 1

µ
|V |g |∂∂∂V |h. (23.18)

Using (23.18) with PNtopΩ and PNtopS in the role of V , (21.24), the bound 1
L(n)τ

≈ 1 (see (18.9b)), (21.17a), and Young’s
inequality (where we multiply and divide by powers of ς), we deduce the desired bounds (23.10a)–(23.10b).

Proof of (23.11a)–(23.11b): Let V be any Σt-tangent vectorfield. We first use definition (21.31d), (21.9), Prop. 9.1, the estimates

of Prop. 17.1, the bound |∂αgβγ | ≲ |∂∂∂Ψ⃗ | ≲ 1
µ (which follows from Lemma 5.6 Prop. 9.1, and Prop. 17.1), and the pointwise

comparison estimates provided by Lemma 21.7 to deduce that:∣∣∣J(Absorb-1)[V ,∂∂∂V ]
∣∣∣ ≲ 1

µ
|V |g |∂∂∂V |h + |∂aV a||∂∂∂V |h. (23.19)
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Using (23.19) with PNtopΩ and PNtopS in the role of V , (21.24), the bound 1
L(n)τ
≈ 1 (see (18.9b)), the pointwise estimates

(23.6b)–(23.6c), (21.17a), and Young’s inequality (where we multiply and divide by powers of µ and ς as needed), we deduce
the desired bounds (23.11a)–(23.11b).

Proof of (23.12a)–(23.12b): Let V be any Σt-tangent vectorfield. We first use definitions (21.31e) and (21.29) and the same
arguments used in the proof of (23.19) to deduce the pointwise bound

∣∣∣J(Absorb-2)[V ,∂∂∂V ]
∣∣∣ ≲ 1

µ |V |g |∂∂∂V |h. Then using
the same arguments given just below (23.18), we conclude (23.12a)–(23.12b).

Proof of (23.13a)–(23.13b): Let V be any Σt-tangent vectorfield. We first use definition (21.31f), (21.18), and the point-
wise comparison estimates provided by Lemma 21.7 to deduce the pointwise bound

∣∣∣J(Material)[∂∂∂V ,∂∂∂V ]
∣∣∣ ≲ |BV |2h ≲∑

a=1,2,3 |BV a|2. From this bound with PNtopΩ and PNtopS in the role of V and the pointwise estimates (23.3), we
conclude (23.13a)–(23.13b).

Proof of (23.14a)–(23.14b): Let V be any Σt-tangent vectorfield. We first use definitions (21.31g) and (21.1), Lemma 5.6,
Prop. 9.1, and the estimates of Prop. 17.1 to deduce the pointwise bound

∣∣∣J(Null Geometry)[V ,∂∂∂V ]
∣∣∣ ≲ 1

µ |V |g |∂∂∂V |h. Then
using the same arguments given just below (23.18), we conclude (23.14a)–(23.14b).

Proof of (23.15a)–(23.15b): Let V be any Σt-tangent vectorfield. We first use definitions (21.46) and (21.1), Prop. 9.1, the
estimates of Prop. 17.1, (18.24), (18.8a), and the pointwise comparison estimates provided by Lemma 21.7 to deduce the
following pointwise estimate, where φ is the cut-off function from Def. 4.1:∣∣∣E(Principal)[V ,∂∂∂V ]

∣∣∣ ≲ 1
µ

{
µ−φ n

Lµ

}
|V |g

{
|BV |g + |dV♭|h + |divV |

}
. (23.20)

Using (23.20) with PNtopΩ and PNtopS in the role of V , the pointwise estimates (23.3) and (23.6a)–(23.6c) with Ntop in
the role of N , the pointwise estimates (23.7a)–(23.7b), the pointwise comparison estimates (21.17a)–(21.17b), the estimate∣∣∣µ−φ n

Lµ

∣∣∣ ≲ 1 (which follows from Prop. 17.1 and (18.8a)) and Young’s inequality (where we multiply and divide by powers
of µ and ς as needed), we conclude that the desired estimates (23.15a)–(23.15b) hold for any ς ∈ (0,1].

Proof of (23.16a)–(23.16b): Let V be any Σt-tangent vectorfield. We first use definitions (21.47) and (21.1), Lemma 5.5,
Cor. 5.7, Prop. 9.1, Lemma 15.5, Prop. 17.1, Lemma 18.6, (18.7), (18.8a), (21.48), and the pointwise comparison estimates
provided by Lemma 21.7 to deduce the following pointwise bound, where φ is the cut-off function from Def. 4.1:∣∣∣E(Lower-order)[V ,V ]

∣∣∣ ≲ 1
µ5/2

{
µ−φ n

Lµ

}
|V |2g . Using this bound with PNtopΩ and PNtopS in the role of V and the

comparison estimate (21.17a), we conclude the desired bounds (23.16a)–(23.16b).
□

24. Statement of the a priori L2 estimates, data-estimates for the L2-controlling quantities, and bootstrap assumptions
for the wave variable energies

We continue to work under the assumptions of Sect. 13.2. In Sect. 24.1, we state all of the a priori energy estimates
for the fluid variables and the acoustic geometry. In particular, we state the main estimates for the L2-controlling
quantities defined in Sect. 20.5. The proofs of these estimates take considerable effort and form the focus of the paper

through Sect. 29. In Sect. 24.2, we show that along the data-hypersurfaces (n)̃Σ
[−U1,U2]
τ0 and (n)P [τ0,τBoot)

−U1
, the L2-controlling

quantities are bounded by ≲ ϵ̊2, i.e., the L2-controlling quantities have small data. Finally, in Sect. 24.3, we state bootstrap
assumptions for the WN , i.e., for the L

2-controlling quantities of the wave-variables. Our proof of Prop. 24.1, given in
Sect. 29.7.1, will yield strict improvements of the bootstrap assumptions for the WN .

24.1. Statement of the a priori L2 estimates.

24.1.1. Statement of the a priori L2 estimates for the wave-variables. In the following proposition, we state our main a
priori energy estimates for the wave-variables. Its proof is located in Sect. 29.7.1.

Proposition 24.1 (The main a priori estimates for W[1,Ntop]). Let WN (τ,u) be the L2-controlling quantity for the wave-

variables Ψ⃗ , as defined in (20.43c). Under the data-assumptions of Sect. 11, the parameter size-assumptions of Sect. 10.2,
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and the bootstrap assumptions of Sect. 12, there exists a constant C > 0 such that the following estimates hold for (τ,u) ∈
[τ0,τBoot)× [−U1,U2]:

WNtop−K (τ,u) ≤ Cϵ̊2|τ|−15.6+2K , if 0 ≤ K ≤ 7, (24.1a)

WN (τ,u) ≤ Cϵ̊2, if 1 ≤N ≤Ntop − 8. (24.1b)

24.1.2. Statement of the a priori L2 estimates for the transport-variables. The following proposition provides an analog of
Prop. 24.1 for the transport-variables. Its proof is located in Sects. 26.2 and 27.3.

Proposition 24.2 (The main a priori L2 estimates for the transport-variables on hypersurfaces). Let VN (τ,u) and
SN (τ,u) be the L2-controlling quantities for Ω and S , as defined in (20.45a)–(20.45b), and let CN (τ,u) and DN (τ,u)
be the L2-controlling quantities for the modified fluid variables C and D, as defined in (20.47a)–(20.47b). Under the data-
assumptions of Sect. 11, the parameter size-assumptions of Sect. 10.2, and the bootstrap assumptions of Sect. 12, there exists a
constant C > 0 such that the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

VNtop−K (τ,u), SNtop−K (τ,u) ≤ Cϵ̊2|τ|−14.6+2K , if 0 ≤ K ≤ 7, (24.2a)

VN (τ,u), SN (τ,u) ≤ Cϵ̊2, if 0 ≤N ≤Ntop − 8, (24.2b)

CNtop
(τ,u),DNtop

(τ,u) ≤ Cϵ̊2|τ|−17.1, (24.3a)

CNtop−1−K (τ,u),DNtop−1−K (τ,u) ≤ Cϵ̊2|τ|−14.6+2K , if 0 ≤ K ≤ 7, (24.3b)

CN (τ,u),DN (τ,u) ≤ Cϵ̊2, if 0 ≤N ≤Ntop − 9. (24.3c)

In addition to the L2 estimates of Prop. 24.2, which are estimates for the transport-variables on constant-rough-time
hypersurfaces and null hypersurfaces, we also derive L2 estimates for the transport-variables on the rough tori (n)̃ℓτ,u .
We need these estimates because rough tori integrals are featured in the main elliptic-hyperbolic integral identity (see
Prop. 21.14) that we use to control various top-order spacetime L2 norms of the Ω and S . The rough tori estimates of
interest are provided by the next proposition. Its proof is located in Sects. 26.3 and 27.7.

Proposition 24.3 (The main a priori L2 estimates for the transport-variables on the rough tori). Let V
(Rough Tori)
N (τ,u) and

S
(Rough Tori)
N (τ,u) be the rough tori-L2-controlling quantities for Ω and S defined in (20.46a)–(20.46b), and let C

(Rough Tori)
N

and D
(Rough Tori)
N (τ,u) be the rough tori-L2-controlling quantities for C and D defined in (20.48a)–(20.48b). Under the

data-assumptions of Sect. 11, the parameter size-assumptions of Sect. 10.2, and the bootstrap assumptions of Sect. 12, there
exists a constant C > 0 such that the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

V
(Rough Tori)
Ntop

(τ,u), S(Rough Tori)
Ntop

≤ Cϵ̊2|τ|−17.1, (24.4a)

V
(Rough Tori)
Ntop−1−K (τ,u), S(Rough Tori)

Ntop−1−K ≤ Cϵ̊
2|τ|−14.6+2K , if 0 ≤ K ≤ 7, (24.4b)

V
(Rough Tori)
N (τ,u), S(Rough Tori)

N (τ,u) ≤ Cϵ̊2, if 0 ≤N ≤Ntop − 9, (24.4c)

C
(Rough Tori)
Ntop−1 (τ,u),D(Rough Tori)

Ntop−1 (τ,u) ≤ Cϵ̊2|τ|−17.1, (24.5a)

C
(Rough Tori)
Ntop−2−K (τ,u),D(Rough Tori)

Ntop−2−K (τ,u) ≤ Cϵ̊2|τ|−14.6+2K , if 0 ≤ K ≤ 7, (24.5b)

C
(Rough Tori)
N (τ,u),D(Rough Tori)

N (τ,u) ≤ Cϵ̊2, if 0 ≤N ≤Ntop − 10. (24.5c)

24.1.3. Statement of the a priori L2 estimates for the acoustic geometry. The following proposition provides our main a
priori energy estimates for the acoustic geometry. Its proof is located in Sect. 29.8.

Proposition 24.4 (The main a priori estimates for the acoustic geometry along the rough foliations). Under the data-
assumptions of Sect. 11, the parameter size-assumptions of Sect. 10.2, and the bootstrap assumptions of Sect. 12, there exists a
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constant C > 0 such that the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:
∥∥∥PNtop trg/χ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)∥∥∥∥L/Ntop

P χ
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)
 ≤ Cϵ̊|τ|−8.8, (24.6a)



∥∥∥PN−1trg/χ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)∥∥∥L/N−1
P χ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)∥∥∥PN∗ µ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)∥∥∥∥PNLi(Small)∥∥∥∥L2
(

(n)̃Σ
[−U1 ,U2]
τ

)


≤ Cϵ̊|τ|−7.3+Ntop−N , if Ntop − 7 ≤N ≤Ntop, (24.6b)



∥∥∥P≤Ntop−9trg/χ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)∥∥∥∥L/Ntop−9
P χ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)∥∥∥∥P [1,Ntop−8]
∗ µ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)∥∥∥∥P [1,Ntop−8]Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

)


≤ Cϵ̊. (24.6c)

24.2. Data-estimates for the L2-controlling quantities. In this section, we derive estimates for the data of the L2-
controlling quantities W[1,Ntop], V≤Ntop

, etc. We will use these data-estimates in our proofs of Props. 24.1–24.4.

Lemma 24.5 (The L2-controlling quantities are initially small). The following estimates hold for τ ∈ [τ0,τBoot) and
u ∈ [−U1,U2]:

W[1,Ntop](τ,−U1) ≤ Cϵ̊2, W[1,Ntop](τ0,u) ≤ Cϵ̊2, (24.7)

V≤Ntop
(τ0,u) ≤ Cϵ̊2, V≤Ntop

(τ,−U1) ≤ Cϵ̊2, (24.8a)

S≤Ntop
(τ0,u) ≤ Cϵ̊2, S≤Ntop

(τ,−U1) ≤ Cϵ̊2, (24.8b)

C≤Ntop
(τ0,u) ≤ Cϵ̊2, C≤Ntop

(τ,−U1) ≤ Cϵ̊2, (24.9a)

D≤Ntop
(τ0,u) ≤ Cϵ̊2, D≤Ntop

(τ,−U1) ≤ Cϵ̊2, (24.9b)

V
(Rough Tori)
≤Ntop

(τ0,u) ≤ Cϵ̊2, (24.10a)

S
(Rough Tori)
≤Ntop

(τ0,u) ≤ Cϵ̊2, (24.10b)

C
(Rough Tori)
≤Ntop−1 (τ0,u) ≤ Cϵ̊2, (24.11a)

D
(Rough Tori)
≤Ntop−1 (τ0,u) ≤ Cϵ̊2. (24.11b)

Proof. The estimates stated in (24.7) are straightforward consequences of the data-assumptions (11.11a), (11.11b), and (11.12a),
definitions (20.23a)–(20.23b), (20.25), and (20.43a)–(20.43c), the identities (20.51a), (20.51d), (3.31a), (5.8c)–(5.8d), (5.13c),
(6.20a), (7.7), and (6.11)–(6.13), Prop. 9.1, the bootstrap assumptions (see in particular (BA t − SIZE)), and the estimates (15.24)
and (18.9a)–(18.9b).

The estimates (24.8a)–(24.8b) follow from applying similar reasoning based on definitions (20.24a)–(20.24b) and (20.45a)–
(20.45b) and the data-assumptions (11.11c) and (11.12b).

The estimates (24.9a)–(24.9b) follow from applying similar reasoning based on definitions (20.24a)–(20.24b) and (20.47a)–
(20.47b) and the data-assumptions (11.11d) and (11.12c).
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The estimates (24.10a)–(24.10b) follow from definitions (20.46a)–(20.46b) and the data-assumptions (11.13b).
The estimates (24.11a)–(24.11b) follow from definitions (20.48a)–(20.48b) and the data-assumptions (11.13c). □

24.3. Bootstrap assumptions for the WN . In proving Props. 24.1–24.4, we find it convenient to make bootstrap as-
sumptions for the L2-controlling quantities for the wave-variables. Specifically, with WN (τ,u) (see definition (20.43c))

denoting the L2-controlling quantity for the wave-variables Ψ⃗ , we assume that the following bootstrap assumptions hold
for (τ,u) ∈ [τ0,τBoot)× [−U1,U2], where ε is the bootstrap parameter from Sect. 12.3.1:

WNtop−K (τ,u) ≤ ε|τ|−15.6+2K , if 0 ≤ K ≤ 7, (24.12a)

W[1,Ntop−8](τ,u) ≤ ε. (24.12b)

Remark 24.6 (The wave-variable energy estimates improve the bootstrap assumptions). Note that when ϵ̊ is sufficiently
small, the estimates of Prop. 24.1 yield strict improvements over the bootstrap assumptions (24.12a)–(24.12b).

25. Preliminary below-top-order L2 estimates for the acoustic geometry and a derivative-losing estimate

We continue to work under the assumptions of Sect. 13.2. In this short section, we derive preliminary L2 estimates
for the below-top-order derivatives of the eikonal function quantities µ, Li , χ, and trg/χ. We state the bounds in terms

of the wave L2-controlling quantities Q[1,N ](τ,u) from Def. 20.10 and the initial data-size-parameter ϵ̊. We also derive
related L2 estimates for top-order derivatives of χ and trg/χ in the case that one L-differentiation is involved. We provide
the main estimates in Lemma 25.1. The estimates are rather straightforward consequences of the transport inequalities

provided by Prop. 13.7 and Lemma 16.3. In Cor. 25.2, we derive derivative-losing L2 estimates for Ψ⃗ that do not involve any
explicit singular powers of |τ|−1. The absence of such singular powers is important for our proof that the wave-variable
energies become less and less singular with respect to powers of |τ|−1 as we descend below the top-order (see Prop. 24.1).

Most of the L2 estimates we derive in this section lose one derivative. In Prop. 29.7, we will derive complementary
L2 estimates for the top-order derivatives of χ and trg/χ. Those estimates are much harder to prove because we cannot
afford to lose any derivatives, which forces us to rely on the modified quantities from Sect. 19 and elliptic estimates for
the top-order derivatives of χ.

25.1. Preliminary below-top-order L2 estimates for the eikonal function quantities.

Lemma 25.1 (Preliminary below-top-order L2 estimates for the eikonal function quantities). Let N ≤Ntop, and recall the
vectorfield differentiation conventions established in Def. 8.10. Then the following estimates hold for (τ,u) ∈ [τ0,τBoot) ×
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[−U1,U2]: 

∥∥∥∥LP [1,N ]
∗ µ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥∥LP≤NLi(Small)∥∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

)∥∥∥LP≤N−1trg/χ
∥∥∥
L2

(
(n)̃Σ

[U1 ,u]
τ

)∥∥∥L/LL/≤N−1
P χ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥∥LZ≤N ;1Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥LZ≤N−1;1trg/χ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥∥L/LL/≤N−1;1
Z χ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)



≲ ϵ̊+
Q

1/2
[1,N ](τ,u)

|τ|1/2
, (25.1a)



∥∥∥∥P [1,N ]
∗ µ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥∥P [1,N ]Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥P≤N−1trg/χ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥L/≤N−1
P χ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥∥Z[1,N ];1
∗ Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥Z≤N−1;1trg/χ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)∥∥∥∥L/≤N−1;1
Z χ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)



≲ ϵ̊+
∫ τ

τ′=τ0

Q
1/2
[1,N ](τ

′ ,u)

|τ′ |1/2
dτ′ . (25.1b)

Proof. We fix u ∈ [−U1,U2] and define the following functions for τ ∈ [τ0,τBoot):

qN (τ) def=
3∑
i=1

∥∥∥∥P [1,N ]Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) +
∥∥∥P≤N−1trg/χ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) +
∥∥∥L/≤N−1
P χ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) , (25.2)

pN (τ) def=
3∑
i=1

∥∥∥∥Z[1,N ];1
∗ Li(Small)

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) +
∥∥∥Z≤N−1;1trg/χ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)
+
∥∥∥∥L/≤N−1;1
Z χ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) +
∥∥∥∥P [1,N ]
∗ µ

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) .
(25.3)

Next, we note the pointwise estimate
∣∣∣∣L(|L/N−1

P χ|g/
)∣∣∣∣ ≲ ∣∣∣L/LL/N−1

P χ
∣∣∣
g/

+ ε
∣∣∣L/N−1
P χ

∣∣∣
g/
, which follows from the Leibniz rule

for ℓt,u-projected Lie derivatives, the identity L/Lg/−1 = −2χ## (which is a straightforward consequence of (3.42)), and the
estimate |χ|g/ ≲ ε, which follows from (3.49a), Prop. 9.1, the bootstrap assumptions, and Prop. 17.1. Multiplying (13.13c)–

(13.13e) by 1
L(n)τ

and using (16.15) and Cor. 17.2, as well as the estimates (18.1), (18.9b), (20.53), (20.58), and the pointwise
estimate noted above, we deduce:

qN (τ) ≲ qN (τ0) + ϵ̊+ ε

∫ τ

τ′=τ0

qN (τ′)dτ′ +
∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′ . (25.4)

We next note that the L2 assumptions on the data stated in Sect. 11.2.1 imply that qN (τ0) ≲ ϵ̊. Inserting this estimate
into RHS (25.4) and applying Grönwall’s inequality, we find that qN (τ) ≲ ϵ̊+

∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N ](τ

′ ,u)dτ′ , which yields

(25.1b) for P [1,N ]Li(Small), P
≤N−1trg/χ, and L/≤N−1

P χ.

We now prove (25.1b) for the remaining terms Z[1,N ];1
∗ Li(Small), Z

≤N−1;1trg/χ, L/
≤N−1;1
Z χ, and P [1,N ]

∗ µ. We begin

by examining the first term on RHS (13.13b). Repeatedly using the commutator estimates (13.6a)–(13.6b), the bootstrap
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assumptions, and the estimates of Prop. 17.1, we deduce:

|Z[1,N+1];1
∗ Ψ⃗ | ≲ |X̆P [1,N ]Ψ⃗ |+ |P [1,N+1]Ψ⃗ |+ ε|Z[1,N ];1

∗ γ|+ ε|P [1,N ]
∗ γ|. (25.5)

Arguing as in the proof of (25.4), but using (13.13b) and (13.13f)–(13.13h) in place of (13.13c)–(13.13e), and using (25.5), (20.53),
and (20.58), we find that:

pN (τ) ≲ pN (τ0) + ϵ̊+
∫ τ

τ′=τ0

pN (τ′)dτ′ +
∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′ . (25.6)

As above, the L2 assumptions on the data stated in Sect. 11.2.1 imply that p(τ0) ≲ ϵ̊, and we can use Grönwall’s inequal-

ity to deduce pN (τ) ≲ ϵ̊ +
∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N ](τ

′ ,u)dτ′ , thereby concluding (25.1b) for Z[1,N ];1
∗ Li(Small), Z

≤N−1;1trg/χ,

L/≤N−1;1
Z χ, and P [1,N ]

∗ µ.
We now prove (25.1a). Taking the norm ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) of inequalities (13.13b)–(13.13h), and arguing as above using

the already proven estimate (25.1b), we obtain the desired result. We clarify that this argument generates the time
integrals

∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N ](τ

′ ,u)dτ′ , which we bound by ≲Q
1/2
[1,N ](τ,u) ≲ RHS (25.1a) by exploiting the monotonicity

of Q[1,N ](τ,u) with respect to its arguments. □

25.2. L2 estimates for Ψ⃗ that lose one derivative. In the next corollary, we prove the derivative-losing estimates for

Ψ⃗ that we highlighted at the beginning of Sect. 25.

Corollary 25.2 (L2 estimates for Ψ⃗ that lose one derivative). Let 1 ≤ N ≤ Ntop, and recall the vectorfield differentiation
conventions established in Def. 8.10. Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∥∥∥∥ZN ;1

∗ Ψ⃗

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≲ ϵ̊+Q
1/2
[1,N ](τ,u). (25.7)

Proof. Using (25.5) with N + 1 replaced by N , we deduce the following pointwise estimate:∣∣∣∣ZN ;1
∗ Ψ⃗

∣∣∣∣ ≲ ∣∣∣∣X̆P [1,N−1]Ψ⃗

∣∣∣∣+
∣∣∣∣P [1,N ]Ψ⃗

∣∣∣∣+ ε

∣∣∣∣Z[1,N−1];1
∗ γ

∣∣∣∣+ ε

∣∣∣∣P [1,N−1]
∗ γ

∣∣∣∣ , (25.8)

where when N = 1, we must have Z1;1
∗ = P on LHS (25.8) and then only the second term on RHS (25.8) is present. Taking

the norm ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) of (25.8) and using (20.53), (20.58), (25.1b), and the estimate
∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N ](τ

′ ,u)dτ′ ≲

Q
1/2
[1,N ](τ,u), which follows from the fact that Q[1,N ](τ,u) is increasing in its arguments, we conclude (25.7).

□

26. Below-top-order hyperbolic L2 estimates for the specific vorticity and entropy gradient

We continue to work under the assumptions of Sect. 13.2. In this short section, we prove the below-top-order L2

estimates for the specific vorticity and entropy gradient. Specifically, we prove (24.2a)–(24.2b), (24.3b)–(24.3c), (24.4b)–
(24.4c), and (24.5b)–(24.5c). We derive a preliminary energy integral inequality in Sect. 26.1, and we prove the final
estimates in Sects. 26.2–26.3. These estimates are relatively straightforward consequences of the transport energy identity
(20.29) and various pointwise estimates we have already established, including the ones provided by Prop. 23.3. In Sect. 27,
we will prove the top-order estimate (24.3a) and the related estimates (24.4a) and (24.5a). The proofs of these estimates are
much more difficult because they rely on the intricate elliptic-hyperbolic integral identity (21.63).

In Sect. 29, we will use the estimates for Ω, S , C, and D that we derive in this section in our proof of the wave a
priori estimates, which we stated as Prop. 24.1. Hence, we highlight that for the logic of the paper, it is important that
the estimates we derive in this section do not rely on the wave estimates of Prop. 24.1; our proofs of (24.2a)–(24.2b),
(24.3b)–(24.3c), (24.4b)–(24.4c), and (24.5b)–(24.5c) instead rely on the bootstrap assumptions (24.12a)–(24.12b) for the wave
energies, which are weaker than the estimates that we derive in Prop. 24.1.

26.1. Integral inequalities for the below-top-order vorticity- and entropy gradient-controlling quantities. We begin
with the following preliminary lemma, which provides integral inequalities for the below-top-order vorticity- and entropy
gradient-controlling quantities.
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Lemma 26.1 (Integral inequalities for the below-top-order vorticity- and entropy gradient-controlling quantities). Let
0 ≤ N ≤ Ntop, and recall that the L

2-controlling quantities V≤N , S≤N , · · · , are defined in Defs. 20.10 and 20.12. Then the
following integral inequalities hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

V≤N (τ,u) +S≤N (τ,u) ≲ ϵ̊2 +
∫ u

u′=−U1

{
V≤N (τ,u′) +S≤N (τ,u′)

}
du′ + ε2

∫ τ

τ′=τ0

Q[1,N ](τ
′ ,u)dτ′ . (26.1)

Moreover, the following estimates hold for 0 ≤N ≤Ntop − 1:

C≤N (τ,u) +D≤N (τ,u) ≲ ϵ̊2 +
∫ u

u′=−U1

{
C≤N (τ,u′) +D≤N (τ,u)

}
du′

+
∫ u

u′=−U1

{
V≤N+1(τ,u′) +S≤N+1(τ,u′)

}
du′

+ ε2
∫ τ

τ′=τ0

Q[1,N ](τ
′ ,u)dτ′ + ε2

∫ u

u′=−U1

Q[1,N ](τ,u
′)du′ + ε2

K[1,N ](τ,u).

(26.2)

Proof. We first prove (26.1). For 0 ≤ N ≤ Ntop, we consider the transport energy identity (20.29) with (PNΩ,PNS) in
the role of f . We use the bootstrap assumptions and Prop. 17.1 to deduce the bound |Lµ+µtrg/k/ | ≲ 1 for the integrand

factors in the last integral on RHS (20.29), and we use (18.9b) to deduce that the integrand factors 1
L(n)τ

in (20.29) verify
1

L(n)τ
≈ 1. We also use Lemma 24.5 to bound the data-dependent terms E(Transport)[f ](τ0,u) +F(Transport)[f ](τ,−U1) on

RHS (20.29) by ≲ ϵ̊2. Considering also Def. 20.10, the estimate (18.9b), and Lemma 20.14, and using Young’s inequality, we
deduce:

V≤N (τ,u) +S≤N (τ,u) ≲ ϵ̊2 +
∫ u

u′=−U1

{
V≤N (τ,u′) +S≤N (τ,u′)

}
du′

+
∫

(n)M[τ0 ,τ),[−U1 ,u]

∣∣∣µBP≤N (Ω,S)
∣∣∣2 dϖ .

(26.3)

Next, we use the pointwise estimate (23.3) to bound the integrand factors of
∣∣∣µBP≤N (Ω,S)

∣∣∣ on RHS (26.3). Again
appealing to Def. 20.10 and Lemma 20.14, and also using (18.1), (18.9b), and (25.1b), we conclude (26.1), but with the

additional double integral ε2
∫ τ

τ′=τ0

{∫ τ′

τ′′=τ0

Q
1/2
[1,N ](τ

′′ ,u)

|τ′′ |1/2 dτ′′
}2

dτ′ on the RHS arising from the estimate (25.1b), which

we use to handle the terms ε|P [1,N ]
∗ γ| on RHS (23.3). By using that Q[1,N ](τ,u) is increasing in its arguments, we can

bound this double integral by ≲ ε2
∫ τ

τ′=τ0
Q[1,N ](τ′ ,u)dτ′ , which in turn is bounded by RHS (26.1) as desired. We have

therefore proved (26.1).
The estimate (26.2) can be proved using similar arguments based on the pointwise estimates (23.4a)–(23.4b) for

0 ≤ N ≤ Ntop − 1. Although we do not provide full details, we point out three additional ingredients that play a

role in the proof. Specifically, to bound the spacetime integrals ε2
∫

(n)M[τ0 ,τ),[−U1 ,u]
|PN+1Ψ⃗ |2 dϖ generated by the terms

ε|PN+1Ψ⃗ | on RHSs (23.4a)–(23.4b), we also use: i) in the case PN+1 = LPN , we use the L2((n)P [τ0,τ)
u )-control guaranteed

by (18.9b) and (20.53), which leads to the presence of the term ε2
∫ u
u′=−U1

Q[1,N ](τ,u′)du′ on RHS (26.2); iia) in the

case PN+1 = Y(A)PN , with 1[−Uj,Uj] = 1[−Uj,Uj](u′) denoting the characteristic function of the interval [−Uj,Uj],

to bound ε2
∫

(n)M[τ0 ,τ),[−U1 ,u]
1[−Uj,Uj]|Y(A)PN Ψ⃗ |2 dϖ , we use the spacetime integral coerciveness estimate (20.63a),

which leads to the presence of the term ε2
K[1,N ](τ,u) on RHS (26.2); and iib) to bound the complementary integral

ε2
∫

(n)M[τ0 ,τ),[−U1 ,u]
1[−Uj,Uj]c |Y(A)PN Ψ⃗ |2 dϖ , we use (18.2) and (20.53), which collectively allow us to bound the integral

by ≲ ε2
∫

(n)M[τ0 ,τ),[−U1 ,u]
µ|Y(A)PN Ψ⃗ |2 dϖ ≲ ε2

∫ τ

τ′=τ0
Q[1,N ](τ′ ,u)dτ′ as desired. □

26.2. Proof of (24.2a)–(24.2b) and (24.3b)–(24.3c). We first prove (24.2b). We set T(τ,u) def= V≤Ntop−8(τ,u)+S≤Ntop−8(τ,u).

From (26.1), the wave energy bootstrap assumptions (24.12b), and (10.9b), we find that T(τ,u) ≤ Cϵ̊2+C
∫ u
u′=−U1

T(τ,u′)du′ .

Applying Grönwall’s inequality, we conclude that T(τ,u) ≤ Cϵ̊2, which yields (24.2b).
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Similarly, to prove (24.3c), we set T(τ,u) def= C≤Ntop−9(τ,u) +D≤Ntop−9(τ,u). From (26.2), the wave energy bootstrap

assumptions (24.12b), (10.9b), and the already proved estimates (24.2b), we find that T(τ,u) ≤ Cϵ̊2+C
∫ u
u′=−U1

T(τ,u′)du′ .

Applying Grönwall’s inequality, we conclude that T(τ,u) ≤ Cϵ̊2, which yields (24.3c).
The estimates (24.2a) and (24.3b) can be proved by combining similar arguments with the wave energy bootstrap

assumptions (24.12a)–(24.12b).
□

26.3. Proof of (24.4b)–(24.4c) and (24.5b)–(24.5c). We fix any integer N with 0 ≤ N ≤ Ntop − 1. Using (20.5), (18.9b),
(20.55a)–(20.55b), and the data-estimates (24.10a)–(24.10b), we deduce that:∥∥∥PN (Ω,S)

∥∥∥2
L2((n)̃ℓτ,u) ≲

∥∥∥PN (Ω,S)
∥∥∥2
L2((n)̃ℓτ0 ,u) +

∫
(n)P [τ0 ,τ]

u

1
L(n)τ

∣∣∣LPN (Ω,S)
∣∣∣2 dϖ

≲ ϵ̊2 +

∥∥∥∥∥∥ 1
√
L(n)τ

P≤N (Ω,S)

∥∥∥∥∥∥2

L2((n)P [τ0 ,τ]
u )

≲ ϵ̊2 +VN+1(τ,u) +SN+1(τ,u).
(26.4)

From (26.4) and the already proven estimates (24.2a)–(24.2b) for VN+1(τ,u) and SN+1(τ,u), we conclude, in view of
definitions (20.46a)–(20.46b), the desired estimates (24.4b)–(24.4c).

The estimates (24.5b)–(24.5c) can be proved via similar arguments based on the data-estimates (24.11a)–(24.11b), (20.56a)–
(20.56b), the already proven estimates (24.3b)–(24.3c), and definitions (20.48a)–(20.48b).

□

27. Top-order elliptic-hyperbolic L2 estimates for the specific vorticity and entropy gradient

We continue to work under the assumptions of Sect. 13.2. Our main goal in this section is to derive the top-order L2

estimate (24.3a) for the modified fluid variables C and D. It turns out that due to the structure of the elliptic-hyperbolic
integral identity (21.63), the proof of (24.3a) is coupled to the proof of the top-order energy estimates (24.4a) for Ω and
S along the rough tori. Hence, we also prove (24.4a) in this section. Finally, as a simple consequence of (24.3a), we will
also prove the top-order rough tori energy estimate (24.5a) for C and D. In Sect. 29, we will use the estimates for C and
D that we derive in this section in our proof of the wave a priori estimates, which we stated as Prop. 24.1. Hence, we
highlight that for the logic of the paper, it is important that the estimates we derive in this section do not rely on the
wave estimates of Prop. 24.1; our proofs of (24.3a) and (24.4a) instead rely on the bootstrap assumptions (24.12a)–(24.12b),
for the wave energies, which are weaker than the estimates that we derive in Prop. 24.1.

To explain the main challenges in the analysis, we recall that the transport equations (2.24b) and (2.25a) satisfied
by C and D feature some difficult source terms, denoted by Mi

(C) and M(D), that depend on the general first-order

derivatives of Ω and S . These source terms have the potential to cause the loss of a derivative at the top-order because
they cannot be bounded using pure transport estimates. In the below-top-order estimates of Sect. 26, we allowed the
loss of a derivative, as is signified by the terms

∫ u
u′=−U1

{V≤N+1(τ,u′) +S≤N+1(τ,u′)} du′ on RHS (26.2). To avoid

the loss at the top-order, we handle the difficult source terms in a different way, one that is based on combining the
elliptic-hyperbolic integral identity provided by Prop. 21.14 with pointwise estimates that take into account the special
structure of the equations of Theorem 2.15, sharp estimates for the acoustic geometry and the rough time function, and
the below-top-order estimates that we already derived in Sect. 26.

We organize this section this as follows:

• In Sect. 27.1, we derive some preliminary energy integral inequalities for C and D, which feature the difficult source
terms; this part of the proof is not more difficult than the proof of the below-top-order energy integral inequalities
we derived in Lemma 26.1.

• In Sect. 27.2, we use the preliminary energy integral inequalities to derive the main energy integral inequalities
for the top-order derivatives of C and D. These main energy integral inequalities are conditional on having L2

estimates for the difficult source terms, which we prove independently as Prop. 27.5 in Sect. 27.6.
• In Sect. 27.3, we use the main energy integral inequalities to prove the top-order L2 estimate (24.3a).
• In Sect. 27.4, to initiate the proof of Prop. 27.5, we derive estimates for the rough tori error integrals

∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2(ℓ̃τ,−U1 )

for τ ∈ [τ0,τBoot], which appear on the right-hand side of the elliptic-hyperbolic integral identity (21.63) (with
P≤Ntop(Ω,S) in the role of V ) when we use the identity in our proof of Prop. 27.5. It might be tempting
to think of these rough tori integrals as “data terms” since the rough tori ℓ̃τ,−U1

of interest are contained in
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the “data null hypersurface” portion (n)P [τ0,τBoot]
−U1

. In particular, if the data on Σ0 are compactly supported in
Σ0 ∩ {−U1 ≤ u ≤ U2}, then standard domain of dependence considerations imply that (Ω,S) vanish along
ℓ̃τ,−U1

. However, in general, the integrals
∥∥∥P≤Ntop(Ω,S)

∥∥∥
L2(ℓ̃τ,−U1 )

are not true “data terms” because their size

depends on various norms of the rough time function (n)τ, which in turn depends on the behavior of the fluid
near the singular boundary. Hence, to bound the integrals

∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2(ℓ̃τ,−U1 )

, we combine slight extensions

of the Cauchy stability results that we derive in Appendix B with suitable C2,1
geo estimates for (n)τ in a region that

has slightly larger u-width compared to (n)M[τ0,τBoot),[−U1,U2].
• In Sect. 27.5, in service of the proof of Prop. 27.5, we derive estimates for the error integrals appearing in the

elliptic-hyperbolic integral identity (21.63).
• In Sect. 27.6, we prove Prop. 27.5.
• Finally, in Sect. 27.7, we prove the top-order estimate (24.4a) for Ω and S along the rough tori as well as the

top-order estimate (24.5a) for C and D along the rough tori.

27.1. Preliminary energy integral inequalities for the top-order derivatives of C and D.

Lemma 27.1 (Preliminary energy integral inequalities for the top-order derivatives of C and D). For any ς ∈ (0,1], the
following integral inequalities hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2], where the pointwise norm | · |h is defined in (21.15)
and the implicit constants are independent of ς:

CNtop
(τ,u) +DNtop

(τ,u) ≲ ϵ̊2 + ς
∫

(n)M[τ0 ,τ),[−U1 ,u]

{∣∣∣∂∂∂PNtopΩ
∣∣∣2
h

+
∣∣∣∂∂∂PNtopS

∣∣∣2
h

}
dϖ

+
(
1 +

1
ς

)∫ u

u′=−U1

{
CNtop

(τ,u′) +DNtop
(τ,u′)

}
du′

+
∫ u

u′=−U1

{
C≤Ntop−1(τ,u′) +D≤Ntop−1(τ,u′)

}
du′

+
∫ u

u′=−U1

{
V≤Ntop

(τ,u′) +S≤Ntop
(τ,u′)

}
du′

+ ε2
∫ τ

τ′=τ0

Q[1,Ntop](τ
′ ,u)dτ′ + ε2

∫ u

u′=−U1

Q[1,Ntop](τ,u
′)du′ + ε2

K[1,Ntop](τ,u).

(27.1)

Proof. The proof is almost identical to the proof of (26.2) with Ntop in the role of N , except we separate the spacetime

error integrals generated by the top-order derivatives of (Ω,S). More precisely, with N def= Ntop in the pointwise estimates

(23.4a)–(23.4b) for |µB(PNtopC,PNtopD)|, we isolate the contribution of the error terms |PNtop+1(Ω,S)| on the RHSs.
Since (schematically) PNtop+1(Ωi ,S i) = P α∂αPNtop(Ωi ,S i) for some P ∈ {L,Y(2),Y(3)}, we can use the simple Cartesian
component bound |P α | ≲ 1 (which follows from Prop. 9.1 and the bootstrap assumptions) and (21.16b) to pointwise bound
these error terms in magnitude by ≲

∣∣∣∂∂∂PNtopΩ
∣∣∣
h

+
∣∣∣∂∂∂PNtopS

∣∣∣
h
. Thus, in the energy identity (that is, (20.29) with

f
def= (PNtopC,PNtopD)), the spacetime error integral corresponding to these terms is bounded by:

≲

∫
(n)M[τ0 ,τ),[−U1 ,u]

{∣∣∣PNtopC
∣∣∣
h

+
∣∣∣PNtopD

∣∣∣
h

} {∣∣∣∂∂∂PNtopΩ
∣∣∣
h

+
∣∣∣∂∂∂PNtopS

∣∣∣
h

}
dϖ . (27.2)

Using the estimate (18.9b), (20.56a)–(20.56b), and Young’s inequality, for any ς ∈ (0,1], we find that RHS (27.2) ≲
1
ς

∫ u
u′=−U1

{
CNtop

(τ,u′) +DNtop
(τ,u′)

}
du′+ς

∫
(n)M[τ0 ,τ),[−U1 ,u]

{∣∣∣∂∂∂PNtopΩ
∣∣∣2
h

+
∣∣∣∂∂∂PNtopS

∣∣∣2
h

}
dϖ , which is bounded by RHS (27.1)

as desired. □

27.2. The main energy integral inequalities for the top-order derivatives of C and D, conditional on Prop. 27.5.
Most of our effort in Sect. 27 is dedicated towards bounding the spacetime integrals:

ς

∫
(n)M[τ0 ,τBoot),[−U1 ,U2]

{∣∣∣∂∂∂PNtopΩ
∣∣∣2
h

+
∣∣∣∂∂∂PNtopS

∣∣∣2
h

}
dϖ ,
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which appear on RHS (27.1). We derive the needed estimates in Prop. 27.5. Given Prop. 27.5 and Lemma 27.1, it is easy
to derive energy integral inequalities that can be used to obtain the desired top-order energy estimates for C and D; we
derive these integral inequalities in the next lemma.

Lemma 27.2 (The main energy integral inequalities for the top-order derivatives of C and D). Assuming the results of
Prop. 27.5, for any ς ∈ (0,1], the following integral inequalities hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2], where the implicit
constants are independent of ς:

CNtop
(τ,u) +DNtop

(τ,u) ≲ ς
{
CNtop

(τ,u) +DNtop
(τ,u)

}
+

ϵ̊2

|τ|5/2

+
(
1 +

1
ς

)∫ u

u′=−U1

{
CNtop

(τ,u′) +DNtop
(τ,u′)

}
du′

+ ε2 1
|τ|3/2

Q[1,Ntop](τ,u) + ε2
K[1,Ntop](τ,u)

+
1
|τ|2

{
C≤Ntop−1(τ,u) +D≤Ntop−1(τ,u)

}
+

1
|τ|5/2

{
V≤Ntop

(τ,u) +S≤Ntop
(τ,u)

}
.

(27.3)

Proof. We start by considering inequality (27.1). Using Lemma 21.9 and the estimate 1
L(n)τ

≈ 1 implied by (18.9b), we

deduce the pointwise bounds
∣∣∣∂∂∂PNtopΩ

∣∣∣2
h
≲ 1

L(n)τ
Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ] and

∣∣∣∂∂∂PNtopS
∣∣∣2
h
≲ 1

L(n)τ
Q[∂∂∂PNtopS,∂∂∂PNtopS]

for the error integrands on the first line of RHS (27.1). Hence, thanks to the estimates (27.12a)–(27.12b), which we prove

independently in Sect. 27.6, the spacetime integral ς
∫

(n)M[τ0 ,τBoot),[−U1 ,U2]

{∣∣∣∂∂∂PNtopΩ
∣∣∣2
h

+
∣∣∣∂∂∂PNtopS

∣∣∣2
h

}
dϖ on the first line

of RHS (27.1) is bounded by ς {RHS (27.12a)+ RHS (27.12b)}. The RHS of the resulting inequality features the error integrals(
1 + 1

ς

)∫ u
u′=−U1

{
CNtop

(τ,u′) +DNtop
(τ,u′)

}
du′ , which we place directly on RHS (27.3). Finally, we further bound the

remaining error integrals on RHS (27.1) by using the monotonicity of the controlling quantities (with respect to their
arguments τ,u) to pull the controlling quantities out of the integrals and to gain a power of |τ| upon integration with
respect to dτ′ , e.g.,

∫ τ

τ′=τ0

1
|τ′ |3 V≤Ntop

(τ′ ,u)dτ′ ≲ 1
|τ|2 V≤Ntop

(τ,u) and
∫ u
u′=−U1

DNtop
(τ,u′)du′ ≲DNtop

(τ,u). In total,

these arguments yield (27.3).
□

27.3. Proof of the main top-order energy estimate (24.3a). Given Lemma 27.2, we are now ready to prove our main
top-order a priori energy estimates (24.3a) for the modified fluid variables. We again emphasize that Lemma 27.2 is
conditional on the estimates of Prop. 27.5, which we prove independently below.

To proceed, we choose and fix ς > 0 sufficiently small such that the term ς
{
CNtop

(τ,u) +DNtop
(τ,u)

}
on RHS (27.3)

can be absorbed back into the LHS at the expense of increasing the implicit constants. Next, we use the already proven
estimates (24.2a)–(24.2b) and (24.3b)–(24.3c), the bootstrap assumptions (24.12a)–(24.12b), and (10.9b) to bound all terms on
RHS (27.3) except for the integral

∫ u
u′=−U1

{
CNtop

(τ,u′) +DNtop
(τ,u′)

}
du′ . In total, this leads to the following inequality,

where C depends on the fixed value of ς:

CNtop
(τ,u) +DNtop

(τ,u) ≤ Cϵ̊2|τ|−17.1 +C
∫ u

u′=−U1

{
CNtop

(τ,u′) +DNtop
(τ,u′)

}
du′ . (27.4)

From (27.4) and Grönwall’s inequality, we conclude that CNtop
(τ,u) +DNtop

(τ,u) ≤ Cϵ̊2|τ|−17.1, which yields the desired
bound (24.3a).

□

27.4. Control of
∥∥∥P≤Ntop(Ω,S)

∥∥∥
L2(ℓ̃τ,−U1 )

for τ ∈ [τ0,τBoot). Recall that our proof of the top-order L2 estimates (24.3a)

and (24.4a) relies on Prop. 27.5, whose proof relies on the integral identity (21.63). In order to exploit the identity (21.63) with
u1 = −U1, we in particular have to first control the rough tori error integrals

∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2(ℓ̃τ,−U1 )

for τ ∈ [τ0,τBoot);

in view of (18.2) and (21.48) with P≤Ntop(Ω,S) in the role of V , we see that control of
∥∥∥P≤Ntop(Ω,S)

∥∥∥
L2(ℓ̃τ,−U1 )

is

sufficient to bound the first integral
∫

(n)̃ℓτ2 ,u1
· · · on RHS (21.63). As we explained at the beginning of Sect. 27, these

integrals are not pure “data terms” because their size depends on various norms of the rough time function, which in
turn depends on the behavior of the fluid near the singular boundary. Hence, in the next lemma, we derive estimates
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for
∥∥∥P≤Ntop(Ω,S)

∥∥∥
L2(ℓ̃τ,−U1 )

. The proof relies on the Cauchy stability-type estimates proved in Appendix B, which also

rely on various applications of the integral identity (21.63). We emphasize that our bounds for the top-order terms∥∥∥PNtop(Ω,S)
∥∥∥
L2(ℓ̃τ,−U1 )

cannot be proved by combining the data-estimates (11.12b) along the null hypersurface P−U1
with

trace estimates because of the usual loss of differentiability incurred by trace estimates. However, if we had assumed
that the data are one degree more differentiable, more precisely that (11.12b) holds with Ntop replaced by Ntop + 1, then
we could have used trace estimates to give a simpler proof of the desired estimates for

∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2(ℓ̃τ,−U1 )

. Though

simpler, we avoided that approach because it would have led to sub-optimal estimates, i.e., to estimates such that the
solution is less differentiable than the data.

Lemma 27.3 (Control of
∥∥∥P≤Ntop(Ω,S)

∥∥∥
L2(ℓ̃τ,−U1 )

for τ ∈ [τ0,τBoot)). Let ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

be the norm of the perturbation of the

data away from the background solution, as defined in (11.4). If ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is sufficiently small, then the following estimates

hold for τ ∈ [τ0,τBoot]: ∥∥∥P≤Ntop(Ω,S)
∥∥∥
L2(ℓ̃τ,−U1 )

≤ ϵ̊, (27.5)

where ϵ̊ = O
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)
, and the implicit constants depend on the background solution.

Proof. The bootstrap assumption (BA t − SIZE) implies that for τ ∈ [τ0,τBoot), the rough tori ℓ̃τ,−U1
are contained in the

“data null hypersurface” P [0,4δ̊∗]
−U1

. For this reason, the proof of (27.5) relies on the smallness results we derived for the

solution on P [0,4δ̊∗]
−U1

in Appendix B. In particular, in our proof here, we will refer to various steps in the proof of Prop. B.2.
We clarify that although the proof of Prop. B.2 relies on ideas from the bulk of the paper, its proof is independent of the

results of Lemma 27.3. In the rest of the proof, we will silently assume that ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is sufficiently small. Moreover, the

number T PS
Shock > 0 defined in (A.42b) is the Cartesian blowup-time of the background solution.

There are two broad steps in the proof of (27.5): I) extend the rough time function (n)τ into a subset of the “smallness

region” CS
[0,5T PS

Shock]
Small from Prop. B.2 (CS

[0,5T PS
Shock]

Small is the subset of geometric coordinate space depicted in Fig. 16) and

derive standard C2,1
geo estimates for (n)τ in the extended region; and II) combine applications of the integral identity (21.63)

in the extended region with the estimates for (n)τ from step I), and use some results from the proof of Prop. B.2 to
conclude (27.5).

Step I: Extending and controlling (n)τ. In Steps 1 and 2 of the proof of Prop. B.2, we show that up to the top-order
derivative level (i.e., the derivative level corresponding to the up-to-top-order energy estimates stated in Props. 24.1, 24.2,

24.3, and 24.4), the fluid variables, µ− 1, Li(Small), and χ are bounded in L2 by ≲ ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

on the region CS
[0,5T PS

Shock]
Small

defined in (A.95b), which, by (A.42b) and (B.2), contains P [0,4δ̊∗]
−U1

. That is, in CS
[0,5T PS

Shock]
Small , the solution is close to the

trivial fluid solution with Euclidean acoustic geometry. Unlike in Props. 24.1, 24.2, 24.3, and 24.4, in Steps 1 and 2 of

the proof of Prop. B.2 we derive the smallness in CS
[0,5T PS

Shock]
Small with respect to foliations by portions of Cartesian time

slices Σt , null hypersurfaces Pu , and acoustic tori ℓt,u . We will now explain how we can combine this smallness

with the transport equation (4.4) and the data of (n)τ on (n)P [τ0,τBoot]
−U1

(the behavior of (n)τ on (n)P [τ0,τBoot]
−U1

has already

been controlled by the last item in Lemma 15.6) to extend (n)τ to a larger domain with the following two properties:
a) (n)τ = (n)τ(t,u,x2,x3) is defined on (n)M[τ0,τBoot],[−U∗,U2], where U∗ > U1 > 0 is the number in (B.16), and b)

(n)M[τ0,τBoot],[−U∗,−U1] ⊂CS
[0,5T PS

Shock]
Small and thus (n)M[τ0,τBoot],[−U∗,U2] ⊂ (n)M[τ0,τBoot],[−U1,U2]∪CS

[0,5T PS
Shock]

Small . To carry out

this extension, we first note that (A.42b), (BA t − SIZE), (B.2), and (A.95b) imply that the data null hypersurface (n)P [τ0,τBoot]
−U1

is contained in CS
[0,5T PS

Shock]
Small and that the distance (with respect to the standard Euclidean metric on geometric coordinate

space) between (n)P [τ0,τBoot]
−U1

and the top boundary of CS
[0,5T PS

Shock]
Small (which we denote by “Σ

[15T PS
Shock−U0,−U1]

5T PS
Shock

” in Fig. 16) is

at least 1
2T

PS
Shock. We next note that Def. 4.1 implies that in CS

[0,5T PS
Shock]

Small (a region in which u < −Uj and thus in which the



L. Abbrescia and J. Speck 179

cut-off function φ vanishes), the transport equation (4.4) takes the form X̆(n)τ = 0, where we recall that ∂
∂u = X̆−X̆A ∂

∂xA
.

The smallness provided by Steps 1 and 2 of the proof of Prop. B.2 implies that
∑
A=2,3 ∥X̆A∥

C2,1
geo

(
CS

[0,5T PSShock]

Small

) ≲ ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

.

Using this smallness and deriving standard C2,1
geo -estimates for solutions to X̆(n)τ = 0 starting from the data of (n)τ on

the data null hypersurface portion (n)P [τ0,τBoot]
−U1

(which is contained in (n)M[τ0,τBoot],[−U1,U2]), we find that:

∥(n)τ∥C2,1
geo ((n)M[τ0 ,τBoot],[−U∗ ,−U1]) ≤ ∥

(n)τ∥C2,1
geo ((n)M[τ0 ,τBoot],[−U1 ,U2])

{
1 +O

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)}
≤ C. (27.6)

Step II: Using energy estimates and applications of the integral identity (21.63) to finish the proof. In Step 5 of the
proof of Prop. B.2, we derived – independently of Lemma 27.3 (see Remark B.3) – geometric energy estimates in the region
(n)M[τ∗,

1
2τ0],[−U∗,U2], which is contained in the subset CST

PS
Shock;∆

PS
of geometric coordinate space defined in (A.96a). Here,

τ∗ ∈ [2τ0, (3/2)τ0] is the number from (B.10), U∗ > U1 > 0 is the number from (B.16), and we note that CST
PS
Shock;∆

PS

contains the set CS
[0,5T PS

Shock]
Small from above. The estimates from Step 5 of the proof of Prop. B.2 in particular yield the rough

tori L2 estimates stated in (B.19). The proof of (B.19) relies in particular on applying the integral identity61 (21.63) on all
the sub-regions (n)M[τ∗,τ2],[−U∗,u2] with (τ2,u2) ∈ [τ∗,

1
2τ0]× [−U∗,U2], i.e., with τ1 = τ∗ and u1 = −U∗ in (21.63). We

highlight two key ingredients that are needed to control the error terms in those applications of (21.63): i) bounds for
the rough tori integrals arising from RHS (21.63) (see Remark B.3), i.e., the integrals

∫
(n)̃ℓτ2 ,−U∗

· · · ,
∫

(n)̃ℓτ∗ ,u2
· · · ,

∫
(n)̃ℓτ∗ ,−U∗

· · · ,

which we bound in the arguments given above (B.19); and ii) the bound ∥(n)τ∥
C2,1
geo

(
(n)M[τ∗ , 12 τ0],[−U∗ ,U2]

) ≤ C , which is

needed to bound various error terms on RHS (21.63) that arise when we apply it on the region (n)M[τ∗,τ2],[−U∗,u2] (in

particular, the error term E(Lower-order)[V ,V ] defined in (21.47) depends on the second derivatives of (n)τ). The key point

is that the estimate (27.6) shows that the same bound for (n)τ holds on the subset (n)M[τ0,τBoot],[−U∗,−U1] of CS
[0,5T PS

Shock]
Small .

With the help of this bound, the same arguments that yield (B.19) can be used to show that:

sup
(τ,u)∈[τ∗,τBoot]×[−U∗,−U1]

∫
ℓ̃τ,u

|P≤Ntop(Ω,S)|2 dϖ g̃/ ≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (27.7)

Finally, we note that since [τ0,τBoot] ⊂ [τ∗,τBoot], (27.7) implies (27.5) with ϵ̊ = O
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)
.

□

27.5. L2 estimates for the error terms. In the next lemma, we derive L2 estimates for the error integrals in the
elliptic-hyperbolic identities provided by Prop. 21.14.

Lemma 27.4 (L2 estimates for the error terms in the elliptic-hyperbolic identities). Let ς ∈ [0,1), let (τ,u) ∈ [τ0,τBoot)×
[−U1,U2], let M[·, ·] be the error term defined by (21.64), and let Q[·, ·] be the coercive quadratic form defined in (21.23).

61In particular, the integral identity (21.63) yields control over the top-order terms on LHS (B.19).
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Then the following spacetime integral estimates hold, where the implicit constants are independent of ς:∣∣∣∣∣∣∣
∫

(n)M[τ0 ,τ),[−U1 ,u]

M[PNtopΩ,∂∂∂PNtopΩ]dϖ

∣∣∣∣∣∣∣ ≲ ς
∫

(n)M[τ0 ,τ),[−U1 ,U2]

1
L(n)τ

Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ]dϖ

+
(
1 +

1
ς

)
ϵ̊2

|τ|

+
∫ u

u′=−U1

CNtop
(τ,u′)du′ +

∫ τ

τ′=τ0

1
|τ′ |3

C≤Ntop−1(τ′ ,u)dτ′

+
(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |3

{
V≤Ntop

(τ′ ,u) +S≤Ntop
(τ′ ,u)

}
dτ′

+ ε2
(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |2

Q[1,Ntop](τ
′ ,u)dτ′ ,

(27.8a)

∣∣∣∣∣∣∣
∫

(n)M[τ0 ,τ),[−U1 ,u]

M[PNtopS,∂∂∂PNtopS]dϖ

∣∣∣∣∣∣∣ ≲ ς
∫

(n)M[τ0 ,τ),[−U1 ,U2]

1
L(n)τ

Q[∂∂∂PNtopS,∂∂∂PNtopS]dϖ

+
(
1 +

1
ς

)
ϵ̊2

|τ|

+
∫ u

u′=−U1

DNtop
(τ,u′)du′ +

∫ τ

τ′=τ0

1
|τ′ |3

D≤Ntop−1(τ′ ,u)dτ′

+
(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |3

{
V≤Ntop

(τ′ ,u) +S≤Ntop
(τ′ ,u)

}
dτ′

+ ε2
(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |2

Q[1,Ntop](τ
′ ,u)dτ′ .

(27.8b)

Moreover, the error terms E(Principal)[PNtopΩ,∂∂∂PNtopΩ], · · · ,E(Lower-order)[PNtopS,PNtopS] defined by (21.46)–(21.47) verify
the following rough hypersurface integral estimates:∣∣∣∣∣∣

∫
(n)̃Σ

[−U1 ,u]
τ

E(Principal)[PNtopΩ,∂∂∂PNtopΩ]dϖ

∣∣∣∣∣∣
≲

ϵ̊2

|τ|3/2
+CNtop

(τ,u) +
1
|τ|3/2

C≤Ntop−1(τ,u)

+ ε2 1
|τ|3/2

Q[1,Ntop](τ,u) +
1
|τ|5/2

{
V≤Ntop

(τ,u) +S≤Ntop
(τ,u)

}
,

(27.9a)

∣∣∣∣∣∣
∫

(n)̃Σ
[−U1 ,u]
τ

E(Principal)[PNtopS,∂∂∂PNtopS]dϖ

∣∣∣∣∣∣
≲

ϵ̊2

|τ|3/2
+DNtop

(τ,u) +
1
|τ|3/2

D≤Ntop−1(τ,u)

+ ε2 1
|τ|3/2

Q[1,Ntop](τ,u) +
1
|τ|5/2

{
V≤Ntop

(τ,u) +S≤Ntop
(τ,u)

}
,

(27.9b)

∣∣∣∣∣∣
∫

(n)̃Σ
[−U1 ,u]
τ

E(Lower-order)[PNtopΩ,PNtopΩ]dϖ

∣∣∣∣∣∣ ≲ 1
|τ|5/2

VNtop
(τ,u), (27.10a)∣∣∣∣∣∣

∫
(n)̃Σ

[−U1 ,u]
τ

E(Lower-order)[PNtopS,PNtopS]dϖ

∣∣∣∣∣∣ ≲ 1
|τ|5/2

SNtop
(τ,u). (27.10b)
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Finally, the error terms P[PNtopΩ,PNtopΩ], · · · ,P[PNtopS,PNtopS] defined by (21.45) verify the following rough tori
integral estimates: ∫

(n)̃ℓτ,−U1

P[PNtopΩ,PNtopΩ]dϖ g̃/ ,

∫
(n)̃ℓτ,−U1

P[PNtopS,PNtopS]dϖ g̃/ ≲ ϵ̊2, (27.11a)∫
(n)̃ℓτ0 ,u

P[PNtopΩ,PNtopΩ]dϖ g̃/ ,

∫
(n)̃ℓτ0 ,u

P[PNtopS,PNtopS]dϖ g̃/ ≲
ϵ̊2

|τ0|
. (27.11b)

Proof. We first prove (27.11a). We provide the details only for the PNtopΩ-dependent integral on LHS (27.11a) since the
PNtopS-dependent integral can be treated using identical arguments. To proceed, we first use (18.2) to deduce that µ is
bounded from below by ≳ 1 on (n)̃ℓτ,−U1

. Hence, using (21.48), (18.8a) (which implies that −Lµ ≈ 1 on the support of

φ), (27.5), and (21.17a), we conclude that
∫

(n)̃ℓτ,−U1
P[PNtopΩ,PNtopΩ]dϖ g̃/ ≲

∫
(n)̃ℓτ,−U1

|PNtopΩ|2g dϖ g̃/ ≲ ϵ̊2 as desired.

Similarly, to prove (27.11b) for the PNtopΩ-dependent integral on the LHS, we use (18.1) with τ
def= τ0, (21.48), (11.13b),

and (21.17a) to conclude that
∫

(n)̃ℓτ0 ,u
P[PNtopΩ,PNtopΩ]dϖ g̃/ ≲

1
|τ0 |

∫
(n)̃ℓτ0 ,u

|PNtopΩ|2g dϖ g̃/ ≲
1
|τ|0

ϵ̊2 as desired. The

PNtopS-dependent integral on LHS (27.11b) can be bounded using identical arguments.
The remaining estimates (27.8a)–(27.10b) are straightforward consequences of the pointwise estimates provided by

Prop. 23.4, the pointwise estimates |µ| ≲ 1 and
∣∣∣φ n

Lµ

∣∣∣ ≲ 1 (which follow from the bootstrap assumptions), Def. 20.10 of

the L2-controlling quantities, the coerciveness guaranteed by Lemma 20.14 together with the estimates (18.1) and (18.9b),
the already proven L2 estimates (25.1b), and the fact that the L2-controlling quantities QM (τ,u), CM (τ,u), etc. are
increasing in their arguments. □

27.6. The main elliptic-hyperbolic integral inequalities. Thanks to the availability of Lemma 27.4, we are now ready
to prove Prop. 27.5.

Proposition 27.5 (The main elliptic-hyperbolic integral inequalities). Let Q[∂∂∂V ,∂∂∂V ] be the quadratic form from Def. 21.8,
and let P[V ,V ] be the quadratic form defined by (21.45). Then the following spacetime integral estimates hold for (τ,u) ∈
[τ0,τBoot)× [−U1,U2]:∫

(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ]dϖ +
∫

(n)̃ℓτ,u

P[PNtopΩ,PNtopΩ]dϖ g̃/

≲
(
1 +

1
ς

)
ϵ̊2

|τ|5/2
+CNtop

(τ,u) +
1
|τ|2

C≤Ntop−1(τ,u)

+ ε2 1
|τ|3/2

Q[1,Ntop](τ,u) +
1
|τ|5/2

{
V≤Ntop

(τ,u) +S≤Ntop
(τ,u)

}
+
∫ u

u′=−U1

CNtop
(τ,u′)du′ +

∫ τ

τ′=τ0

1
|τ′ |3

C≤Ntop−1(τ′ ,u)dτ′

+
(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |3

{
V≤Ntop

(τ′ ,u) +S≤Ntop
(τ′ ,u)

}
dτ′ + ε2

(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |2

Q[1,Ntop](τ
′ ,u)dτ′ ,

(27.12a)

∫
(n)M[τ0 ,τ),[−U1 ,u]

1
L(n)τ

Q[∂∂∂PNtopS,∂∂∂PNtopS]dϖ +
∫

(n)̃ℓτ,u

P[PNtopS,PNtopS]dϖ g̃/

≲
(
1 +

1
ς

)
ϵ̊2

|τ|5/2
+DNtop

(τ,u) +
1
|τ|3/2

D≤Ntop−1(τ,u)

+ ε2 1
|τ|3/2

Q[1,Ntop](τ,u) +
1
|τ|5/2

{
V≤Ntop

(τ,u) +S≤Ntop
(τ,u)

}
+
∫ u

u′=−U1

DNtop
(τ,u′)du′ +

∫ τ

τ′=τ0

1
|τ′ |3

D≤Ntop−1(τ′ ,u)dτ′

+
(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |3

{
V≤Ntop

(τ′ ,u) +S≤Ntop
(τ′ ,u)

}
dτ′ + ε2

(
1 +

1
ς

)∫ τ

τ′=τ0

1
|τ′ |2

Q[1,Ntop](τ
′ ,u)dτ′ .

(27.12b)
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Proof. We consider the integral identity (21.63) with PNtopΩ and PNtopS in the role of V . Using Lemma 27.4 with

τ1
def= τ0, τ2

def= τ, u1
def= −U1, and u2

def= u, as well as the data-estimates (24.8a)–(24.8b), we bound the integrals on
RHS (21.63) (the data-estimates are used to control the data-hypersurface integrals

∫
(n)̃Σ

[−U1 ,u]
τ0

· · · ), where we can discard the

integrals −
∫

(n)̃ℓτ0 ,−U1
P[V ,V ]dϖ g̃/ because they are non-positive in view of (21.48). Finally, by choosing and fixing ς > 0

to be sufficiently small, we can absorb the first term ς
∫

(n)M[τ0 ,τ),[−U1 ,U2]

1
L(n)τ

Q[∂∂∂PNtopΩ,∂∂∂PNtopΩ]dϖ on RHS (27.8a)

and the first term ς
∫

(n)M[τ0 ,τ),[−U1 ,U2]

1
L(n)τ

Q[∂∂∂PNtopS,∂∂∂PNtopS]dϖ on RHS (27.8b) into LHS (27.12a) and LHS (27.12b)

respectively. This yields the desired estimates (27.12a)–(27.12b).
□

27.7. Proof of the top-order rough tori energy estimates (24.4a) and (24.5a). We first prove the estimate (24.4a). We
consider the estimates (27.12a)–(27.12b). In view of definitions (20.46a)–(20.46b), the quantitative positive definiteness
estimate (21.48), the estimate (18.8a), the fact that the cut-off function φ on RHS (21.48) is supported in the u-interval
[−Uj,Uj] (see Def. 4.1), and the estimate |µ| ≲ 1 (which follows from the bootstrap assumptions), we see that up to O(1)
factors, the rough tori integrals on LHSs (27.12a)–(27.12b) bound the terms on LHS (24.4a) from above. Moreover, using the
already proven estimates (24.2a)–(24.3c), the wave energy bootstrap assumptions (24.12a)–(24.12b), and (10.9b), we see that
all terms on RHSs (27.12a)–(27.12b) are bounded by ≲ ϵ̊2|τ|−17.1, which yields the desired result.

The estimate (24.5a) follows from combining the same arguments we used to prove (26.4) with the data-estimates
(24.11a)–(24.11b), the already proven estimate (24.3a), (20.56a)–(20.56b), and definitions (20.48a)–(20.48b).

□

28. Elliptic estimates for the acoustic geometry on the rough tori (n)̃ℓτ,u

We continue to work under the assumptions of Sect. 13.2. In this section, we derive elliptic L2 estimates for symmetric(0
2
)
-type tensorfields that are tangent to the acoustic tori ℓt,u . As we will explain, our analysis fundamentally relies on

the rough tori (n)̃ℓτ,u , which, unlike the acoustic tori, are adapted to our foliations by level-sets of (n)τ. We provide the
main estimate in Prop. 28.1. In Sect. 29.3, we combine the elliptic estimates of Prop. 28.1 with hyperbolic L2 estimates for
the fully modified quantities defined in Sect. 19 to obtain top-order L2 estimates for the null second fundamental form
χ, which is tangent to ℓt,u . We fundamentally need these top-order estimates for χ to avoid the loss of a derivative
in the top-order commuted wave equations. Specifically, in the top-order case N = Ntop, we need these L2 estimates
to handle the terms on RHSs (22.3a)–(22.3b) that explicitly depend on the order N derivatives trg/χ. The point is that

when N = Ntop, YN trg/χ cannot be controlled in L2 through pure transport estimates; using only transport estimates at

the top-order would result in the loss of one derivative due to the presence of the source term |χ|2g/ on the RHS of the

transport equation (19.9) satisfied by trg/χ, which depends not only on trg/χ, but also on its trace-free part χ̂. The strategy

of avoiding derivative loss in χ via a combination of elliptic L2 estimates on co-dimension 2 surfaces and hyperbolic L2

estimates was originally employed in the context of Einstein’s equations in [26]. Later, this strategy was used in many other
works on wave and wave-like equations, for example, in the context of low regularity local well-posedness for quasilinear
wave equations in [45], in the context of irrotational shock formation in [24], and in the context of shock formation in 3D
with vorticity and entropy in [52]. What is new here compared to these works is our reliance on the rough tori to obtain
the needed top-order estimates, even though the operators YN and χ are adapted to the acoustic tori ℓt,u = Σt ∩Pu .

To obtain the desired elliptic estimates, we decompose symmetric type
(0
2
)
ℓt,u-tangent tensorfields ξ into a main

piece that is tangent to (n)̃ℓτ,u , which we control with elliptic estimates on the rough tori (see Lemma 28.10), and error
terms, which we must control with separate (easier) arguments. Our primary application will be to apply the main elliptic

estimate (28.1) with L/Ntop−1
P χ in the role of ξ, which will yield L2-control of L/Ntop

P χ; see the proof of (29.15b). There are
many equivalent ways we could have carried out the decompositions and analysis of this section. We have chosen to use
orthonormal frames on the acoustic tori and the rough tori and to quantitatively control the relationship between the two
frames; see Sect. 28.2.

28.1. Statement of the main elliptic estimates. In this section, we state the proposition that yields the main elliptic
estimates of interest. Its proof is located in Sect. 28.8.
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Proposition 28.1 (The main elliptic estimates for symmetric type
(0
2
)
ℓt,u-tangent tensorfields). Let ξ be a symmetric type(0

2
)
ℓt,u-tangent tensorfield. Then the following estimate holds for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∑

P ∈{L,Y(2),Y(3)}

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|L/P ξ|2g/ dϖ ≤ C
∫

(n)̃Σ
[−U1 ,u]
τ

µ2|L/Lξ|2g/ dϖ +C
∫

(n)̃Σ
[−U1 ,u]
τ

µ2|div/ ξ|2g/ dϖ

+C
∑
A=2,3

∫
(n)̃Σ

[−U1 ,u]
τ

µ2(Y(A)trg/ξ)2 dϖ +Cε
∫

(n)̃Σ
[−U1 ,u]
τ

|ξ|2g/ dϖ.
(28.1)

28.2. Orthonormal frames on the acoustic tori and the rough tori. For use throughout Sect. 28, we recall that g/
denotes the first fundamental form of the acoustic tori ℓt,u and g̃/ denotes the first fundamental form of the rough tori
(n)̃ℓτ,u . In our ensuing analysis, we will use the pairs of orthonormal frames featured in the next definition.

Definition 28.2 (The frames {eA}A=2,3 and {fA}A=2,3). {eA}A=2,3 is defined to be the orthonormal frame on the acoustic
torus ℓt,u obtained from applying the Gram–Schmidt process to the geometric coordinate partial derivative vectorfields{
∂
∂xA

}
A=2,3

with respect to g/ , starting with e2
def= 1√

g/( ∂
∂x2 ,

∂
∂x2 )

∂
∂x2 . Similarly, {fA}A=2,3 is defined to be the orthonormal

frame on the rough torus (n)̃ℓτ,u obtained from applying the Gram–Schmidt process to the adapted rough coordinate

partial derivative vectorfields
{

∂̃
∂̃xA

}
A=2,3

with respect to g̃/ , starting with f2
def= 1√

g̃/( ∂̃
∂̃x2 ,

∂̃
∂̃x2 )

∂̃
∂̃x2

.

In the next lemma, we provide standard expressions for g/−1 and g̃/ −1 relative to the orthonormal frames.

Lemma 28.3 (Expressions for g/−1 and g̃/ −1 relative to orthonormal frames). Let g/−1 be the inverse first fundamental form
of ℓt,u from Def. 3.4, let g̃/ −1 be the inverse first fundamental form of (n)̃ℓτ,u from Def. 6.2, and let {eA}A=2,3 and {fA}A=2,3
be the orthonormal frames from Def. 28.2. Then the following identities hold, where δAB is the Kronecker delta:

g/−1 = δABeA ⊗ eB, (28.2a)

g̃/ −1 = δABfA ⊗ fB. (28.2b)

Proof. (28.2a)–(28.2b) are standard identities for inverse metrics relative to orthonormal frames. □

In the next lemma, we exhibit the relationships between the two frames {eA}A=2,3 and {fA}A=2,3.

Lemma 28.4 (Relationship between {eA}A=2,3 and {fA}A=2,3). On
(n)M[τ0,τBoot),[−U1,U2], there exists a 2× 2 orthogonal-

matrix-valued function O with components {OAB}A,B=2,3 and scalar functions {λA}A=2,3 such that:

eA = OABfB + λAL = OAB {fB + OCBλCL} , (28.3a)

fA = (O−1)AB {eB − λBL} = OBA {eB − λBL} . (28.3b)

Moreover, g̃/ −1 and g/−1 are related through the following identity:

g̃/ −1 = g/−1 − λAeA ⊗L− λAL⊗ eA + λAλAL⊗L. (28.4)

Finally, the following estimates hold on (n)M[τ0,τBoot),[−U1,U2]:

|OAB| ≤ 1, (28.5a)

|λA| ≤ Cε. (28.5b)

Proof. The existence of a matrix O and scalar functions {λA}A=2,3 satisfying the first equality in (28.3a) follows from the
fact that the frames {e2, e3,L} and {f2, f3,L} both span the tangent space of Pu at any of its points. To see that O is
orthogonal, we use the fact that L is g-orthogonal to the tangent space of Pu , the fact that {eA}A=2,3 and {fA}A=2,3 are
both g-orthonormal, and the first equality in (28.3a) to deduce, with δAB denoting the Kronecker delta, that:

δAB = g/(eA, eB) = g(eA, eB) = OACOBDg(fC , fD ) = OACOBD g̃/(fC , fD ) = OACOBDδCD = OACOBC . (28.6)

From (28.6), we see that (O−1)AB = OBA (i.e., O is an orthogonal matrix) and thus (28.3b) follows, as does the second
equality in (28.3a).
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(28.4) follows from substituting RHS (28.3b) for the frame vectorfields {fA}A=2,3 in (28.2b), using the orthogonality of
the matrix OAB, and taking into account the identity (28.2a).

The estimate (28.5a) follows trivially since any orthogonal matrix has Euclidean-orthonormal rows and thus its entries
are ≤ 1 in magnitude.

To derive the estimate (28.5b), we first use (28.3a) and Lemma 3.9 to deduce that 0 = g(eA,X) = OABg(fB,X)− λA.
From this identity and (28.5a), we see that |λA| ≲

∑
B=2,3 |g(fB,X)|. Hence, (28.5b) will follow once we show that:∑
B=2,3

|g(fB,X)| ≲ ε. (28.7)

To prove (28.7), we first use (3.31a), Prop. 9.1, the bootstrap assumptions, and Cor. 17.2 to deduce that g/AB = c−2δAB+O(ε) =
{1 +O(α̊)}δAB +O(ε), where δAB is the Kronecker delta. Also using (6.11) and the estimates of Lemma 15.5 for (n)τ,

we find that g̃/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
= {1 +O(α̊)}δAB +O(ε). Next, since

{
∂̃
∂̃x2
, ∂̃
∂̃x3

}
spans the tangent space of the rough tori

(n)̃ℓτ,u , for A = 2,3, there exist scalar functions αA and βA such that fA = αA
∂̃
∂̃x2

+ βA
∂̃
∂̃x3

. Since 1 = g̃/(fA, fA)

(with no summation over A) by assumption, it follows from the estimate g̃/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
= {1 +O(α̊)}δAB + O(ε) that

|αA|, |βA| ≲ 1, i.e., fA = O(1) ∂̃
∂̃x2

+O(1) ∂̃
∂̃x3

. From this relation, (5.13c), Prop. 9.1, the bootstrap assumptions, Lemma 15.5,

and Cor. 17.2, we deduce that fA = O(1) ∂
∂x2 +O(1) ∂

∂x3 +O
(

∂
∂xA

(n)τ

∂
∂t

(n)τ

)
L = O(1) ∂

∂x2 +O(1) ∂
∂x3 +O(ε)L. From this relation

and Lemma 3.9, we conclude (28.7).
□

28.3. An alternate representation of g-orthogonal projection onto the rough tori.

Definition 28.5 (g-orthogonal projection onto the rough tori (n)̃ℓτ,u ). Let ξ be a symmetric type
(0
2
)
ℓt,u-tangent

tensorfield. We define ξ̃/ to be the symmetric type
(0
2
) (n)̃ℓτ,u-tangent tensorfield whose type

(2
0
)
g-dual, which we denote

by ξ̃/
##

, has the following expansion relative to the orthonormal frame {f2, f3} on (n)̃ℓτ,u from Def. 28.2:

ξ̃/
## def= ξ(fA, fB)fA ⊗ fB. (28.8)

Remark 28.6 ((28.8) is g-orthogonal projection onto (n)̃ℓτ,u ). With the help of (28.2b), one can check that the tensorfield

ξ̃/ defined by (28.8) is the g-orthogonal projection of ξ onto (n)̃ℓτ,u , i.e., ξ̃/ = Π̃/ ξ, where Π̃/ ξ is defined by (6.27).

28.4. Identities involving symmetric type
(0
2
)
tensorfields. In the remainder of Sect. 28, we will work with Pu-tangent

tensorfields, as defined in Def. 21.1. It is straightforward to check that a tensorfield η is Pu-tangent if and only if any
contraction of it with L (which is g-orthogonal to Pu ) vanishes.

Lemma 28.7 (Identities involving symmetric type
(0
2
)
tensorfields). Let ξ be a symmetric type

(0
2
)
ℓt,u-tangent tensorfield,

and let ξ̃/ be the corresponding (n)̃ℓτ,u-tangent tensorfield from Def. 28.5. Then the following identity holds:

ξ̃## = ξ## − λAξ(eA, eB)L⊗ eB − λBξ(eA, eB)eA ⊗L+ λAλBξ(eA, eB)L⊗L. (28.9)

Moreover, if η is any symmetric type
(0
2
)
Pu-tangent tensorfield, then the following identities hold, where D is the

Levi-Civita connection of g and L/L is ℓt,u-projected Lie derivative operator from Def. 3.12:

[Dη](L,L) = 0, (28.10a)

[DLη](L, ·) = 0, (28.10b)

[DeAη](L,eB) = −η(eC , eB)χ(eA, eC), (28.10c)

[DLη](eA, eB) = [L/Lη](eA, eB)−η(eC , eB)χ(eA, eC)−η(eA, eC)χ(eB, eC). (28.11)

Proof. The identity (28.9) follows from using (28.3b) to substitute for the frame vectorfields {fA}A=2,3 in (28.8) and using
the orthonormality of the matrix O and the fact that ξ(L, ·) = 0.

To prove (28.10a), we differentiate the identity η(L,L) = 0 with D, use the Leibniz rule, and use that η(L, ·) = 0.
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To prove (28.10b), we differentiate the identity η(L, ·) = 0 with DL, use the Leibniz rule and the identity (3.19), and use
that η(L, ·) = 0.

To prove (28.10c), we differentiate the identity η(L, ·) = 0 with DeA , use the Leibniz rule and the identity (3.48), and
use that η(L, ·) = 0.

To prove (28.11), we contract the Lie differentiation identity LLηαβ = DLηαβ + ηκβDαL
κ + ηακDβL

κ against eαAe
β
B,

use that η(L, ·) = 0, and use the identity DeAL = χ(eA, eC)eC − ζAL, which follows from Lemma 3.9, (3.43), and (3.48).
□

28.5. Identities connecting g/ , g̃/ , and their corresponding differential operators.

Lemma 28.8 (Identities involving contractions with g/ and g̃/ ). Let η be a Pu-tangent tensorfield. Recall that | · |g/ and | · |̃g/
are defined in (3.38b) and (6.24) respectively. Then the following identity holds:

|η|g/ = |η|̃g/ . (28.12)

Moreover, if ξ and ξ̃/ are as in Def. 28.5, then:

|ξ|g/ = |̃ξ/ |̃g/ . (28.13)

In addition, if η is a symmetric type
(0
2
)
Pu-tangent tensorfield, then with trg/ and tr̃g/ as defined in (3.37b) and (6.25)

respectively, the following identity holds:

trg/η = tr̃g/η. (28.14)

Finally, if ξ and ξ̃/ are as in Def. 28.5, then:

trg/ξ = tr̃g/ ξ̃/ . (28.15)

Proof. The lemma follows easily from the fact that any Pu-tangent tensorfield (including g/ and g̃/ ) vanishes upon any
contraction with L, and the identities (28.4) and (28.9). □

28.6. Differential operator pointwise comparison estimates used in the proof of the elliptic estimates. In our proof
of Prop. 28.1, we will use the following differential operator pointwise comparison estimates.

Lemma 28.9 (Differential operator pointwise comparison estimates needed for the elliptic estimates). Let ϕ be a scalar
function, let d/ ϕ be the ℓt,u-tangent one-form from Def. 3.10, and let d̃/ ϕ be the (n)̃ℓτ,u-tangent one-form from Def. 6.12.

Let ξ be a symmetric type
(0
2
)
ℓt,u-tangent tensorfield, and let ξ̃/ be the corresponding symmetric type

(0
2
) (n)̃ℓτ,u-tangent

tensorfield from Def. 28.5. Then the following pointwise estimates hold on (n)M[τ0,τBoot),[−U1,U2]:

|̃d/ ϕ |̃g/ = {1 +O(ε)} |d/ ϕ|g/ +O(ε)|Lϕ|, (28.16a)

|d̃iv/ ξ̃/ |̃g/ = {1 +O(ε)} |div/ ξ|g/ +O(ε)|L/Lξ|g/ +O(ε)|ξ|g/ , (28.16b)

|∇̃/ ξ̃/ |̃g/ = {1 +O(ε)} |∇/ ξ|g/ +O(ε)|L/Lξ|g/ +O(ε)|ξ|g/ . (28.16c)

Proof. We prove only (28.16b) since (28.16a) and (28.16c) can be proved by similar arguments.
We start by noting the following identities, where OAB is the orthogonal matrix from Lemma 28.4:

|div/ ξ|2g/ = [DeAξ](eA, eC)[DeBξ](eB, eC), (28.17)

|d̃iv/ ξ̃/ |2
g̃/

= [DfA ξ̃/ ](fA, fC)[DfB ξ̃/ ](fB, fC) =
{
OCD [DfA ξ̃/ ](fA, fD )

} {
OCE[DfB ξ̃/ ](fB, fE)

}
. (28.18)

The identity (28.17) follows from (28.2a) and the fact that ∇/ ξ = Π/ Dξ, where Π/ is the g-orthogonal projection onto ℓt,u
from Def. 3.3. Similarly, the first equality in (28.18) follows from (28.2b) and the fact that ∇̃/ ξ̃/ = Π̃/ Dξ̃/ , where Π̃/ is the
g-orthogonal projection onto (n)̃ℓτ,u from Def. 6.11. The second equality in (28.18) follows from the orthogonality of O .

We now note the following identity, which we derive just below:

OCD [DfA ξ̃/ ](fA, fD ) = [DeAξ](eA, eC)− λA[L/Lξ](eA, eC)

− λDξ(eD , eC)trg/χ+ λCξ(eA, eD )χ(eA, eD ) + 2λAξ(eC , eD )χ(eA, eD ).
(28.19)
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From (28.19), the identities (28.2a)–(28.2b) and (28.17)–(28.18), the orthogonality of the matrix O , the Cauchy–Schwarz
inequality with respect to g/ , Lemma 28.8, the estimate (28.5b), and the pointwise estimate |χ|g/ ≲ ε noted below (25.3), we
conclude (28.16b).

It remains for us to prove (28.19). To proceed, we first use (3.19), (28.3a)–(28.3b), (28.9), (28.10a)–(28.10c), (28.11), the
orthogonality of the matrix OAB, the fact that L is null and g-orthogonal to Pu , the fact that ξ̃/ and ξ are symmetric and
satisfy ξ̃/ (L, ·) = ξ(L, ·) = 0, and the fact that L/LL = 0 to compute that:

[DeA ξ̃/ ](eA, eC) = OCD [DfA ξ̃/ ](fA, fD )

+ λC[DeA ξ̃/ ](eA,L) + λA[DeA ξ̃/ ](L,eC)− λCλA[DeA ξ̃/ ](L,L)

+ λA[DLξ̃/ ](eA, eC)− λAλA[DLξ̃/ ](L,eC)− λCλA[DLξ̃/ ](eA,L) + λCλAλA[DLξ̃/ ](L,L)

= OCD [DfA ξ̃/ ](fA, fD ) + λA[L/Lξ](eA, eC)

− λCξ(eA, eD )χ(eA, eD )− 2λAξ(eC , eD )χ(eA, eD )− λAξ(eA, eD )χ(eC , eD ).

(28.20)

Next, using (28.9), the fact that L is g-orthogonal to Pu , the fact that ξ̃/ (L, ·) = 0, the identity g(DeAL,eB) = χ(eA, eB)
(which follows from (3.48)), and the identity χ(eA, eA) = trg/χ, we deduce:

[DeA ξ̃/ ](eA, eC) = [DeAξ](eA, eC)− λDξ(eD , eC)trg/χ− λDξ(eA, eD )χ(eA, eC). (28.21)

Using (28.21) to substitute for LHS (28.20) and rearranging terms, we conclude (28.19).
□

28.7. Standard elliptic estimates for symmetric type
(0
2
)
tensorfields on the rough tori. In the next lemma, we

provide standard elliptic estimates for symmetric type
(0
2
) (n)̃ℓτ,u-tangent tensorfields. Its proof is located in Sect. 28.7.2.

Lemma 28.10 (Standard elliptic estimates for symmetric type
(0
2
)
tensorfields on the rough tori). Let Ξ be a symmetric

type
(0
2
) (n)̃ℓτ,u-tangent tensorfield. Then the following estimate holds for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∫

(n)̃ℓτ,u

µ2|∇̃/ Ξ|2
g̃/

dϖ g̃/ ≤ 6
∫

(n)̃ℓτ,u

µ2|d̃iv/ Ξ|2
g̃/

dϖ g̃/ + 3
∫

(n)̃ℓτ,u

µ2 |̃d/ tr̃g/Ξ|
2
g̃/

dϖ g̃/ +Cε
∫

(n)̃ℓτ,u

|Ξ|2
g̃/

dϖ g̃/ . (28.22)

28.7.1. The Gauss curvature of g̃/ . Our proof of Lemma 28.10 relies on the next lemma, which provides an L∞ estimate for
the Gauss curvature K̃ of ((n)̃ℓτ,u , g̃/).

Lemma 28.11 (L∞ estimate for the Gauss curvature of g̃/ ). Recall that K̃ denotes the Gauss curvature of ((n)̃ℓτ,u , g̃/) (see
Sect. 6.7). Then the following estimate holds for (τ,u) ∈ [τ0,τBoot]× [−U1,U2]:∥∥∥K̃∥∥∥

L∞((n)̃ℓτ,u) ≤ Cε. (28.23)

Proof. Recall that K̃ is equal to half the scalar curvature of g̃/ (see (6.36)). Hence, at fixed (τ,u), relative to the coordinates
(x2,x3) on the rough tori (n)̃ℓτ,u , using the standard expression for curvature in terms of the coordinate components of g̃/

and their partial derivatives, we can schematically express K̃ as follows, where g̃/ −1 schematically denotes the component

functions g̃/ −1(dxA,dxB) and g̃/ schematically denotes the component functions g̃/
(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
:

K̃ = g̃/ −1 · g̃/ −1 · ∂̃
∂̃xA

∂̃

∂̃xB
g̃/ + g̃/ −1 · g̃/ −1 · g̃/ −1 · ∂̃

∂̃xA
g̃/ · ∂̃
∂̃xB

g̃/ . (28.24)

From (28.24) and arguments similar to the ones we used to prove (18.35), we further deduce that there is a smooth function
f such that schematically, we have:

K̃ = f

P≤2γ,
1

L(n)τ
,

1
∂
∂t

(n)τ
,P [1,3]τ

 · (P [1,2]γ, P≤2Y (n)τ
)
. (28.25)

From (28.25), Prop. 9.1, the results of Lemma 15.5, including the estimates (15.20), (15.22), and (15.24), Lemma 15.6, the
bootstrap assumptions, Cor. 17.2, (18.9b), and Rademacher’s theorem, we arrive at the desired estimate (28.23).

□
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28.7.2. Proof of Lemma 28.10. We now prove Lemma 28.10. In this proof only, we will use capital Latin indices to denote

the components of (n)̃ℓτ,u-tangent tensorfields with respect to the frame
{

∂̃
∂̃xA

}
A=2,3

and co-frame {̃d/ xA}A=2,3 on

(n)̃ℓτ,u , and we raise and lower indices with g̃/ −1 and g̃/ . In particular, Ξ = Ξ

(
∂̃
∂̃xA

, ∂̃
∂̃xB

)
d̃/ xA ⊗ d̃/ xB. We start by defining

Ĩ = ĨA ∂̃
∂̃xA

to be the (n)̃ℓτ,u-tangent vectorfield with the following components relative to the coordinates (x2,x3) on
(n)̃ℓτ,u :

ĨA
def= µ2ΞB̃C̃∇̃/

B
ΞAC −µ2ΞAB(d̃iv/ Ξ)B. (28.26)

Next, with K̃ denoting the Gauss curvature of the (two-dimensional) rough tori (n)̃ℓτ,u , we note the following standard
identity, which follows from the symmetry of Ξ (see [69, Lemma 18.9] for the main ideas of the proof, where we note
that only trace-free tensorfields were handled in [69, Lemma 18.9] and thus RHSs (28.22) and (28.27) feature additional
tr̃g/Ξ-dependent terms compared to [69, Lemma 18.9]):

µ2|∇̃/ Ξ|2
g̃/

+ 2µ2K̃|Ξ|2
g̃/

= 2µ2|d̃iv/ Ξ|2
g̃/

+µ2K̃(tr̃g/Ξ)2 +µ2|d̃/ tr̃g/Ξ|
2
g̃/

− 2µ2g̃/ −1(d̃iv/ Ξ, d̃/ tr̃g/Ξ) + 2µΞAB
 ∂̃

∂̃xA
µ

 (d̃iv/ Ξ)B̃

− 2µΞBC

 ∂̃

∂̃xA
µ

 ∇̃/ BΞAC + d̃iv/ Ĩ .

(28.27)

We then integrate (28.27) over (n)̃ℓτ,u with respect to the area form dϖ g̃/ defined in (8.8) and note that the integral of the

perfect divergence term d̃iv/ Ĩ vanishes. Next, we use the g̃/-Cauchy–Schwarz inequality and Young’s inequality to pointwise
bound the three cross-terms on RHS (28.27) as follows:

2
∣∣∣∣µ2g̃/ −1(d̃iv/ Ξ, d̃/ tr̃g/Ξ)

∣∣∣∣ ≤ µ2
∣∣∣d̃iv/ Ξ∣∣∣2

g̃/
+µ2

∣∣∣∣̃d/ tr̃g/Ξ∣∣∣∣2g̃/ , (28.28)

2

∣∣∣∣∣∣µΞAB
 ∂̃

∂̃xA
µ

 (d̃iv/ Ξ)B̃

∣∣∣∣∣∣ ≤ µ2
∣∣∣d̃iv/ Ξ∣∣∣2

g̃/
+
∣∣∣̃d/ µ∣∣∣2

g̃/
|Ξ|2
g̃/
, (28.29)

2

∣∣∣∣∣∣µΞBC
 ∂̃

∂̃xA
µ

 ∇̃/ BΞAC ∣∣∣∣∣∣ ≤ 1
3
µ2|∇̃/ Ξ|2

g̃/
+ 3

∣∣∣̃d/ µ∣∣∣2
g̃/
|Ξ|2
g̃/
. (28.30)

Just below, we will show that: ∣∣∣̃d/ µ∣∣∣̃
g/
≲ |dµ|g/ + ε|Lµ| ≲ |Yµ|+ ε|(n)̃Lµ| ≲ ε. (28.31)

Using (28.31) to control the relevant factors on RHSs (28.29)–(28.30), using the Gauss curvature estimate (28.23) to control
the factors of K̃ in (28.27), using the elementary inequality |tr̃g/Ξ| ≲ |Ξ|̃g/ , and using the estimate |µ| ≲ 1 (which follows
from the bootstrap assumptions), we conclude (28.22).

To prove (28.31), we use (28.16a), the bootstrap assumptions, and Cor. 17.2 to deduce that
∣∣∣̃d/ µ∣∣∣̃

g/
≲ |dµ|g/ + ε|Lµ| ≲

|Yµ|+ ε|(n)̃Lµ| ≲ ε as desired.
□

28.8. Proof of Prop. 28.1. We now prove Prop. 28.1. Let ξ be a symmetric type
(0
2
)
ℓt,u-tangent tensorfield, and let ξ̃/ be

the corresponding symmetric type
(0
2
) (n)̃ℓτ,u-tangent tensorfield from Def. 28.5. Since the term

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|L/Lξ|2g/ dϖ on

LHS (28.1) is manifestly bounded by RHS (28.1), we only have to show that for A = 2,3, the term
∫

(n)̃Σ
[−U1 ,u]
τ

µ2|L/Y(A)
ξ|2g/ dϖ

on LHS (28.1) is ≤ RHS (28.1). To proceed, we consider the inequality (28.22) with ξ̃/ in the role of Ξ. Integrating the
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inequality with respect to u′ and using Lemmas 28.8 and 28.9, we deduce, in view of definition (8.9), that:

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|∇/ ξ|2g/ dϖ ≲
∫

(n)̃Σ
[−U1 ,u]
τ

µ2|div/ ξ|2g/ dϖ +
∫

(n)̃Σ
[−U1 ,u]
τ

µ2|∇/ trg/ξ|2g/ dϖ

+ ε

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|Ltrg/ξ|2 dϖ + ε

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|L/Lξ|2g/ dϖ + ε

∫
(n)̃Σ

[−U1 ,u]
τ

|ξ|2g/ dϖ.
(28.32)

Next, using the Leibniz rule, (13.4a), and the bootstrap assumptions, we find that |Ltrg/ξ| ≲ |L/Lξ|g/ + |L/Lg/−1|g/ |ξ|g/ ≲
|L/Lξ|g/ + |ξ|g/ and thus the third integral ε

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|Ltrg/ξ|2 dϖ on RHS (28.32) is bounded by the last two integrals on

RHS (28.32). Next, we use the torsion-free property of the connection ∇/ and the g/-Cauchy–Schwarz inequality to deduce
the pointwise estimate |L/Y(A)

ξ|g/ ≤ |∇/ Y(A)
ξ|g/ + 2|ξ|g/ |∇/ Y(A)|g/ . Also using (13.1), (13.2), the estimate for |g(DY(A)

Y(B),Y(C))|
given in the proof of (13.11b), and Cor. 17.2, we find that |L/Y(A)

ξ|g/ ≲ |∇/ ξ|g/ + ε|ξ|g/ . From this bound, (28.32), the estimates
proved above, and the pointwise bound |∇/ trg/ξ|g/ ≲

∑
A=2,3 |Y(A)trg/ξ|g/ , which follows from (13.2), we conclude that∫

(n)̃Σ
[−U1 ,u]
τ

µ2|L/Y(A)
ξ|2g/ dϖ ≲ RHS (28.1). We have therefore proved (28.1), which completes the proof of Prop. 28.1.

□

29. Proof of the L2 estimates for the wave-variables and the acoustic geometry

We continue to work under the assumptions of Sect. 13.2. In this section, we prove Props. 24.1 and 24.4, which provide
the main a priori energy estimates for the wave-variables and the acoustic geometry along the rough foliations. We
accomplish this via a bootstrap argument that relies on the energy estimates of Prop. 24.2 for the transport-variables,
which we already proved in Sects. 26 and 27.

We recall that the fundamental L2-controlling quantities, such as W[1,N ] and W
(Partial)
[1,N ] , are defined in Sect. 20.5 (see

in particular Def. 20.12).

29.1. Statement of the integral inequalities used in proving a priori L2 estimates for the wave-variables. In this
section, we state Prop. 29.1, which provides a coupled system of integral inequalities for the wave energies WN and the

partial wave energies W
(Partial)
N . As we will see in Sect. 29.7.1, these integral inequalities are the main ingredients in our

proof of the L2 a priori estimates of Prop. 24.1. Most of our effort in Sect. 29 is dedicated towards proving preliminary
estimates that we will use in proving Prop. 29.1.

We now state the proposition. Its proof is located in Sect. 29.7.

Proposition 29.1 (The system of integral inequalities satisfied by the WN ). Let ς ∈ (0,1], and let (n)N[τ0,τBoot] denote

the set from (18.12). For Ψ⃗ = (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4) = (R(+),R(−),v
2,v3, s), let G⃗

def
= (G0, · · · ,G4) be the vector array of

the inhomogeneous terms in the covariant wave equations µ2gΨι = Gι, i.e., µG⃗ is equal to µ × RHS (2.22). Similarly,
we define G⃗(Partial)

def
= (G1, · · · ,G4) to be µ-weighted inhomogeneous terms in the covariant wave equations satisfied by

Ψ⃗ (Partial) = (R(−),v
2,v3, s). Then there exist constants C > 0 and C∗ > 0 (see Remark 22.7) that are independent of ς

such that the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:
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Top-order integral inequalities for Ψ⃗ . In the case N = Ntop, we have the following estimates for the L
2-controlling

quantity WN defined in (20.43c):

WN (τ,u) ≤
{4× 1.01

1.99
+ 4.13

} ∫ τ

τ′=τ0

1
|τ′ |

QN (τ′ ,u)dτ′

+
8× (1.01)2

1.99

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

∫ τ′

τ′′=τ0

1
|τ′′ |

Q
1/2
N (τ′′ ,u)dτ′′ dτ′

+ 4.13
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
N (τ′ ,u)dτ′

+C∗

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+C∗

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

∫ τ′

τ′′=τ0

1
|τ′′ |

(
Q

(Partial)
N

)1/2
(τ′′ ,u)dτ′′ dτ′

+C∗
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+ Error
(Top)
N (τ,u),

(29.1)
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where Error
(Top)
N (τ,u) satisfies the following estimate, in which the implicit constants are independent of ς ∈ (0,1]:

|Error(Top)
N |(τ,u) ≲

(
1 + ς−1

)
ϵ̊2 1
|τ|3/2

+
∫ τ

τ′=τ0

Q
1/2
N (τ′ ,u)

{
C

1/2
N +D

1/2
N

}
(τ′ ,u)dτ′

+
∫ τ

τ′=τ0

1
|τ′ |4/3


∫ τ′

τ′′=τ0

[
C

1/2
N +D

1/2
N

]
(τ′′ ,u)dτ′′


2

dτ′

+
∫ τ

τ′=τ0

1
|τ′ |4/3


∫ τ′

τ′′=τ0

1
|τ′′ |1/2

[
C

1/2
≤N−1 +D

1/2
≤N−1

]
(τ′′ ,u)dτ′′


2

dτ′

+
∫ u

u′=−U1

{C≤N−1 +D≤N−1} (τ,u′)du′

+
∫ τ

τ′=τ0

1
|τ′ |4/3


∫ τ′

τ′′=τ0

1
|τ′′ |1/2

[
V

1/2
≤N +S

1/2
≤N

]
(τ′′ ,u)dτ′′


2

dτ′

+
∫ u

u′=−U1

{V≤N +S≤N } (τ,u′)du′

+ εQN (τ,u) + ςQN (τ,u) + ςWN (τ,u)

+ ε
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′

+
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

Q
1/2
[1,N ](τ

′ ,u)dτ′

+Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′

+
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ ,u)dτ′

+ ε

∫ τ

τ′=τ0

1
|τ′ |

QN (τ′ ,u)dτ′

+
(
1 + ς−1

)∫ τ

τ′=τ0

1
|τ′ |2/3

Q[1,N ](τ
′ ,u)dτ′

+
(
1 + ς−1

)∫ u

u′=−U1

QN (τ,u′)du′

+ ε

∫ τ

τ′=τ0

Q
1/2
N (τ′ ,u)

1
|τ′ |

∫ τ′

τ′′=τ0

1
|τ′′ |

Q
1/2
[1,N ](τ

′′ ,u)dτ′′ dτ′

+
∫ τ

τ′=τ0

Q
1/2
N (τ′ ,u)

1
|τ′ |

∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
[1,N ](τ

′′ ,u)dτ′′ dτ′

+
∫ τ

τ′=τ0

Q
1/2
N (τ′ ,u)

1
|τ′ |

∫ τ′

τ′′=τ0

1
|τ′′ |

∫ τ′′

τ′′′=τ0

1
|τ′′′ |1/2

Q
1/2
[1,N ](τ

′′′ ,u)dτ′′′ dτ′′ dτ′

+
∫ τ

τ′=τ0

1
|τ′ |5/2

Q[1,N−1](τ
′ ,u)dτ′ .

(29.2)
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Top-order integral inequalities for Ψ⃗ (Partial). In the case N =Ntop, we have the following estimates for the L
2-controlling

quantity W
(Partial)
N defined in (20.44c):

W
(Partial)
N (τ,u) ≤ Error

(Top)
N (τ,u), (29.3)

where Error
(Top)
N (τ,u) satisfies (29.2).

Below-top-order integral inequalities for Ψ⃗ . Finally, if 2 ≤ N ≤ Ntop, then we have the following estimates for the

L2-controlling quantity W[1,N−1] defined by (20.43c) and Def. 20.12:

W[1,N−1](τ,u) ≤ C
∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ ,u)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
N (τ′′ ,u)dτ′′ dτ′

+ Error
(Sub-critical)
N−1 (τ,u),

(29.4)

where for any integer M ≥ 1, Error(Sub-critical)M (τ,u) is defined to be any term that satisfies the following estimate, in which
the implicit constants are independent of ς ∈ (0,1]:∣∣∣∣Error(Sub-critical)M

∣∣∣∣ (τ,u) ≲ ϵ̊2 +
(
1 + ς−1

)∫ τ

τ′=τ0

1
|τ′ |1/2

Q[1,M](τ
′ ,u)dτ′

+
∫ τ

τ′=τ0

Q
1/2
M (τ′ ,u)

{
C

1/2
M +D

1/2
M

}
(τ′ ,u)dτ′

+
∫ u

u′=−U1

{C≤M−1 +D≤M−1} (τ,u′)du′

+
∫ u

u′=−U1

{V≤M +S≤M } (τ,u′)du′

+
(
1 + ς−1

)∫ u

u′=−U1

Q[1,M](τ,u
′)du′

+ ςK[1,M](τ,u).

(29.5)

Remark 29.2 (Non-optimality of some estimates involving Error
(Top)
N (τ,u)). The reader might notice that some of the error

terms we bound in the forthcoming Sects. 29.2–(29.5) are strictly less singular with respect to powers of |τ|−1 compared
to the terms featured on RHS (29.2), i.e., our estimates are not always optimal. For example, RHS (29.11) features the error

integral
(
1 + ς−1

)∫ τ

τ′=τ0

1
|τ′ |1/2 QN (τ′ ,u)dτ′ , whereas RHS (29.2) (which defines a term of type Error

(Top)
N (τ,u)) features(

1 + ς−1
)∫ τ

τ′=τ0

1
|τ′ |2/3 QN (τ′ ,u)dτ′ . We chose to sometimes use non-optimal estimates because the proof of the a priori

L2 estimates in Sect. 29.7.1 is based on a Grönwall argument involving all of the error integrals found in Sects. 29.2–(29.5),
and the terms on RHS (29.2) represent the worst terms we encounter in the entire top-order wave energy estimate analysis.

Remark 29.3 (Redundancies in Error
(Top)
N (τ,u)). Despite Remark 29.2, we acknowledge that there are some redundan-

cies in the terms on RHS (29.2). For example, since QM (τ,u) is increasing in its arguments, we have the estimate
ε 1
|τ|1/2 Q

1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N ](τ

′ ,u)dτ′ ≲ εQN (τ′ ,u), and yet we have included the terms on the LHS and the

RHS of this estimate on RHS (29.2). We chose to keep these redundancies for the sake of the reader because we anticipate
it might make some of the forthcoming proofs in Sects. 29.2–29.5 easier to read.

29.2. Estimates for the easiest error integrals.

29.2.1. Estimates for the error integrals generated by the error terms Harmless
[1,N ]
(Wave). In the following lemma, we derive

bounds for all the wave equation error integrals that involve the Harmless
[1,N ]
(Wave) terms defined in (22.1).

Lemma 29.4 (Bounds for error integrals involving Harmless
[1,N ]
(Wave) terms). Let 1 ≤N ≤Ntop, let Ψ ∈ Ψ⃗ = {R(+),R(−),v

2,v3, s},
and let ς ∈ (0,1]. Let PN ∈ P(N ), where P(N ) is the set of order N Pu-tangential commutator operators from
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Def. 8.10. Recall that terms of type Harmless
[1,N ]
(Wave) are defined in Def. 22.1. Then the following estimates hold for (τ,u) ∈

[τ0,τBoot)× [−U1,U2], where the implicit constants are independent of ς:∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

∣∣∣∣∣∣
(
(1 + 2µ)LPNΨ

2X̆PNΨ

)∣∣∣∣∣∣ ∣∣∣∣Harmless
[1,N ]
(Wave)

∣∣∣∣ dϖ ≲
(
1 + ς−1

)∫ τ

τ′=τ0

1
|τ′ |1/2

Q[1,N ](τ
′ ,u)dτ′

+
(
1 + ς−1

)∫ u

u′=−U1

Q[1,N ](τ,u
′)du′

+ ςK[1,N ](τ,u) + ϵ̊2.

(29.6)

In particular, RHS (29.6) is of type Error
(Sub-critical)
N (τ,u), where Error

(Sub-critical)
N (τ,u) satisfies (29.5) (hence, in the case

N =Ntop, it is also is of type Error
(Top)
N (τ,u), i.e., it satisfies the weaker estimate (29.2)).

Proof. We will give a detailed proof for terms of type
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

∣∣∣LPNΨ ∣∣∣·∣∣∣Y(A)P≤NΨ
∣∣∣ dϖ , which are the most

difficult terms generated by the LHS (29.6). By using the pointwise bound
∣∣∣Y(A)PNΨ

∣∣∣ ≤ |Y(A)|g/
∣∣∣d/ PNΨ ∣∣∣

g/
≲

∣∣∣d/ PNΨ ∣∣∣
g/

(see (13.1)), the estimates (18.9b), (20.53), (20.58), and (20.63a), and Young’s inequality, and noting that (18.2) implies that
1 = 1[−Uj,Uj](u′) + 1[−Uj,Uj]c (u′) ≤ 1[−Uj,Uj](u′) +Cµ, we deduce the following estimate for any ς ∈ (0,1], where
the implicit constants are independent of ς:∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

∣∣∣LPNΨ ∣∣∣ · ∣∣∣Y(A)P≤NΨ
∣∣∣ dϖ

≲
(
1 + ς−1

)∫ u

u′=−U1

∫
(n)P [τ0 ,τ]

u′

1
L(n)τ

∣∣∣LPNΨ ∣∣∣2 dϖ du′

+
∫ u

u′=−U1

∫
(n)P [τ0 ,τ]

u′

1
L(n)τ

µ
∣∣∣d/ PNΨ ∣∣∣2

g/
dϖ du′

+ ς
∫

(n)M[τ0 ,τ],[−U1 ,u]

1[−Uj,Uj](u
′)

1
L(n)τ

∣∣∣d/ PNΨ ∣∣∣2
g/

dϖ

+
∫ τ

τ′=τ0

∫
(n)̃Σ

[−U1 ,u]
τ′

∣∣∣P [1,N ]Ψ
∣∣∣2 dϖ dτ′

≲
(
1 + ς−1

)∫ u

u′=−U1

Q[1,N ](τ,u)du′ + ςK[1,N ](τ,u) + ϵ̊2 +
∫ τ

τ′=τ0

Q[1,N ](τ
′ ,u)dτ′ ,

(29.7)

which is ≲ RHS (29.6) as desired. The remaining terms on LHS (29.6) can be bounded by combining similar arguments
with the estimate |µ| ≲ 1 (which follows from the bootstrap assumptions), the estimates of Prop. 18.1 (especially (18.1)),
the coerciveness estimates of Lemmas 20.14 and 20.15, the estimates (25.1b) and (25.7), the Cauchy–Schwarz inequality for
integrals, the pointwise commutator-type estimate (25.5), and Young’s inequality; we refer to the proof of [50, Lemma 14.12]
for further details. □

29.2.2. Estimates for the error integrals generated by the inhomogeneous terms in the covariant wave equations.

Lemma 29.5 (Estimates for the error integrals generated by the inhomogeneous terms in the covariant wave equations).

Let Ψ⃗ = (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4) = (R(+),R(−),v
2,v3, s) be the array of wave-variables, let G⃗ = (G0, · · · ,G4) be the corre-

sponding array of the inhomogeneous terms in the covariant wave equations µ2gΨι = Gι (see (2.22)). Let PN ∈ P(N ), where

P(N ) is the set of order N Pu-tangential commutator operators from Def. 8.10. Recall that T̆ is the multiplier vectorfield
defined in (20.22). Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2].

Top-order estimates. If N =Ntop, then we have:∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

∣∣∣∣T̆PN Ψ⃗ ∣∣∣∣ ∣∣∣∣PN G⃗∣∣∣∣ dϖ ≤ Error
(Top)
N (τ,u), (29.8)

where Error
(Top)
N (τ,u) satisfies (29.2).
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Below-top-order estimates. If 2 ≤N ≤Ntop, then we have:∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

∣∣∣∣T̆PN−1Ψ⃗

∣∣∣∣ ∣∣∣∣PN−1G⃗

∣∣∣∣ dϖ ≤ Error
(Sub-critical)
N−1 (τ,u), (29.9)

where Error
(Sub-critical)
N−1 (τ,u) satisfies (29.5) (with N − 1 in the role of M in (29.5)).

Proof. Throughout the proof, we will silently use the estimate 1
L(n)τ
≈ 1 implied by (18.9b).

We first prove (29.8), i.e, we handle the case N = Ntop. We pointwise bound the term |PN G⃗| on LHS (29.8).
Specifically, using the pointwise estimate (13.19), the bootstrap assumptions, (13.1), Young’s inequality, and noting (as in
the proof of (29.7)) that (18.2) implies that 1 = 1[−Uj,Uj](u′) + 1[−Uj,Uj]c (u′) ≤ 1[−Uj,Uj](u′) +Cµ, we deduce the
following pointwise estimate for the integrand on LHS (29.8), valid for any ς ∈ (0,1], with implicit constants that are
independent of ς:

1
L(n)τ

∣∣∣∣T̆PN Ψ⃗ ∣∣∣∣ ∣∣∣∣PN G⃗∣∣∣∣ ≲ ∣∣∣∣X̆PN Ψ⃗ ∣∣∣∣ · ∣∣∣µ1/2PN (C,D)
∣∣∣+

∣∣∣∣µ1/2LPN Ψ⃗
∣∣∣∣ · ∣∣∣µ1/2PN (C,D)

∣∣∣
+
∣∣∣P≤N−1(C,D)

∣∣∣2
+
(
1 + ς−1

) ∣∣∣∣X̆P [1,N ]Ψ⃗

∣∣∣∣2 +
(
1 + ς−1

) ∣∣∣∣LP [1,N ]Ψ⃗

∣∣∣∣2
+ ς1[−Uj,Uj]

∣∣∣∣d/ P [1,N ]Ψ⃗

∣∣∣∣2
g/

+
∣∣∣∣µ1/2d/ P [1,N ]Ψ⃗

∣∣∣∣2
g/

+
∣∣∣P≤N (Ω,S)

∣∣∣2 + ε

∣∣∣∣P [1,N ]
∗ γ

∣∣∣∣2 .

(29.10)

We now integrate RHS (29.10) over (n)M[τ0,τ],[−U1,u]. Using (20.53), (20.56a)–(20.56b), and the Cauchy–Schwarz inequality,

we find that the integrals of the first two terms on RHS (29.10) are ≲
∫ τ

τ′=τ0
Q

1/2
N (τ′ ,u)

{
C

1/2
N +D

1/2
N

}
(τ′ ,u)dτ′ , which

in turn is manifestly bounded by RHS (29.2) as desired. Moreover, using (20.56a)–(20.56b), we see that the integral

of
∣∣∣P≤N−1(C,D)

∣∣∣2 is ≲
∫ u
u′=−U1

{C≤N−1 +D≤N−1} (τ,u′)du′ , which is manifestly bounded by RHS (29.2) as desired.

Finally, using (18.1), Lemma 20.14, Lemma 20.15, the estimate (25.1b), Young’s inequality, and the fact that the L2-controlling
quantities QM (τ,u), CM (τ,u), etc. are increasing in their arguments, it is straightforward to check that the integrals of

the remaining terms on RHS (29.10) are of type Error
(Top)
N (τ,u), i.e., they satisfy (29.2).

To prove (29.9), we repeat the above arguments with N −1 in the role of N and simply note that the same arguments
imply something stronger than what was claimed above: they imply that the error integrals generated by LHS (29.9) are of

type Error
(Sub-critical)
N−1 (τ,u), i.e., they are all bounded by RHS (29.5) (with N − 1 in the role of M in (29.5)). □

29.2.3. Estimates for the error integrals generated by the multiplier vectorfield. In the next lemma, we bound the error
integrals that are generated by the multiplier vectorfield.

Lemma 29.6 (Estimates for the error integrals generated by the multiplier vectorfield). Assume that 1 ≤ N ≤ Ntop,

Ψ ∈ Ψ⃗ = {R(+),R(−),v
2,v2, s}, and ς ∈ (0,1]. Let PN ∈ P(N ), where P(N ) is the set of order N Pu-tangential

commutator operators from Def. 8.10. Recall that the multiplier vectorfield T̆ is defined in (20.22) and that (T̆ )B[PNΨ ] is
the error term defined by (20.27) and (20.28a)–(20.28f) and appearing on RHS (20.26). Then the following estimates hold for
(τ,u) ∈ [τ0,τBoot)× [−U1,U2], where the implicit constants are independent of ς:∫

(n)M[τ0 ,τ],[−U1 ,u]

∣∣∣∣∣ 1

L(n)τ

(T̆ )B[PNΨ ]
∣∣∣∣∣ dϖ ≲

(
1 + ς−1

)∫ τ

τ′=τ0

1
|τ′ |1/2

QN (τ′ ,u)dτ′

+
(
1 + ς−1

)∫ u

u′=−U1

QN (τ,u′)du′

+ ςKN (τ,u).

(29.11)

In particular, RHS (29.11) is of type Error
(Sub-critical)
N (τ,u), where Error

(Sub-critical)
N (τ,u) satisfies (29.5) (hence, in the case

N =Ntop, it is also is of type Error
(Top)
N (τ,u), i.e., it satisfies the weaker estimate (29.2)).
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Proof. Throughout this proof, we will silently use the estimate (18.9b), which implies that the factor 1
L(n)τ

on LHS (29.11) is
≈ 1.

We first bound the error integral generated by the first term on RHS (20.27), i.e., in view of the factor 1
L(n)τ

on LHS (29.11)

and definition (6.3), the integral of 1
21[−Uj,Uj]c ((n)̃Lµ)

∣∣∣d/ PNΨ ∣∣∣2
g/
. Using (18.2), we find that the integrand satisfies the

pointwise bound 1
L(n)τ

1[−Uj,Uj]c |Lµ|
∣∣∣d/ PNΨ ∣∣∣2

g/
≲ µ

∣∣∣d/ PNΨ ∣∣∣2
g/
. Hence, by (20.53), we deduce:

1
2

∫
(n)M[τ0 ,τ],[−U1 ,u]

∣∣∣∣∣ 1
L(n)τ

1[−Uj,Uj]c (Lµ)
∣∣∣d/ PNΨ ∣∣∣2

g/

∣∣∣∣∣ dϖ ≲
∫ u

u′=−U1

QN (τ,u′)du′ , (29.12)

which is ≲ RHS (29.11) as desired.
Next, we bound the integral of the term (T̆ )B(3)[PNΨ ] defined in (20.28c). First, using the crucial pointwise

bound (18.7), we bound the term ((n)R̆µ)
∣∣∣d/ PNΨ ∣∣∣2

g/
from (20.28c) in magnitude by ≲

√
µ
∣∣∣d/ PNΨ ∣∣∣2

g/
. Hence, using the

coerciveness estimate (20.53) and (18.1), we can bound the integral of this term over the region (n)M[τ0,τ],[−U1,u] by

≲
∫ τ

τ′=τ0

1
|τ′ |1/2 QN (τ′ ,u)dτ′ as desired.

We now handle the remaining terms in the definition (20.28c) of (T̆ )B(3)[PNΨ ] as well as the remaining bulk terms
(T̆ )B(i)[PNΨ ] with i ∈ {1,2,4,5,6}, i.e., the terms defined in (20.28a), (20.28b), (20.28d), (20.28e), and (20.28f). To this
end, we first use Prop. 9.1, (18.26), the bootstrap assumptions, and Young’s inequality, and we split 1 = 1[−Uj,Uj](u) +
1[−Uj,Uj]c (u), to deduce the following pointwise estimates, valid for any ς ∈ (0,1] with implicit constants that are
independent of ς:

∣∣∣∣∣µ(n)Uµ+ 2µLµ+
1
2
µtrg/χ+µ2trg/k/

(Tan–Ψ⃗ ) +µtrg/k/
(Trans–Ψ⃗ )

∣∣∣∣∣ ∣∣∣d/ PNΨ ∣∣∣2
g/
,

max
i∈{1,2,4,5,6}

∣∣∣∣(T̆ )B(i)[PNΨ ]
∣∣∣∣

≲
(
1 + ς−1

)
(LPNΨ )2 +

(
1 + ς−1

)
(X̆PNΨ )2

+µ
∣∣∣d/ PNΨ ∣∣∣2

g/
+ 1[−Uj,Uj]c

∣∣∣d/ PNΨ ∣∣∣2
g/

+ ς1[−Uj,Uj]

∣∣∣d/ PNΨ ∣∣∣2
g/
.

(29.13)

Next, we use (18.2) to deduce the following pointwise estimate for the next-to-last term on RHS (29.13): 1[−Uj,Uj]c
∣∣∣d/ PNΨ ∣∣∣2

g/
≲

µ
∣∣∣d/ PNΨ ∣∣∣2

g/
. Combining this estimate with the coerciveness guaranteed by (20.53) and (20.63a), we find that the integral

of RHS (29.13) over the spacetime region (n)M[τ0,τ],[−U1,u] is ≲ RHS (29.11) as desired.
□

29.3. Top-order L2 estimates for χ. In this section, we derive L2 estimates for the top-order terms µPNtop trg/χ and

µL/Ntop

P χ in terms of the L2-controlling quantities. In the most difficult case, which is PNtop = YNtop , the proofs rely on

the pointwise estimate (22.20) satisfied by the fully-modified quantity (YN )X as well as the elliptic estimate (28.1) with

L/Ntop−1
Y χ in the role of ξ.

29.3.1. Statement of the top-order L2 estimates for χ. In the next proposition, we state the estimates. Its proof is located
in Sect. 29.3.3.
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Proposition 29.7 (Top-order L2 estimates for χ). Let N = Ntop, and let P
(N ) and L/ (N )

P
denote the sets of order N

Pu-tangential operators from Def. 8.10. Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

max
PN∈P(N )

∥∥∥µPN trg/χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) , max
L/NP ∈L/

(N )
P

∥∥∥µL/NP χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

)

≲ ϵ̊ ln
(
|τ|−1

)
+Q

1/2
[1,N ](τ,u) +

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
[1,N ](τ

′ ,u)dτ′

+
∫ τ

τ′=τ0

{
C

1/2
N +D

1/2
N

}
(τ′ ,u)dτ′ +

∫ τ

τ′=τ0

1
|τ′ |1/2

{
C

1/2
≤N−1 +D

1/2
≤N−1

}
(τ′ ,u)dτ′

+
∫ τ

τ′=τ0

1
|τ′ |1/2

{
V

1/2
≤N +S

1/2
≤N

}
(τ′ ,u)dτ′ .

(29.14)

29.3.2. Preliminary estimates. In the following lemma, we derive preliminary L2 estimates that we will use in the proof
of Prop. 29.7.

Lemma 29.8 (Preliminary top-order L2 estimates for χ). Let N =Ntop, and let P
(N ), L/ (N )

P
, and L/ (N )

Y
be the sets of order N

Pu-tangential commutator operators from Def. 8.10. Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

max
PN∈P(N )

∥∥∥µPN trg/χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) ≲ ϵ̊ ln
(
|τ|−1

)
+Q

1/2
[1,N ](τ,u) +

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
[1,N ](τ

′ ,u)dτ′

+ ε

∫ τ

τ′=τ0

∥∥∥∥∥∥∥∥µ max
L/NY ∈L/

(N )
Y

L/NY χ

∥∥∥∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′

+
∫ τ

τ′=τ0

{
C

1/2
N +D

1/2
N

}
(τ′ ,u)dτ′ +

∫ τ

τ′=τ0

1
|τ′ |1/2

{
C

1/2
≤N−1 +D

1/2
≤N−1

}
(τ′ ,u)dτ′

+
∫ τ

τ′=τ0

1
|τ′ |1/2

{
V

1/2
≤N +S

1/2
≤N

}
(τ′ ,u)dτ′ ,

(29.15a)

max
L/NP ∈L/

(N )
P

∥∥∥µL/NP χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) ≲ ϵ̊+Q
1/2
[1,N ](τ,u) + max

PN∈P(N )

∥∥∥µPN trg/χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) . (29.15b)

Proof.
Proof of (29.15a): It suffices to show that for any PN ∈ P(N ), we have:

∥∥∥µPN trg/χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) ≲ RHS (29.15a). We first

consider the most difficult case, which is PN = YN ∈ Y(N ). We take the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the estimate (22.20).

In the rest of the proof, we sometimes silently use (16.16) and Cor. 17.2, which together imply that the flow map factors
(n)Λ̃ in (22.20) distort ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) norms only by overall factors of 1 +O(ε). For this reason, in this proof, we often

suppress the factors of (n)Λ̃ to simplify the notation.
To proceed, we use (18.9b), the estimate |µ| ≲ 1 (which follows from the bootstrap assumptions), (16.9), and Lemma 20.14

to deduce that the norm ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) of the terms µ|PN+1Ψ⃗ |, |X̆PN Ψ⃗ |, and
∫ τ

τ′=τ0

1
|τ′ | |X̆P

N Ψ⃗ |dτ′ on RHS (22.20)

are ≲ the sum of the second and third terms on RHS (29.15a). To bound the norm of the term |ZN ;1
∗ Ψ⃗ | on RHS (22.20),

we simply use the already proven estimate (25.7), while to handle the terms

∣∣∣∣∣∣
P [1,N ]γ

P [1,N ]
∗ γ

∣∣∣∣∣∣ on RHS (22.20), we use

(25.7) and the already proven estimate (25.1b). To bound the norms of the terms
∫ τ

τ′=τ0

1
|τ′ |

∣∣∣∣Z[1,N ];1
∗ Ψ⃗

∣∣∣∣ dτ′ and∫ τ

τ′=τ0

1
|τ′ |

∣∣∣∣∣∣
P [1,N ]γ

P [1,N ]
∗ γ

∣∣∣∣∣∣ dτ′ on RHS (22.20), we use similar arguments, where we note that (25.7) and (25.1b) generate

the error term C
∫ τ

τ0

ϵ̊
|τ′ | dτ

′ , which is ≲ the term ϵ̊ ln
(
|τ|−1

)
on RHS (29.15a). To bound the norm ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) of
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the first term
∣∣∣∣(YN )X

∣∣∣∣ (τ0,u,x
2,x3) on RHS (22.20), we first use (16.7a) to deduce that:

∥∥∥∥(YN )X (τ0, ·)
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≲∥∥∥∥(YN )X
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ0

). Next, using Def. 19.2 and the data-assumptions stated in Sect. 11.2.1, we find that
∥∥∥∥(YN )X

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ0

) ≲
ϵ̊, which is ≲ RHS (29.15a) as desired. The L2 norm of the remaining time integrals on RHS (22.20) can be bounded using
similar arguments, the estimate |µ| ≲ 1 (which follows from the bootstrap assumptions), and Lemma 20.14, which we use
to control the (C,D,Ω,S)-involving terms. We have therefore proved (29.15a) in the case PN = YN .

We now prove (29.15a) in the case that the operator PN on the LHS is not of type YN , i.e., the case in which
PN contains at least one factor of L. In this case, we can use (13.6a) and the bootstrap assumptions to commute
the factor of L so that it acts last and then use the pointwise estimates (13.4a) and (13.13d) to deduce: |PN trg/χ| ≲
|LPN−1trg/χ| + |P≤N−1trg/χ| +

∣∣∣P [1,N−1]γ
∣∣∣ ≲ |P [1,N+1]Ψ⃗ | + |P [1,N ]γ|. Multiplying this inequality by µ and using the

arguments given above, including (25.1b) and the fact that Q[1,N ](τ,u) is increasing in its arguments, we find that

∥µPN trg/χ∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) ≲ ϵ̊+Q
1/2
[1,N ](τ,u), which is ≲ RHS (29.15a) as desired. We have therefore proved (29.15a).

Proof of (29.15b): It suffices to show that for any L/NP ∈ L/
(N )
P

, we have:
∥∥∥µL/NP χ∥∥∥L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≲ RHS (29.15b). To this end,

we first apply the elliptic estimate (28.1) with ξ
def= L/N−1

P χ to deduce:∫
(n)̃Σ

[−U1 ,u]
τ

µ2|L/NP χ|
2
g/ dϖ ≲

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|L/LL/N−1
P χ|2g/ dϖ +

∫
(n)̃Σ

[−U1 ,u]
τ

µ2|div/ L/N−1
P χ|2g/ dϖ

+
∑
A=2,3

∫
(n)̃Σ

[−U1 ,u]
τ

µ2(Y(A)trg/L/N−1
P χ)2 dϖ +

∫
(n)̃Σ

[−U1 ,u]
τ

|L/N−1
P χ|2g/ dϖ.

(29.16)

The same arguments given in the previous paragraph, starting from the pointwise estimate (13.13e), imply that the first term
on RHS (29.16) is ≲ ϵ̊+Q1/2

[1,N ](τ,u) as desired. Those arguments also imply, based on (25.1b), that ∥L/N−1
P χ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) ≲
ϵ̊+Q

1/2
[1,N ](τ,u), which yields the desired bound for the last term on RHS (29.16). To handle the third term on RHS (29.16),

we start with the following pointwise triangle inequality estimate:

µ
∣∣∣Y(A)trg/L/N−1

P χ
∣∣∣ ≲ µ

∣∣∣Y(A)PN−1trg/χ
∣∣∣+µ

∣∣∣∣Y(A)

(
trg/L/N−1

P χ−PN−1trg/χ
)∣∣∣∣ . (29.17)

The norm ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) of the first term µ
∣∣∣Y(A)PN−1trg/L/N−1

P χ
∣∣∣ on RHS (29.17) is ≲ the last term on RHS (29.15b). To

handle the second term on RHS (29.17), we first note the following pointwise commutator estimate, which follows easily
from the Leibniz rule, the bootstrap assumptions, and (13.4a):∣∣∣∣Y(A)

(
trg/L/N−1

P χ−PN−1trg/χ
)∣∣∣∣ ≲ ∣∣∣P [1,N ]γ

∣∣∣ . (29.18)

Multiplying (29.18) by µ and arguing as in the proof of (29.15a), using in particular Lemma 20.14 and (25.1b), we bound the
norm ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) of the resulting RHS by ≲ ϵ̊+Q
1/2
[1,N ](τ,u), which is ≲ RHS (29.15b) as desired. It remains for us to

bound the div/ L/N−1
P χ-involving integral on RHS (29.16). We start with the following pointwise triangle inequality estimate:

µ
∣∣∣div/ L/N−1

P χ
∣∣∣
g/
≲ µ

∣∣∣d/ PN−1trg/χ
∣∣∣
g/

+µ
∣∣∣div/ L/N−1

P χ−d/ PN−1trg/χ
∣∣∣
g/
. (29.19)

The norm ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) of the first term µ
∣∣∣d/ PN−1trg/χ

∣∣∣
g/
on RHS (29.19) is ≲ the last term on RHS (29.15b). To handle

the second term on RHS (29.19), we simply multiply the pointwise estimate (13.16) by µ, take the norm ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)
of the resulting inequality, and use the same arguments we used to control µ × RHS (29.18). We have therefore proved
(29.15b), which finishes the proof of the lemma.

□
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29.3.3. Proof of Prop. 29.7. The estimate (29.14) for maxPN∈P(N )

∥∥∥µPN trg/χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) follows from inserting the esti-

mate (29.15b) for maxL/NP ∈L/
(N )
P

∥∥∥µL/NP χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) into RHS (29.15a) and applying Grönwall’s inequality. We then insert

the already proved estimate (29.14) for maxPN∈P(N )

∥∥∥µPN trg/χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) into RHS (29.15b), thereby obtaining the

desired estimate (29.14) for maxL/NP ∈L/
(N )
P

∥∥∥µL/NP χ∥∥∥L2
(

(n)̃Σ
[−U1 ,u]
τ

) and completing the proof of the proposition.

□

29.4. Estimates for the easy top-order eikonal function-involving error integrals. In Prop. 29.7, we derived prelim-
inary top-order L2 estimates for χ. With the help of these estimates, we are now ready to control the wave equation
error integrals that depend on these terms. More precisely, in the next lemma, we use these preliminary estimates to
control “easy” error integrals, which are generated by the first product d/ ♯Ψι ·µd/YN−1trg/χ on RHS (22.3a) and the second

product (c−2XA)d/ ♯Ψι · µd/YN−1trg/χ on RHS (22.3b). The corresponding error integrals are easy in the sense that the
integrands contain a helpful factor of µ. In Sect. 29.5, we will control the analogous – but much more difficult – error
integral generated by the first product (X̆Ψι)YN−1Y(A)trg/χ on RHS (22.3b), which lacks the factor of µ.

Lemma 29.9 (Estimates for the easy top-order eikonal function-involving error integrals). Let N = Ntop, let Ψ ∈ Ψ⃗ =
{R(+),R(−),v

2,v3, s}, and let PN ∈ P(N ), where P(N ) is the set of order N Pu-tangential commutator operators from
Def. 8.10. Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

∣∣∣∣∣∣
(
(1 + 2µ)LPNΨ

2X̆PNΨ

)∣∣∣∣∣∣
∣∣∣∣∣∣
 (d/ ♯Ψ ) ·µd/YN−1trg/χ

(c−2XA)d/ ♯Ψι ·µd/YN−1trg/χ

∣∣∣∣∣∣ dϖ

= Error
(Top)
N (τ,u),

(29.20)

where Error
(Top)
N (τ,u) satisfies the estimate (29.2).

Proof. The bootstrap assumptions and (18.1) imply that the integrand on LHS (29.20) is pointwise bounded by ≲(
|LPNΨ |+ |X̆PNΨ |

)
· µ|YN trg/χ|. Hence, integrating over (n)M[τ0,τ],[−U1,u] and using (20.53) and Young’s inequal-

ity, we bound LHS (29.20) by:

≲

∫
(n)M[τ0 ,τ],[−U1 ,u]

{
(LPNΨ )2 + (X̆PNΨ )2

}
dϖ +

∫
(n)M[τ0 ,τ],[−U1 ,u]

(µYN trg/χ)2,dϖ

≲

∫ τ

τ′=τ0

QN (τ′ ,u)dτ′ +
∫ u

u′=−U1

QN (τ,u′)du′ +
∫ τ

τ′=τ0

∥∥∥µYN trg/χ∥∥∥2

L2
(

(n)̃Σ
[−U1 ,u]
τ′

) dτ′ .
(29.21)

The first two integrals on RHS (29.21) are ≲ RHS (29.2). Using the estimate (29.14) and straightforward applications of
Young’s inequality, we find that the last time integral on RHS (29.21), is bounded by:

≲ ϵ̊2 +
∫ τ

τ′=τ0

QN (τ′ ,u)dτ′ +
∫ τ

τ′=τ0


∫ τ′

τ′′=τ0

1
|τ′′ |

Q
1/2
[1,N ](τ

′′ ,u)dτ′′


2

dτ′

+
∫ τ

τ′=τ0


∫ τ′

τ′′=τ0

[
C

1/2
N +D

1/2
N

]
(τ′′ ,u)dτ′′


2

dτ′

+
∫ τ

τ′=τ0


∫ τ′

τ′′=τ0

1
|τ′′ |1/2

[
C

1/2
≤N−1 +D

1/2
≤N−1 +V

1/2
≤N +S

1/2
≤N

]
(τ′′ ,u)dτ′′


2

dτ′ .

(29.22)

We clarify that in deriving (29.22), we used that ln
(
|τ|−1

)
is square integrable on τ ∈ [τ0,0]. The first integral on

RHS (29.22) is ≲ RHS (29.2). Next, since the controlling quantities QM (τ,u), CM (τ,u), etc. are increasing in their
arguments, we deduce that the last two integrals on RHS (29.22) are ≲ RHS (29.2).

It remains for us to control the second integral on RHS (29.22). Again using the monotonicity of QM (τ,u), we see that
this integral is ≲

∫ τ

τ′=τ0
ln2

(
|τ′ |−1

)
Q[1,N ](τ′ ,u)dτ′ ≲

∫ τ

τ′=τ0

1
|τ|2/3 Q[1,N ](τ′ ,u)dτ′ . This final integral is ≲ RHS (29.2),

as desired. □
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29.5. Estimates for the most difficult top-order eikonal function-involving error integrals. In this section, we
control the most difficult eikonal function-involving terms appearing in the commuted wave equations of Prop. 22.3.
More precisely, the most difficult product is the first one (X̆Ψι)YN−1Y(A)trg/χ on RHS (22.3b). When we derive energy

estimates using the fundamental energy–null-flux identity (20.26), these difficult terms are multiplied by T̆YNΨι, where
the multiplier vectorfield T̆ is defined in (20.22). This leads to the following difficult error integrals:

∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
2X̆YNΨι

} {
(X̆Ψι)YN trg/χ

}
dϖ , (29.23a)∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LYNΨι

} {
(X̆Ψι)YN trg/χ

}
dϖ . (29.23b)

We bound the integral (29.23a) in Sect. 29.5.1 and the integral (29.23b), which we control via a further integration by parts
with respect to L, in Sect. 29.5.2. It turns out that these two integrals are the main ones driving top-order wave energy
blowup-rate, i.e., RHS (24.1a) with K = 0. We provide the main estimates for these two integrals in Lemmas 29.11 and
29.13.

29.5.1. Estimates that do not involve integration by parts. We begin our analysis of the integral (29.23a) with the following
lemma, which provides L2 estimates for the difficult product (X̆Ψι)YN trg/χ on RHS (22.3b). More precisely, in the
lemma, we handle the most difficult case, which is Ψι =R(+). The products corresponding to remaining wave-variables

{R(−),v
2,v3, s} are much easier to handle in the energy estimates because in these cases, we gain a smallness factor of

ε from the factor X̆Ψι; see (17.11).

Lemma 29.10 (L2 estimates for the most difficult product). Let N = Ntop, and let YN ∈ Y(N ), where Y(N ) is the set of
order N ℓt,u-tangential commutator operators from Def. 8.10. Then the following estimates hold for (τ,u) ∈ [τ0,τBoot) ×
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[−U1,U2]:

∥∥∥∥∥ 1
L(n)τ

(X̆R(+))YN trg/χ
∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)
≤ 2× 1.01
√

1.99

1
|τ|

Q
1/2
N (τ,u)

+
4× (1.01)2
√

1.99

1
|τ|

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)dτ′

+
C∗
|τ|

(
Q

(Partial)
N

)1/2
(τ,u) +

C∗
|τ|

∫ τ

τ′=τ0

1
|τ′ |

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+
Cε
|τ|

∫ τ

τ′=τ0

Q
1/2
[1,N ](τ

′ ,u)dτ′

+
Cε
|τ|

∫ τ

τ′=τ0

∫ τ′

τ′′=τ0

{ 1
|τ′′ |

Q
1/2
[1,N ] +C

1/2
N +D

1/2
N

}
(τ′′ ,u)dτ′′dτ′

+
Cε
|τ|

∫ τ

τ′=τ0

∫ τ′

τ′′=τ0

1
|τ′′ |1/2

{
C

1/2
≤N−1 +D

1/2
≤N−1

}
(τ′′ ,u)dτ′′dτ′

+
Cε
|τ|

∫ τ

τ′=τ0

∫ τ′

τ′′=τ0

1
|τ′′ |1/2

{
V

1/2
≤N +S

1/2
≤N

}
(τ′′ ,u)dτ′′dτ′

+
C
|τ|

∫ τ

τ′=τ0

{
C

1/2
N +D

1/2
N

}
(τ′ ,u)dτ′ +

C
|τ|

∫ τ

τ′=τ0

1
|τ′ |1/2

{
C

1/2
≤N−1 +D

1/2
≤N−1

}
(τ′ ,u)dτ′

+
C
|τ|

∫ τ

τ′=τ0

1
|τ′ |1/2

{
V

1/2
≤N +S

1/2
≤N

}
(τ′ ,u)dτ′

+
Cε
|τ|

Q
1/2
N (τ,u) +

C

|τ|1/2
Q

1/2
[1,N ](τ,u) +

C

|τ|3/2
Q

1/2
[1,N−1](τ,u)

+
C
|τ|

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′

+
C
|τ|

∫ τ

τ′=τ0

1
|τ′ |

∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
[1,N ](τ

′′ ,u)dτ′′dτ′

+
Cε
|τ|

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
[1,N ](τ

′ ,u)dτ′ +
Cϵ̊

|τ|3/2
.

(29.24)

Proof. We consider the pointwise estimate (22.18). In this proof, we sometimes silently use (16.16) and Cor. 17.2, which
together imply that the flow map factors (n)Λ̃ in (22.18) distort ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) norms only by overall factors of 1 +O(ε);

the O(ε) factors lead to small error terms on RHS (29.24).

We now use (18.1) and (18.15) to bound

∣∣∣∣∣ (n)̃Lµ
µ 1(n)̃Σ

[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

◦ (n)Λ̃(τ,u,x2,x3)
∣∣∣∣∣ ≤ 1.01

|τ| everywhere it appears

on RHS (22.18). In particular, we bound the first and third terms on RHS (22.18) (which are multiplied by boxed constants)

by 2(1.01)
|τ|

∣∣∣X̆YNR(+)

∣∣∣◦ (n)Λ̃(τ,u,x2,x3) and 4(1.01)2

|τ|
∫ τ

τ′=τ0

1
|τ′ |

∣∣∣X̆YNR(+)

∣∣∣◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ respectively. We now
take the norm ∥·∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) of the resulting pointwise inequality and use (16.18) and Cor. 17.2. Also using the sharpened

coerciveness estimate (20.59), we see that these two terms lead, respectively, to the presence of the two boxed-constant-

involving products
2× 1.01
√

1.99
· · · , 4× (1.01)2

√
1.99

· · · on RHS (29.24) plus some error terms with Cε factors. Similarly, since
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the C∗-multiplied terms on RHS (22.18) involve X̆YN Ψ⃗ (Partial), we can use Lemma 20.14 (specifically (20.54)) to bound their
∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) norms by the C∗-multiplied terms on the third line of RHS (29.24).

Next, we use (16.18) and (29.14) to bound the ∥·∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the term Cε
|τ|

∫ τ

τ′=τ0
µ|L/NY χ|◦(n)Λ̃(τ′ ,u,x2,x3)dτ′

on RHS (22.18). We find that this term is bounded by the sum of the double time integrals on the fifth through seventh
lines of RHS (29.24), plus as a few other terms on RHS (29.24).

Next, using (16.18), (17.12), (18.1), and Lemma 20.14, we see that the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norms of the time-integrals of

µ|YN (C,D)| ◦ (n)Λ̃, |Y≤N−1(C,D)| ◦ (n)Λ̃, and |Y≤N (Ω,S)| ◦ (n)Λ̃ on RHS (22.18) are bounded by the eighth and ninth
lines of RHS (29.24).

It remains for us to bound the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the terms Error ◦ (n)Λ̃(τ,u,x2,x3) on RHS (22.18), which

satisfy the pointwise bound (22.19). To handle the first term 1
|τ|

∣∣∣∣(YN )X
∣∣∣∣ (τ0,u,x

2,x3) on RHS (22.19), we note that in our

proof of (29.15a), we showed that
∥∥∥∥(YN )X

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≲ ∥∥∥∥(YN )X
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ0

) ≲ ϵ̊. Hence, the first term on RHS (22.19)

is ≲ ϵ̊
|τ| ≲ RHS (29.24) as desired. With the help of (18.1), Lemma 20.14, and the estimate (25.1b), we can bound the

∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the remaining terms on RHS (22.18) by ≲ RHS (29.24) by using a subset of the ideas we used

above; we refer to the proofs of [73, Lemma 14.8] and [50, Lemma 14.14] for more details. □

With the help of Lemma 29.10, we now establish the following lemma, which is the main result of Sect. 29.5.1.

Lemma 29.11 (Bounds for the most difficult error integrals in the wave equation energy estimates). Let N = Ntop, and

let YN ∈ Y(N ), where Y(N ) is the set of order N ℓt,u-tangential commutator operators from Def. 8.10. Then the following
estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

2

∣∣∣∣∣∣∣
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

(X̆YNR(+))(X̆R(+))YN trg/χdϖ

∣∣∣∣∣∣∣
≤ 4× 1.01

1.99

∫ τ

τ′=τ0

1
|τ′ |

QN (τ′ ,u)dτ′

+
8× (1.01)2

1.99

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

∫ τ′

τ′′=τ0

1
|τ′′ |

Q
1/2
N (τ′′ ,u)dτ′′dτ′

+C∗

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+C∗

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

∫ τ′

τ′′=τ0

1
|τ′′ |

(
Q

(Partial)
N

)1/2
(τ′′ ,u)dτ′′ dτ′

+ Error
(Top)
N (τ,u),

(29.25)

where Error
(Top)
N satisfies the estimate (29.2).

Moreover, for Ψ ∈ Ψ⃗ (Partial) = {R(−),v
2,v3, s}, we have the following less degenerate estimates:

2

∣∣∣∣∣∣∣
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

(X̆YNΨ )(X̆Ψ )YN trg/χdϖ

∣∣∣∣∣∣∣ ≲ Error
(Top)
N (τ,u), (29.26)

where Error
(Top)
N satisfies the estimate (29.2).



L. Abbrescia and J. Speck 201

Proof. We first prove (29.25). By Hölder’s inequality, we have:

2

∣∣∣∣∣∣∣
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

(X̆YNR(+))(X̆R(+))YN trg/χdϖ

∣∣∣∣∣∣∣
≤ 2

∫ τ

τ′=τ0

∥∥∥X̆YNR(+)

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) ∥∥∥∥∥ 1
L(n)τ

(X̆R(+))YN trg/χ
∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ .

(29.27)

Using the sharpened coerciveness bound (20.59), we find that:

RHS (29.27) ≤ 2
√

1.99

∫ τ

τ′=τ0

Q
1/2
N (τ′ ,u)

∥∥∥∥∥ 1
L(n)τ

(X̆R(+))YN trg/χ
∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ . (29.28)

We now insert the estimate (29.24) into RHS (29.28). The desired estimate (29.25) then follows from a series of standard
applications of Young’s inequality, as we now explain. We will control several representative terms in detail and leave
the remaining details to the reader. First, the τ′-integrals of the product of 2√

1.99
Q

1/2
N (τ′ ,u) and the first four terms on

RHS (29.24) are clearly bounded by the first four terms on RHS (29.25) as desired. Next, we observe that the τ′-integrals
of the product of 2√

1.99
Q

1/2
N (τ′ ,u) and the τ′-integrals on the eighth and ninth lines of RHS (29.24) are bounded in

magnitude by:

≲

∫ τ

τ′=τ0

{
1
|τ′ |1/3

Q
1/2
N (τ′ ,u)

} 1
|τ′ |2/3

∫ τ′

τ′′=τ0

[
C

1/2
N +D

1/2
N

]
(τ′′ ,u)dτ′′

 dτ′

+
∫ τ

τ′=τ0

{
1
|τ′ |1/3

Q
1/2
N (τ′ ,u)

} 1
|τ′ |2/3

∫ τ′

τ′′=τ0

1
|τ′′ |1/2

[
C

1/2
≤N−1 +D

1/2
≤N−1

]
(τ′′ ,u)dτ′′

 dτ′

+
∫ τ

τ′=τ0

{
1
|τ′ |1/3

Q
1/2
N (τ′ ,u)

} 1
|τ′ |2/3

∫ τ′

τ′′=τ0

1
|τ′′ |1/2

[
V

1/2
≤N +S

1/2
≤N

]
(τ′′ ,u)dτ′′

 dτ′

≲

∫ τ

τ′=τ0

1
|τ′ |2/3

QN (τ′ ,u)dτ′ +
∫ τ

τ′=τ0

1
|τ′ |4/3


∫ τ′

τ′′=τ0

[
C

1/2
N +D

1/2
N

]
(τ′′ ,u)dτ′′


2

dτ′

+
∫ τ

τ′=τ0

1
|τ′ |4/3


∫ τ′

τ′′=τ0

1
|τ′′ |1/2

[
C

1/2
≤N−1 +D

1/2
≤N−1

]
(τ′′ ,u)dτ′′


2

dτ′

+
∫ τ

τ′=τ0

1
|τ′ |4/3


∫ τ′

τ′′=τ0

1
|τ′′ |1/2

[
V

1/2
≤N +S

1/2
≤N

]
(τ′′ ,u)dτ′′


2

dτ′ .

(29.29)

Accounting for the term Error
(Top)
N (τ,u) on RHS (29.25), we conclude that RHS (29.29) ≲ RHS (29.25) as desired. Moreover,

since Q
1/2
[1,N ](τ,u), C1/2

N (τ,u), D1/2
N (τ,u), V 1/2

N (τ,u), and S
1/2
N (τ,u) are increasing in their arguments, the terms

involving double τ-integrals on the fifth through seventh lines of RHS (29.24) are bounded by the single τ-integrals on the
eighth and ninth lines of RHS (29.24) plus C

|τ|
∫ τ

τ′=τ0
ln

(
|τ′ |−1

)
Q

1/2
[1,N ](τ

′ ,u)dτ′ . Hence, the τ′-integral of the product of
2√

1.99
Q

1/2
N (τ′ ,u) and the double τ-integrals on the fifth through seventh lines of RHS (29.24) are bounded by RHS (29.29)

plus: ∫ τ

τ′=τ0

Q
1/2
N (τ′ ,u)

1
|τ′ |

∫ τ′

τ′′=τ0

ln
(
|τ′′ |−1

)
Q[1,N ](τ

′′ ,u)dτ′′ dτ′ . (29.30)

Using the trivial bound ln
(
|τ′′ |−1

)
≲ 1
|τ′′ |1/2 , we bound (29.30) by ≲

∫ τ

τ′=τ0
Q

1/2
N (τ′ ,u) 1

|τ′ |
∫ τ′

τ′′=τ0

1
|τ′′ |1/2 Q

1/2
[1,N ](τ

′′ ,u)dτ′′ dτ′ ,

which in turn is bounded by the term Error
(Top)
N (τ,u) on RHS (29.25) (more precisely, by the third-from-last term on

RHS (29.2)). As our last representative term, we note that the τ′-integral of the product of 2√
1.99

Q
1/2
N (τ′ ,u) and the term
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Cϵ̊
|τ|3/2 term on RHS (29.24) is:

≲

∫ τ

τ′=τ0

{
ϵ̊

|τ′ |5/4

}{
1
|τ′ |1/4

Q
1/2
N (τ′ ,u)

}
dτ′

≲ ϵ̊2
∫ τ

τ′=τ0

1
|τ′ |5/2

dτ′ +
∫ τ

τ′=τ0

1
|τ′ |1/2

QN dτ′

≲
ϵ̊2

|τ|3/2
+
∫ τ

τ′=τ0

1
|τ′ |2/3

QN dτ′ ≲ Error
(Top)
N (τ,u),

(29.31)

as desired.
To prove (29.26) for Ψ ∈ Ψ⃗ (Partial) = {R(−),v

2,v3, s}, we first use (17.11) to deduce that the magnitude of the integrand

on the LHS of (29.26) is ≲ ε
∣∣∣YNΨ ∣∣∣ ∣∣∣YN trg/χ∣∣∣. We can now argue as in the proof of (29.25), except that due to the

smallness factor ε, we do not have to carefully track any boxed constant-involving terms (we can relegate such terms to

the ε-multiplied terms in Error
(Top)
N (τ,u) on RHS (29.26)), and on RHS (29.26), we can bound all wave error terms in terms

of the full wave energies Q, i.e., without reference to the partial wave energies Q(Partial).
□

29.5.2. Estimates involving integration by parts with respect to (n)̃L. In this section, we bound the difficult top-order
integrals highlighted in (29.23b). The proof involves several rather technical steps, and we therefore provide some
preliminary lemmas before proving the main estimates in Lemma 29.16. We will control the error integrals (29.23b)
by integrating by parts with respect to the rough null vectorfield (n)̃L defined in (6.3). As we will see in the proof

of Lemma 29.16, the analysis fundamentally relies on the decomposition YN trg/χ = Y(A)YN−1trg/χ = Y(A)
(YN−1)X̃ −

Y(A)
(YN−1 )̃X, where (YN−1)X̃ is the partially modified quantity from Def. 19.2. The integrals involving (YN−1)X̃ are the

most difficult to estimate and are the ones that we treat via integration by parts with respect to (n)̃L, specifically by
invoking the identity (20.15).

Before bounding the error integrals on RHS (20.15), we first establish a preliminary lemma in which we handle the
most difficult part of the analysis.

Lemma 29.12 (Difficult top-order hypersurface L2 estimates related to integration by parts with respect to (n)̃L). Let
N = Ntop, and let YN−1 ∈ Y(N−1), where Y(N−1) is the set of order N − 1 ℓt,u-tangential commutator operators from

Def. 8.10. Let (YN−1)X̃ be the partially modified quantity defined by (19.7a). The following estimates hold for (τ,u) ∈
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[τ0,τBoot)× [−U1,U2]:∥∥∥∥∥∥ 1
√
µ

(X̆R(+))
(n)̃L(YN−1)X̃

∥∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≤ 2.89
1
|τ|

Q
1/2
N (τ,u)

+
C∗
|τ|

(Q(Partial)
N )1/2(τ,u) +

Cε
|τ|

Q
1/2
[1,N ](τ,u) +

C

|τ|1/2
Q

1/2
N (τ,u)

+
C
|τ|

Q
1/2
[1,N−1](τ,u) +

Cϵ̊

|τ|1/2
,

(29.32a)

∥∥∥∥∥∥ 1
√
µ

(X̆R(+))
(YN−1)X̃

∥∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≤ 2.89
1
|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
N (τ′ ,u)dτ′

+
C∗
|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2

(Q(Partial)
N )1/2(τ′ ,u)dτ′

+
Cε

|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′

+C
1
|τ|1/2

∫ τ

τ′=τ0

Q
1/2
[1,N ](τ

′ ,u)dτ′

+C
∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′

+
C

|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ ,u)dτ′ +
Cϵ̊

|τ|1/2
.

(29.32b)

Moreover, we have the following less precise estimates:∥∥∥∥(n)̃L(YN−1)X̃
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≲ 1
|τ|1/2

Q
1/2
[1,N ](τ,u) + ϵ̊, (29.33a)

∥∥∥∥(YN−1)X̃
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≲ ∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ](τ

′ ,u)dτ′ + ϵ̊ ≲Q
1/2
[1,N ](τ,u) + ϵ̊. (29.33b)

Proof. In the proof, we sometimes silently use (16.16) and Cor. 17.2, which together imply that the flow map factors (n)Λ̃

in, for example, (22.31a), distort ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norms only by overall factors of 1 +O(ε); the O(ε) factors lead to small

error terms on the RHS of our estimates.

Proof of (29.32a): In view of the above remarks, to simplify the notation, in the following discussion, we will sometimes
suppress the factors of (n)Λ̃ in (22.31a). We start by multiplying (22.31a) by 1√

µ
X̆R(+). We now consider the product

generated by the first term on RHS (22.31a). Multiplying both sides of (22.28) by
√
µ

2 , we deduce:

1
2L(n)τ

1
√
µ
G0
LLX̆R(+) =

(n)̃Lµ
√
µ

+O(ε)
√
µ

|τ|
. (29.34)

Using (29.34) to substitute for the product generated by 1√
µ
X̆R(+) times the first term on RHS (22.31a), we pointwise

bound this difficult product as follows, where (n)N[τ0,τBoot] is the set from (18.12):

≤
∣∣∣∣∣∣ (n)̃Lµ

µ
1(n)̃Σ

[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣∣ · ∣∣∣√µ∆/YN−1R(+)

∣∣∣
+

∣∣∣∣∣∣ (n)̃Lµ
µ

1(n)̃Σ
[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

∣∣∣∣∣∣ · ∣∣∣√µ∆/YN−1R(+)

∣∣∣+O(ε)
1
|τ|

∣∣∣√µ∆/YN−1R(+)

∣∣∣ . (29.35)

Using (18.16) and the crude estimate |(n)̃Lµ| ≲ 1 (see (17.13)), we deduce the pointwise bound

∣∣∣∣∣ (n)̃Lµ
µ 1(n)̃Σ

[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

∣∣∣∣∣ ≲
1. Hence, using the pointwise comparison estimate (13.11b), we see that the second product on RHS (29.35) is pointwise
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bounded by ≲
∣∣∣√µd/Y [N−1,N ]R(+)

∣∣∣. Similarly, we find that the third product on RHS (29.35) is pointwise bounded by

≲ ε
|τ|

∣∣∣√µd/Y [N−1,N ]R(+)

∣∣∣. From these pointwise bounds and (20.53), we find that the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norms of the

second and third terms in (29.35) are ≤ the sum of the third, fourth, and fifth terms on RHS (29.32a), as desired. Next, we
use (18.1), (18.15), (13.11b), and Cor. 17.2 to pointwise bound the first term in (29.35) as follows:∣∣∣∣∣∣ (n)̃Lµ

µ
1(n)̃Σ

[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣∣ · ∣∣∣√µ∆/YN−1R(+)

∣∣∣ ≤ √2 {1 +O♦(α̊)}
1.01
|τ|

√√√ 3∑
A=2

∣∣∣√µd/ Y(A)YN−1R(+)

∣∣∣2
g/

+
C
|τ|

∣∣∣√µd/YN−1R(+)

∣∣∣
g/
.

(29.36)

From (29.36), (20.53) and in particular its implication:∥∥∥∥∥∥∥∥
√√√ 3∑
A=2

∣∣∣√µd/ Y(A)YN−1R(+)

∣∣∣2
g/

∥∥∥∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) ≤
√

2
0.49

Q
1/2
N (τ,u), (29.37)

our assumption that α̊ and ε are sufficiently small, and the inequality
√

2× 1.01×
√

2
0.49 < 2.886, we deduce that the

∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the first term in (29.35) is ≤ the sum of the 2.89 -multiplied term on RHS (29.32a) and the

C
|τ|Q

1/2
[1,N−1](τ,u) term. We have therefore obtained the desired estimates for the product of 1√

µ
X̆R(+) and the first term

on RHS (22.31a). Combining similar but simpler arguments with (20.58) and the pointwise bound 1
µ1/2 |X̆R(+)| ≲ 1

|τ|1/2

implied by (17.10) and (18.1), we find that the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norms of the product of 1√
µ
X̆R(+) and the terms

C∗

∣∣∣∣∆/YN−1Ψ⃗ (Partial)

∣∣∣∣ and Cε ∣∣∣∣P [1,N+1]Ψ⃗

∣∣∣∣ on RHS (22.31a) are bounded by the sum of the last five terms on RHS (29.32a).

Finally, using the pointwise bound 1
µ1/2 |X̆R(+)| ≲ 1

|τ|1/2 noted above, (20.58), (25.1b), (18.1), and the fact that the QM (τ,u)

are increasing in their arguments, we bound the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the product of 1√
µ
X̆R(+) and the last term

C
∣∣∣P [1,N ]γ

∣∣∣ on RHS (22.31a), by ≲ ϵ̊ 1
|τ|1/2 + 1

|τ|1/2
∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N ](τ

′ ,u)dτ′ ≲ ϵ̊ 1
|τ|1/2 + 1

|τ|1/2 Q
1/2
[1,N ](τ,u). We have

therefore proved (29.32a).

Proof of (29.32b): We start by multiplying (22.31b) by 1√
µ
X̆R(+). We now focus on the most difficult product, which is

generated by the second term on RHS (22.31b), i.e.,

1
2

{∣∣∣∣∣∣ 1
L(n)τ

1
√
µ
G0
LLX̆R(+)

∣∣∣∣∣∣ ◦ (n)Λ̃(τ,u,x2,x3)
}∫ τ

τ′=τ0

∣∣∣∆/YN−1R(+)

∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ . (29.38)

Next, we note that the same reasoning we used to prove (22.28) also yields the following bound:

1
2

1
L(n)τ

1
√
µ
G0
LLX̆R(+) =

(n)̃Lµ
√
µ

+O(ε)
1
|τ|1/2

. (29.39)

Using (29.39), we substitute
∣∣∣∣ (n)̃Lµ√

µ

∣∣∣∣+O(ε) 1
|τ|1/2 for the first product

∣∣∣∣ 1
2L(n)τ

1√
µ
G0
LLX̆R(+)

∣∣∣∣ in (29.38). Next, we bound the

∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the product generated by the factor O(ε) 1
|τ|1/2 by using (13.11b), (16.18), (18.1), and (20.53). We

find that these error terms are ≤ the Cε-multiplied term on the third line of RHS (29.32b). Next, we use the triangle
inequality, (18.1), (18.15), (18.16), and the crude estimate |(n)̃Lµ| ≲ 1 noted earlier to deduce the following pointwise bound:∣∣∣∣∣∣ (n)̃Lµ

√
µ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ (n)̃Lµ
√
µ

1(n)̃Σ
[−U1 ,u]
τ ∩(n)N[τ0 ,τBoot]

∣∣∣∣∣∣+

∣∣∣∣∣∣ (n)̃Lµ
√
µ

1(n)̃Σ
[−U1 ,u]
τ \(n)N[τ0 ,τBoot]

∣∣∣∣∣∣
≤ 1.01
|τ|1/2

+C.

(29.40)
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From (29.40) and (18.1), it follows that
∣∣∣∣ (n)̃Lµ√

µ

∣∣∣∣◦ (n)Λ̃(τ,u,x2,x3)×
∫ τ

τ′=τ0

∣∣∣∆/YN−1R(+)

∣∣∣◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ is pointwise
bounded by:

≤ 1.01
|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2

∣∣∣√µ∆/YN−1R(+)

∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+C
∫ τ

τ′=τ0

1
|τ′ |1/2

∣∣∣√µ∆/YN−1R(+)

∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .
(29.41)

Using (13.11b), (16.18), and (20.53), we find that the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of the last term on RHS (29.41) is bounded by

the terms on the next-to-last line of RHS (29.32b). Next, we use (13.11b) and Cor. 17.2 to deduce the following pointwise
bound for the first term on RHS (29.41):

1.01
|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2

∣∣∣√µ∆/YN−1R(+)

∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

≤ 1.01
|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2


√√√

2[1 +O♦(α̊)]
3∑

A=2

∣∣∣√µd/ Y(A)YN−1R(+)

∣∣∣2
g/

 ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′

+
C

|τ|1/2

∫ τ

τ′=τ0

1
|τ′ |1/2

∣∣∣√µd/YN−1R(+)

∣∣∣
g/
◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ .

(29.42)

By combining the same arguments we used to bound the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of RHS (29.36) with (16.18) and Cor. 17.2,

we find that when α̊ and ε are sufficiently small, the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) norm of RHS (29.42) is ≤ the sum of the 2.89 -

multiplied term on RHS (29.32b) and the next-to-last term on RHS (29.32b). We have therefore obtained the desired bound
for the ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) norm of the product of 1√
µ
X̆R(+) and the first term on RHS (22.31b). Similarly, by combining

the pointwise bound 1
µ1/2 |X̆R(+)| ≲ 1

|τ|1/2 noted above with (16.18), (18.1), and (20.54), we bound the ∥ · ∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

)
norm of the product of 1

µ1/2 X̆R(+) and the term C∗
∫ τ

τ′=τ0

∣∣∣∣∆/YN−1Ψ⃗ (Partial)

∣∣∣∣ ◦ (n)Λ̃(τ′ ,u,x2,x3)dτ′ from RHS (22.31b)

by ≤ the sum of the C∗-multiplied term on RHS (29.32b) and the next-to-last term on RHS (29.32b). Finally, using
the bound 1

µ1/2 |X̆R(+)| ≲ 1
|τ|1/2 noted above, (16.18), and (18.1), we bound the ∥ · ∥

L2
(

(n)̃Σ
[−U1 ,u]
τ

) norms of the product

of 1
µ1/2 X̆R(+) and the terms on the last line of RHS (22.31b) by ≤ Cε

|τ|1/2
∫ τ

τ′=τ0

1
|τ′ |1/2

∥∥∥∥√µPN+1Ψ⃗

∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) dτ′

+ C
|τ|1/2

∫ τ

τ′=τ0

∥∥∥P [1,N ]γ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ

) dτ′ , and using (20.53), (20.58), (25.1b), and the fact that the QM (τ,u) are increasing

in their arguments, we conclude that these time integrals are ≤ the sum of the non-boxed-constant-multiplied terms on
RHS (29.32b) as desired.

Proof of (29.33a)–(29.33b): These estimates can be proved using only a subset of the arguments we gave above; we omit
the details, which are simpler since they do not involve sharp constants or delicate decompositions as in (29.34), and the
LHSs of the estimates are less degenerate by a factor of

√
µ compared to (29.32a)–(29.32b). □

With the help of the preliminary estimates provided by Lemma 29.12, we are now ready to bound the most difficult
error integral integrals that arise when we integrate by parts with respect to (n)̃L using the identity (20.15). Specifically, we
bound the first two error integrals on RHS (20.15).

Lemma 29.13 (Estimates for difficult top-order error integrals related to integration by parts with respect to (n)̃L). Let
N = Ntop, and let YN ∈ Y(N ), where Y(N ) is the set of order N ℓt,u-tangential commutator operators from Def. 8.10. Let

YN−1 ∈ Y(N−1) be such that YN = Y(A)YN−1 for some Y(A) ∈ Y , and let (YN−1)X̃ be the corresponding partially modified
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quantity defined by (19.7a). Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∣∣∣∣∣∣∣
∫

(n)M[τ0 ,τ],[−U1 ,u]

(1 + 2µ)(Y(A)YNR(+))(X̆R(+))
(n)̃L(YN−1)X̃ dϖ

∣∣∣∣∣∣∣
≤ 4.13

∫ τ

τ′=τ0

1
|τ′ |

QN (τ′ ,u)dτ′

+C∗

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+ Error
(Top)
N (τ,u),

(29.43)

∣∣∣∣∣∣
∫

(n)̃Σ
[−U1 ,u]
τ

(1 + 2µ)(Y(A)YNR(+))(X̆R(+))
(YN−1)X̃ dϖ

∣∣∣∣∣∣
≤ 4.13

1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
N (τ′ ,u)dτ′

+C∗
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+ Error
(Top)
N (τ,u),

(29.44)

where Error
(Top)
N (τ,u) satisfies (29.2).

Moreover, for every Ψ ∈ Ψ⃗ (Partial) = {R(−),v
2,v3, s}, we have the following less degenerate estimates:∣∣∣∣∣∣∣

∫
(n)M[τ0 ,τ],[−U1 ,u]

(1 + 2µ)(Y(A)YNΨ )(X̆Ψ )(n)̃L(YN−1)X̃ dϖ

∣∣∣∣∣∣∣ ≲ Error
(Top)
N (τ,u), (29.45)∣∣∣∣∣∣

∫
(n)̃Σ

[−U1 ,u]
τ

(1 + 2µ)(Y(A)YNΨ )(X̆Ψ )(YN−1)X̃ dϖ

∣∣∣∣∣∣ ≲ Error
(Top)
N (τ,u). (29.46)

Proof. We first prove (29.43). We start by noting the following estimates, which follow from the bootstrap assumptions:
|X̆R(+)| ≲ 1, |µ| ≲ 1. Also using (13.1), Cor. 17.2, (18.1), and the Cauchy–Schwarz inequality for integrals, we bound
LHS (29.43) by:

≤ (1 +C♦α̊)
∫ τ

τ′=τ0

∥∥∥√µd/YNR(+)

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) ∥∥∥∥∥∥ 1
√
µ

(X̆R(+))
(n)̃L(YN−1)X̃

∥∥∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′

+C
∫ τ

τ′=τ0

∥∥∥√µd/YNR(+)

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) ∥∥∥∥(n)̃L(YN−1)X̃
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ .

(29.47)

The desired estimate (29.43) now follows from inserting (29.32a) and (29.33a) into the relevant factors in the integrals
on RHS (29.47) and using Young’s inequality in the form ab ≤ 1

f a
2 + f b2 (for appropriately chosen f ) as well as the

coerciveness estimate
∥∥∥√µd/YNR(+)

∥∥∥
L2(n)̃Σ

[−U1 ,u]
τ′ )

≤ 1√
0.49

Q
1/2
N (τ′ ,u) (see (20.53)). We clarify that the factor 4.13 >

2.89√
0.49

stems from the factor 2.89 in the first term on RHS (29.32a), the factor 1√
0.49

in the previous sentence, and our

assumed smallness of α̊. We further clarify that the integral C
∫ τ

τ′=τ0
ϵ̊ 1
|τ′ |1/2 Q

1/2
N (τ′ ,u)dτ′ , which is generated by the last

terms on RHSs (29.32a) and (29.32b), is ≲
∫ τ

τ′=τ0

(
ϵ̊2

|τ′ |1/3 + 1
|τ|2/3 QN (τ′ ,u)

)
dτ′ ≲ ϵ̊2 + Error

(Top)
N (τ,u) ≲ Error

(Top)
N (τ,u).

The estimate (29.44) follows from arguments similar to the ones we used in proving (29.43), but we now rely on (29.32b)
and (29.33b) in place of (29.32a) and (29.33a). We clarify that the last term on RHS (29.32b) generates the error term
Cϵ̊ 1
|τ|1/2 Q

1/2
[1,N ](τ,u), which, for any ς ∈ (0,1], by Young’s inequality, we can bound by ≤ Cς−1ϵ̊2 1

|τ| +CςQ[1,N ](τ,u) ≲

Error
(Top)
N (τ,u). We omit the remaining details.
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The estimates (29.45)–(29.46) follow from applying similar arguments that rely on the bounds (29.33a)–(29.33b). The
desired estimates are in fact much simpler to deduce since there is an overall gain in smallness stemming from the bound

|X̆Ψ | ≲ ε for Ψ ∈ Ψ⃗ (Partial), which we proved in (17.11); we omit the details. □

Before proving the main estimates of this section, we first bound the remaining error integrals on the right-hand side
of the integration by parts identity (20.15). The estimates are much easier to derive compared to the ones we established
in Lemma 29.13. We split the analysis into two lemmas. In the next lemma, we bound the error integral involving the
term Error on RHS (20.15).

Lemma 29.14 (Estimates for easy error integrals that arise during integration by parts with respect to (n)̃L). Let N =Ntop,

and let YN ∈ Y(N ), where Y(N ) is the set of order N ℓt,u-tangential commutator operators from Def. 8.10. Let YN−1 ∈
Y(N−1) be such that YN = Y(A)YN−1 for some Y(A) ∈ Y . Let Ψ ∈ {R(+),R(−),v

2,v3, s}, let (YN−1)X̃ be the partially

modified quantity defined by (19.7a), and let Error[Ψ ; (YN−1)X̃ ;YN ;Y(A)] be the error term defined in (20.16) (with Ψ in

the role of ϕ and (YN−1)X̃ in the role of η). Then the following estimate holds for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∫
(n)M[τ0 ,τ),[−U1 ,u]

∣∣∣∣Error[Ψ ; (YN−1)X̃ ;YN ;Y(A)]
∣∣∣∣ dϖ ≲

∫ τ

τ′=τ0

1
|τ′ |1/2

Q[1,N ](τ
′ ,u)dτ′ + ϵ̊2. (29.48)

In particular, the error integral on LHS (29.48) is of type Error
(Top)
N , i.e., it satisfies the bound (29.2).

Proof. First, using the identity trg/
(Y(A))π/ = (g/−1)αβY(A)gαβ + 2Π/ λ

κ ∂λY
κ
(A), Cor. 5.7, Prop. 9.1, the commutator estimate

(13.7a), (18.1), (18.31), and the bootstrap assumptions, we deduce the following pointwise bound for the error term defined
in (20.16): ∣∣∣∣Error[Ψ ; (YN−1)X̃ ;YN ;Y(A)]

∣∣∣∣ ≲ 1
|τ|1/2

∣∣∣√µPN+1Ψ
∣∣∣ ∣∣∣∣(YN−1)X̃

∣∣∣∣ . (29.49)

From (29.49) and the Cauchy–Schwarz inequality, we deduce that:∫
(n)M[τ0 ,τ),[−U1 ,u]

∣∣∣∣Error[Ψ ; (YN−1)X̃ ;YN ;Y(A)]
∣∣∣∣ dϖ (29.50)

≲

∫ τ

τ′=τ0

1
|τ′ |1/2

∥∥∥√µPN+1Ψ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) ∥∥∥∥(YN−1)X̃
∥∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′ . (29.51)

From (20.53), (29.33b), and Young’s inequality, we conclude that RHS (29.50) ≲ RHS (29.48) as desired. □

The hypersurface error integrals that we treat in the next lemma appear on RHS (20.15). The integrals involve the
Y(A)-derivatives of the rough time function and are therefore new compared to earlier works on shocks, such as [24,52,73].

Lemma 29.15 (Estimates for additional hypersurface error terms related to integration by parts with respect to (n)̃L).
Assume that N = Ntop, and let ς ∈ (0,1]. Let Ψ ∈ {R(+),R(−),v

2,v3, s}, and let (YN−1)X̃ be the partially modified
quantity defined by (19.7a). Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∫

(n)̃Σ
[−U1 ,u]
τ

∣∣∣∣(Y(A)
(n)τ)(1 + 2µ)X̆Ψ ((n)̃LYNΨ )(YN−1)X̃

∣∣∣∣ dϖ ≲ ε
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

Q[1,N ](τ
′ ,u)dτ′

+ εQN (τ,u) + ϵ̊2 1
|τ|
,

(29.52)

∫
(n)̃Σ

[−U1 ,u]
τ0

∣∣∣∣(Y(A)
(n)τ)(1 + 2µ)X̆Ψ ((n)̃LYN Ψ⃗ )(YN−1)X̃

∣∣∣∣dϖ ≲ ϵ̊2 1
|τ0|

. (29.53)

In particular, the error integrals on LHSs (29.52)–(29.53) are of type Error
(Top)
N , i.e., they satisfy the bound (29.2).

Proof. We first prove (29.52). We first use the bootstrap assumptions, Lemma 13.1, (15.11b), Cor. 17.2, and (18.1) to

pointwise bound the integrand on LHS (29.52) by ≤ ε 1
|τ|1/2

∣∣∣√µLPNR(+)

∣∣∣ ∣∣∣∣(YN−1)X̃
∣∣∣∣. From this estimate, the Cauchy–

Schwarz inequality, (20.53), the first inequality in (29.33b), and Young’s inequality, it follows that |LHS (29.52)| ≲ ϵ̊2 1
|τ| +
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εQN (τ,u) + ε 1
|τ|1/2 Q

1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N ](τ

′ ,u)dτ′ , which is in turn bounded by RHS (29.2), i.e., this term is of

type Error
(Top)
N (τ,u) as desired.

To prove (29.53), we note that the integral on LHS (29.53) is a data integral that, by virtue of the arguments we used to
prove (29.52), but now with τ0 in the role of τ, can be bounded by ≲ ϵ̊2 1

|τ0 |
+Q[1,N ](τ0,u). Using (24.7), we see that

the RHS of the previous expression is ≲ ϵ̊2 1
|τ0 |

+ ϵ̊2 ≲ ϵ̊2 1
|τ0 |

, which, in view of the fact that |τ0| ≥ |τ| for τ ∈ [τ0,τBoot),
is bounded by RHS (29.2) as desired.

□

We are now ready to combine the results of the lemmas established above to obtain the main estimates for the
top-order error integrals highlighted in (29.23b).

Lemma 29.16 (The main estimates for difficult top-order spacetime error integrals requiring integration by parts in (n)̃L).
Let N = Ntop, and let YN ∈ Y(N ), where Y(N ) is the set of order N ℓt,u-tangential commutator operators from Def. 8.10.
Then the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∣∣∣∣∣∣∣

∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

(1 + 2µ)(LYNR(+))(X̆R(+))YN trg/χdϖ

∣∣∣∣∣∣∣
≤ 4.13

∫ τ

τ′=τ0

1
|τ′ |

QN (τ′ ,u)dτ′

+ 4.13
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
N (τ′ ,u)dτ′

+C∗

∫ τ

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ ,u)

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+C∗
1
|τ|1/2

Q
1/2
N (τ,u)

∫ τ

τ′=τ0

1
|τ′ |1/2

(
Q

(Partial)
N

)1/2
(τ′ ,u)dτ′

+ Error
(Top)
N (τ,u),

(29.54)

where Error
(Top)
N (τ,u) satisfies (29.2).

Moreover, for every Ψ ∈ Ψ⃗ (Partial) = {R(−),v
2,v3, s}, we have the following less degenerate estimates:∣∣∣∣∣∣∣

∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

(1 + 2µ)(LYNΨ )(X̆Ψ )YN trg/χdϖ

∣∣∣∣∣∣∣ ≲ Error
(Top)
N (τ,u), (29.55)

where Error
(Top)
N (τ,u) satisfies (29.2).

Proof. We first prove (29.54). The operator YN on LHS (29.54) is of the form YN = Y(A)YN−1 for some A ∈ {2,3}. We
now use (19.7a) to decompose the factor YN trg/χ on LHS (29.54) as follows: YN trg/χ = Y(A)YN−1trg/χ = Y(A)

(YN−1)X̃ −
Y(A)

(YN−1 )̃X. We insert this decomposition into LHS (29.54) and will handle each of the two integrals separately, starting

with the one generated by the piece Y(A)
(YN−1 )̃X, which is easier. Specifically, the pointwise estimate (22.5b), the estimate

|X̆R(+)| ≲ 1 (see (17.12)), and Def. 22.1 imply that the product (X̆R(+))Y(A)
(YN−1 )̃X is of type Harmless

[1,N ]
(Wave). Hence, the es-

timate (29.6) implies that the corresponding integral −
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LYNR(+)

} {
(X̆R(+))Y(A)

(YN−1 )̃X
}

dϖ

is of type Error
(Top)
N (τ,u) as desired.

To complete the proof of (29.54), it remains for us to bound the following spacetime integral:∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LYNR(+)

} {
(X̆R(+))Y(A)

(YN−1)X̃
}

dϖ . (29.56)
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To bound (29.56), we first integrate by parts using the identity (20.15) with R(+) in the role of ϕ, (YN−1)X̃ in the role of

η, and YN in the role of PN . The first two integrals on RHS (20.15), namely

∫
(n)M[τ0 ,τ),[−U1 ,u]

(1 + 2µ)(X̆R(+))(Y(A)YNR(+))
(n)̃L(YN−1)X̃ dϖ ,

−
∫

(n)̃Σ
[−U1 ,u]
τ

(1 + 2µ)(X̆R(+))(Y(A)YNR(+))
(YN−1)X̃ dϖ,

are the main ones, and in (29.43)–(29.44), we showed that they are bounded in magnitude by ≤ RHS (29.54) as de-

sired. The third and fifth integrals on RHS (20.15), namely
∫

(n)̃Σ
[−U1 ,u]
τ

(Y(A)
(n)τ)(1+2µ)(X̆R(+))((n)̃LPNR(+))(YN−1)X̃ dϖ

and −
∫

(n)̃Σ
[−U1 ,u]
τ0

(Y(A)
(n)τ)(1 + 2µ)(X̆R(+))((n)̃LPNR(+))(YN−1)X̃ dϖ , were shown to be of type Error

(Top)
N (τ,u) in

Lemma 29.15. The last integral on RHS (20.15), whose integrand is Error[R(+); (YN−1)X̃ ;YN ;Y(A)], was shown to be

of type Error
(Top)
N (τ,u) in Lemma 29.14.

The estimate (29.55) can be proved using nearly identical arguments. The difference compared to (29.54) is that the
integrand factor X̆Ψ on LHS (29.55) satisfies the pointwise bound |X̆Ψ | ≲ ε (see (17.11)); this provides a smallness factor

that allows us to relegate all the terms to the error term Error
(Top)
N (τ,u) on RHS (29.55).

□

29.6. Estimates for error integrals involving a loss of one derivative. Prop. 24.1 states that the wave energies become
less singular by a factor of |τ|2 at every level of descent below top-order, until one reaches a level where the energies
are bounded. Our proof of this “descent scheme” for below-top-order estimates relies on bounding the difficult error
integrals generated by the YN trg/χ-involving products on RHSs (22.3a)–(22.3b) in a different way. That is, below top-order,

we control the YN trg/χ factors via transport equation estimates that lose one derivative; this is very different compared
to, for example, the top-order error integrals we bounded in Lemmas 29.11 and 29.16, where we could not afford any
derivative loss. While losing one derivative is permissible below top-order, this approach couples the below top-order
energy estimates to the top-order ones. The main merit of this approach is that it leads to estimates that are less singular
with respect to powers of |τ|, which ultimately allows us to implement the energy estimate descent scheme. In the next
lemma, we prove the main estimates for below top-order error integrals that lose one derivative.

Lemma 29.17 (Estimates for wave equation error integrals involving a loss of one derivative). Assume that 2 ≤ N ≤ Ntop

and Ψ ∈ Ψ⃗ = {R(+),R(−),v
2,v2, s}, and recall that T̆ is the multiplier vectorfield defined in (20.22). Then the following

estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

∫
(n)M[τ0 ,τ],[−U1 ,u]

1

L(n)τ

∣∣∣T̆PN−1Ψ
∣∣∣
∣∣∣∣∣∣∣∣


(X̆Ψ )PN−1trg/χ
(d/ #Ψ ) ·µd/ PN−2trg/χ

c−2XA(d/ #Ψ ) ·µd/ PN−2trg/χ


∣∣∣∣∣∣∣∣
g/

dϖ

≲

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ ,u)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
N (τ′′ ,u)dτ′′dτ′

+ Error
(Sub-critical)
N−1 (τ,u),

(29.57)

where Error
(Sub-critical)
N−1 (τ,u) satisfies (29.5) with N − 1 in the role of M .

Proof. We prove (29.57) only for the term generated by the first entry (X̆Ψ )PN−1trg/χ on LHS (29.57); the remaining
terms on the LHS are easier to estimate because they enjoy an additional power of µ, and we omit the details. Since
T̆PN−1Ψ = (1 + 2µ)LPN−1Ψ + 2X̆PN−1Ψ , we can use (18.9b), (20.53) (25.1b), the bootstrap assumptions, Young’s
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inequality, and the fact that the QM (τ,u) are increasing in their arguments to deduce:∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

∣∣∣T̆PN−1Ψ
∣∣∣ ∣∣∣(X̆Ψ )PN−1trg/χ

∣∣∣ dϖ

≲

∫ τ

τ′=τ0

∥∥∥LPN−1Ψ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) +
∥∥∥X̆PN−1Ψ

∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

)∥∥∥PN−1trg/χ
∥∥∥
L2

(
(n)̃Σ

[−U1 ,u]
τ′

) dτ′

≲

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ ,u)

ϵ̊+
∫ τ′

τ′′=τ0

Q
1/2
[1,N ](τ

′′ ,u)

|τ′′ |1/2
dτ′′

 dτ′

≲

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ ,u)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
N (τ′′ ,u)dτ′′ dτ′

+
∫ τ

τ′=τ0

1
|τ′ |1/2

Q[1,N−1](τ
′ ,u)dτ′ + ϵ̊2

∫ τ

τ′=τ0

1
|τ′ |1/2

dτ′ .

(29.58)

Noting that the last term on RHS (29.58) is ≲ ϵ̊2, we conclude that RHS (29.58) ≲ RHS (29.57) as desired.
□

29.7. Proof of Prop. 29.1. We now prove the main integral inequalities for the wave-variables, i.e., Prop. 29.1.

Proof of (29.1): We first prove the top-order estimate (29.1). Let N = Ntop and Ψ ∈ {R(+),R(−),v
2,v3, s}, and let G

denote µ times the inhomogeneous term in the geometric wave equation (2.22) satisfied by Ψ , i.e. µ2gΨ = G. Fix any

PN ∈ P(N ), where P(N ) is defined in Def. 8.10, and let (τ,u) ∈ [τ0,τBoot)× [−U1,U2]. The starting point of the proof is

the fundamental energy–null-flux identity (20.26) with f
def= PNΨ :

E(Wave)[PNΨ ](τ,u) +F(Wave)[PNΨ ](τ,u) +K[PNΨ ](τ,u)

= E(Wave)[PNΨ ](τ0,u) +F(Wave)[PNΨ ](τ,−U1)

+
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

(T̆ )B[PNΨ ]dϖ

−
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LPNΨ + 2X̆PNΨ

}
µ2gPNΨ dϖ .

(29.59)

We will show that RHS (29.59) ≤ RHS (29.1), which is the difficult step. After that, we can take the supremum of the
resulting estimate over the relevant values of τ and u, then take the maximum over Ψ ∈ {R(+),R(−),v

2,v3, s} and over

all PN ∈ P(N ), and appeal to definitions (20.43a)–(20.43c), finally concluding the desired top-order estimate (29.1).
To complete the proof of (29.1), it remains for us to show that RHS (29.59) ≤ RHS (29.1). In the rest of the proof,

Error
(Top)
N (τ,u) denotes a term of type Error

(Top)
N (τ,u) on RHS (29.1), i.e., any term that satisfies (29.2). First, using (24.7), we

see that the initial data energy and null-flux terms on RHS (29.59) satisfy E(Wave)[PNΨ ](τ0,u)+F(Wave)[PNΨ ](τ,−U1) ≲

ϵ̊2 = Error
(Top)
N (τ,u) as desired.

Next, using Lemma 29.6, we see that the (T̆ )B[PNΨ ]-involving integral on RHS (29.59) is type Error
(Sub-critical)
N (τ,u)

(and hence of type Error
(Top)
N (τ,u)) as desired.

It remains for us to bound the last integral −
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LPNΨ + 2X̆PNΨ

}
µ2gPNΨ dϖ on

RHS (29.59). We split the argument into Steps 1, 2, 3A, and 3B. We stress that none of the error integrals we have treated
thus far and none of the error integrals that we treat in Steps 1, 2, or 3B generate the boxed-constant-multiplied integrals or
C∗-multiplied integrals on RHS (29.1); they are generated only in Step 3A.

Step 1: the case PN <
{
YN−1L, YN

}
. If PN is any string of Pu-tangential commutation vectorfields other than YN−1L

or YN , then by substituting (22.3c) for µ2gPNΨ on RHS (29.59) and using Lemma 29.4 to handle the Harmless
[1,Ntop]
(Wave)

terms and Lemma 29.5 to handle the terms generated by G, we find that the corresponding error integrals are of type

Error
(Top)
N (τ,u). In total, we have shown that, except for the cases of PN = YN−1L or PN = YN , all error integrals on
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RHS (29.59) are of type Error
(Top)
N (τ,u). In particular, none of the integrals handled thus far generate the boxed-constant-

multiplied integrals or C∗-multiplied integrals on RHS (29.1).

Step 2: the case PN = YN−1L. We now consider the last integral on RHS (29.59) in the case PN = YN−1L. We use
(22.3a) to substitute for µ2gPNΨ on RHS (29.59). All error integrals except for the one generated by the first product on
RHS (22.3a) can be handled using the same arguments given in Step 1. The error integral generated by the first product
on RHS (22.3a) is: ∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LYNΨ + 2X̆YNΨ

}
(d/ ♯Ψ ) ·µd/YN−1trg/χdϖ , (29.60)

and the estimate (29.20) implies that the integral is also of type Error
(Top)
N (τ,u).

Step 3A: the case PN = YN and Ψ = R(+). We now consider the most difficult case, PN = YN and Ψ = R(+). We

substitute RHS (22.3b) for µ2gYNΨ on RHS (29.59). All error integrals except for the ones generated by the first two
products on RHS (22.3b) can be handled using the same arguments given in Step 1. The error integral generated by the
second product on RHS (22.3a) is:∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LYNR(+) + 2X̆YNR(+)

}
(c−2XA)(d/ ♯R(+)) ·µd/YN−1trg/χdϖ , (29.61)

and the estimate (29.20) implies that the integral is also of type Error
(Top)
N (τ,u).

The first product on RHS (22.3a) generates the following two difficult error integrals:∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LYNR(+)

}
(X̆R(+))YN−1Y(A)trg/χdϖ , (29.62)

2
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
X̆YNR(+)

}
(X̆R(+))YN−1Y(A)trg/χdϖ , (29.63)

and in (29.54) and (29.25) respectively, we showed that the integrals (29.62)–(29.63) are bounded in magnitude by ≤
RHS (29.1) as desired. It is precisely this step that generates all the boxed-constant-multiplied integrals and C∗-multiplied
integrals on RHS (29.1).

Step 3B: the case PN = YN and Ψ ∈ {R(−),v
2,v3, s}. This case can be handled as in Step 3A, but the analogs of the

error integrals (29.62)–(29.63), specifically the following integrals:∫
(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LYNΨ

}
(X̆Ψ )YN−1Y(A)trg/χdϖ , (29.64)

2
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
X̆YNΨ

}
(X̆Ψ )YN−1Y(A)trg/χdϖ , (29.65)

where Ψ ∈ {R(−),v
2,v3, s}, can be bounded in magnitude via the less degenerate estimates (29.55) and (29.26). In

particular, all error integrals that we encounter in Step 3B are of type Error
(Top)
N (τ,u).

We have therefore proved (29.1).

Proof of (29.3): We now prove the top-order estimate (29.3). The proof mirrors the proof of (29.1), except that, in view
of definitions (20.44a)–(20.44c), we do not have to derive energy estimates for R(+). Consequently, the proof of (29.3)
does not involve the difficult error integrals (29.62)–(29.63) from Step 3A, which are the only error integrals that generate
the difficult boxed-constant-involving terms. This explains why there are no such boxed-constant-involving terms on

RHS (29.3). In particular, all error integrals that we encounter in the proof of (29.3) are of type Error
(Top)
N (τ,u).
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Proof of (29.4): We now prove the below-top-order estimates (29.4). We fix any Ψ ∈ {R(+),R(−),v
2,v3, s}, and we

consider the integral identity (29.59) with N ′ in the role of N , i.e.,

E[PN
′
Ψ ](Wave)(τ,u) +F [PN

′
Ψ ](Wave)(τ,u) +K[PN

′
Ψ ](τ,u)

= E[PN
′
Ψ ](Wave)(τ0,u) +F [PN

′
Ψ ](Wave)(τ,−U1)

+
∫

(n)M[τ0 ,τ],[−U1 ,u]

1

L(n)τ

(T̆ )B[PN
′
Ψ ]dϖ

−
∫

(n)M[τ0 ,τ],[−U1 ,u]

1
L(n)τ

{
(1 + 2µ)LPN

′
Ψ + 2X̆PN

′
Ψ

}
µ2gPN

′
Ψ dϖ .

(29.66)

We will show that if 2 ≤N ≤Ntop and 1 ≤N ′ ≤N −1, then RHS (29.66) ≤ RHS (29.4). Then for the same reasons given
just below (29.59), we see, taking into account the Def. 20.12 of W[1,N−1](τ,u), that this implies the desired estimate
(29.4). The analogs of all the estimates through Step 1 above can be carried out just as before; the arguments we have

given show that since 1 ≤ N ′ ≤ N − 1, all the corresponding error integrals are of type Error
(Sub-critical)
N−1 , i.e., that they

are ≲ RHS (29.5) with N − 1 in the role of M in (29.5). The big difference occurs in Steps 2 and 3, where we now use a
different method to control the error integrals generated by the terms on RHSs (22.3a)–(22.3b) that explicitly depend on
trg/χ. More precisely, we control them all using the derivative-losing estimate (29.57), which shows that they are bounded
in magnitude by:

≲

∫ τ

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N ′](τ

′ ,u)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
N ′+1(τ′′ ,u)dτ′′ dτ′ + Error

(Sub-critical)
N ′ (τ,u). (29.67)

Since 1 ≤ N ′ ≤ N − 1, we have Error
(Sub-critical)
N ′ ≲ Error

(Sub-critical)
N−1 , which is ≤ RHS (29.4) as desired. We handle

the remaining double integral term in (29.67) by splitting it into two cases, the first being N ′ = N − 1. Then the
double integral is bounded by the first term on RHS (29.4). In the second case, which is 1 ≤ N ′ ≤ N − 2, using
the fact that the QM (τ,u) are increasing in their arguments, we see that the double time integral in (29.67) is ≲∫ τ

τ′=τ0

1
|τ′ |1/2 Q

1/2
[1,N−2](τ

′ ,u)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2 Q

1/2
[1,N−1](τ

′′ ,u)dτ′′ dτ′ ≲
∫ τ

τ′=τ0

1
|τ′ |1/2 Q[1,N−1](τ′ ,u)dτ′ , which in turn is of

type Error
(Sub-critical)
N−1 (τ,u), i.e., it is ≲ RHS (29.5) with N − 1 in the role of M in (29.5), as desired. We have therefore

proved (29.4), which finishes the proof of the proposition.
□

29.7.1. The proof of Prop. 24.1. In this section, we prove Prop. 24.1, which provides the main a priori estimates for the
wave-variables. Throughout the proof, we will refer to the L2-controlling quantities defined in Defs. 20.10 and 20.12. Our
proof relies on the a priori estimates for the transport-variables from Prop. 24.2, which we already proved in Sects. 26 and
27. To help the reader follow the global structure of the paper, we recall that our proof of Prop. 24.2 relied on the wave
energy bootstrap assumptions (24.12a)–(24.12b), and that the conclusions of Prop. 24.1 yield strict improvements of those
bootstrap assumptions.

Estimates for WNtop
, W

(Partial)
Ntop

, and W[1,Ntop−1].

The setup: The proof of the a priori estimates for WNtop
is coupled to the ones for W

(Partial)
Ntop

and W[1,Ntop−1]. Hence, we

prove the a priori estimates for all three energies simultaneously via a coupled Grönwall argument. To start, we set:

F (τ,u) def= sup
(τ̂,û)∈[τ0,τ]×[−U1,u]

ι−1
F (τ̂, û)WNtop

(τ̂, û) (29.68a)

G (τ,u) def= sup
(τ̂,û)∈[τ0,τ]×[−U1,u]

ι−1
G (τ̂, û)W (Partial)

Ntop
(τ̂, û), (29.68b)

H (τ,u) def= sup
(τ̂,û)∈[τ0,τ]×[−U1,u]

ι−1
H (τ̂, û)W[1,Ntop−1](τ̂, û), (29.68c)



L. Abbrescia and J. Speck 213

where:

l(τ) def= exp
(∫ τ

τ′=τ0

1
|τ′ |9/10

dτ′
)
, (29.69a)

ιF (τ,u) = ιG (τ,u) def= |τ|−15.6lc(τ)ec(u+U1), (29.69b)

ιH (τ,u) def= |τ|−13.6lc(τ)ec(u+U1), (29.69c)

and c is a sufficiently large positive constant that we choose below. For future use, we note that when c ≥ 1 is
fixed, the functions lc(τ) and ec(u+U1) are uniformly bounded from above by a positive, c-dependent constant for
(τ,u) ∈ [τ0,τBoot) × [−U1,U2]. Moreover, we will silently use that for all c ≥ 1 and (τ,u) ∈ [τ0,τBoot) × [−U1,U2],
lc(τ) and ec(u+U1) are uniformly bounded from below by 1. Moreover, in view of our assumption (10.7) and the fact that
τBoot ≤ 0, we see that for τ ∈ [τ0,τBoot), |τ| is uniformly bounded from above by 1. We will also silently use the basic
facts that the functions τ→ lc(τ) and u → ec(u+U1) are increasing. Finally, we will also use the following estimates,
whose straightforward proofs we omit:∫ τ

τ′=τ0

lc(τ′)
|τ′ |9/10

dτ′ ≤ 1
c
lc(τ),

∫ u

u′=−U1

ec(u′+U1) du′ ≤ 1
c
ec(u+U1). (29.70)

From the above discussion, it follows that the top-order estimate (i.e., (24.1a) with K
def= 0) and the just-below-top-order

estimate (i.e., (24.1a) with K
def= 1) follow once we prove that there is a uniform C > 0, independent of all c ≥ 1 and all

sufficiently small ς ∈ (0,1], and a c≫ 1 such that the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:

F (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2, G (τ,u) ≤ C

(
1 + ς−1

)
ϵ̊2, H (τ,u) ≤ C

(
1 + ς−1

)
ϵ̊2. (29.71)

We clarify that even though the constants C in (29.71) are independent of ς and c, the constants on RHS (24.1a) can
depend on ς and, in view of definitions (29.68a)–(29.68c) and (29.70), on c as well. We further clarify that our final choice
of ς and c will not be made until the very end of the proof. The reason is that later on, we will use a downward induction
scheme to obtain the lower order estimates, and that scheme could in principle require choosing ς to be smaller and c

to be larger at each step. Moreover, for convenience, in the proof, we will set c
def= ς−2, so that our final choice of c will

in fact be determined by choosing and fixing ς ∈ (0,1] to be sufficiently small, where the final choice of ς will not be
made until the very end of the proof.

To prove (29.71), we will show that there is a uniform C > 0 such that for every ς ∈ (0,1], c ≥ 1, sufficiently small
ε ≥ 0, and (τ,u) ∈ [τ0,τBoot)× [−U1,U2], the following estimates hold:

F (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2

+

 4×1.01
1.99 + 4.13

15.6
+

8(1.01)2

1.99

15.6× 7.8
+

4.13
7.3

+Cε+Cς+
C
c

(
1 + ς−1

)F (τ,u)

+C
{
ε+ ς+

1
c

(
1 + ς−1

)}
H (τ,u) +CF 1/2(τ,u)G 1/2(τ,u),

(29.72)

G (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +C

{
ε+ ς+

1
c

(
1 + ς−1

)}
F (τ,u)

+C
{
ε+ ς+

1
c

(
1 + ς−1

)}
H (τ,u),

(29.73)

H (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +CF (τ,u) +

{1
2

+Cς+
C
c

(
1 + ς−1

)}
H (τ,u). (29.74)

Before proving (29.72)–(29.74), we first show that these estimates imply (29.71). To see this, we set (for convenience)

c
def= ς−2. Also noting that

4×1.01
1.99 +4.13

15.6 +
8(1.01)2

1.99
15.6×7.8 + 4.13

7.3 < .995 < 1, we see that for all sufficiently small ς > 0 and ε ≥ 0,
we can soak the second product on RHS (29.72) back into LHS (29.72) and soak the last factor on RHS (29.74) back into
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LHS (29.74), thereby deducing:

F (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +C


ε+ ς+

1
c

(
1 + ς−1

)
︸       ︷︷       ︸

ς2+ς


H (τ,u) +CF 1/2(τ,u)G 1/2(τ,u) (29.75)

and:

H (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +CF (τ,u). (29.76)

Inserting (29.76) estimate into RHS (29.73), we find that for all sufficiently small ς > 0 and ε ≥ 0, we have:

G (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +C {ε+ ς}F (τ,u). (29.77)

Next, using Young’s inequality, we bound the last product on RHS (29.75) as follows: CF 1/2(τ,u)G 1/2(τ,u) ≤ 1
2F (τ,u)+

CG (τ,u). The term 1
2F (τ,u) can be absorbed back into LHS (29.75), which yields:

F (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +C


ε+ ς+

1
c

(
1 + ς−1

)
︸       ︷︷       ︸

ς2+ς


H (τ,u) +CG (τ,u). (29.78)

Inserting (29.76)–(29.77) into (29.78), we find that:

F (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +C {ε+ ς}F (τ,u). (29.79)

Hence, if ς > 0 is sufficiently small, then for all sufficiently small ε ≥ 0, we can absorb the last product on RHS (29.79) back
into the LHS. This implies the desired bound F (τ,u) ≤ C

(
1 + ς−1

)
ϵ̊2. Inserting this bound into RHSs (29.76)–(29.77),

we find that G (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 and H (τ,u) ≤ C

(
1 + ς−1

)
ϵ̊2. We have therefore proved (29.71).

Proof of (29.72)–(29.74): It remains for us to prove (29.72)–(29.74). We set N
def= Ntop. We fix any (τ,u) ∈ [τ0,τBoot] ×

[−U1,U2], and we let (τ̂, û) ∈ [τ0,τ]×[−U1,u]. We evaluate the top-order integral inequality (29.1) at (τ̂, û) and multiply
it by ι−1

F (τ̂, û). Similarly, we evaluate (29.3)–(29.4) at (τ̂, û) and respectively multiply by ι−1
G (τ̂, û) and ι−1

H (τ̂, û). We then
obtain suitable bounds from the resulting products and then take sup(τ̂,û)∈[τ0,τ]×[−U1,u]. The left-hand sides of the
resulting inequalities are, by definition, equal to the left-hand sides of (29.72)–(29.74), while our “suitable bounds,” which
we derive below, will yield the right-hand sides of (29.72)–(29.74).

We now prove (29.72). We will explain how to handle several representative terms generated by the top-order integral in-
equality (29.1), including the most difficult terms. The remaining terms can be handled using similar or simpler arguments,

and we omit the details. As our first example, we consider the term C
∫ τ̂

τ′=τ0

1
|τ′ |4/3

{∫ τ′

τ′′=τ0

(
C

1/2
N +D

1/2
N

)
(τ′′ ,u)dτ′′

}2
dτ′

generated by the 3rd line of RHS (29.2). Using the already proved a priori estimates (24.3a) for CNtop
and DNtop

, we bound
this term as follows:

C

∫ τ̂

τ′=τ̂0

1
|τ′ |4/3


∫ τ′

τ′′=τ̂0

(
C

1/2
N +D

1/2
N

)
(τ′′ , û)dτ′′


2

dτ′

≲ ϵ̊2
∫ τ̂

τ′=τ0

1
|τ′ |4/3


∫ τ′

τ′′=τ̂0

|τ′′ |−8.55 dτ′′


2

dτ′

≲ ϵ̊2
∫ τ̂

τ′=τ0

1
|τ′ |4/3

|τ′ |−15.1 dτ′

≲ ϵ̊2|τ̂|−(15+13/30) ≲ ϵ̊2|τ̂|−15.6.

(29.80)
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Multiplying (29.80) by ι−1
F (τ̂, û) and taking sup(τ̂,û)∈[τ0,τ]×[−U1,u], we obtain:

C sup
(τ̂,û)∈[τ0,τ]×[−U1,u]

ι−1
F (τ̂, û)

∫ τ̂

τ′=τ̂0

1
|τ′ |4/3


∫ τ′

τ′′=τ̂0

(
C

1/2
N +D

1/2
N

)
(τ′′ , û)dτ′′


2

dτ′ ≤ Cϵ̊2, (29.81)

which is ≤ RHS (29.72) as desired. The term
∫ τ̂

τ′=τ0

1
|τ′ |4/3

{∫ τ′

τ′′=τ0

1
|τ′′ |1/2

(
C

1/2
≤N−1 +D

1/2
≤N−1

)
(τ′′ ,u)dτ′′

}2
dτ′ generated

by the 4th line of RHS (29.2) can be handled using similar arguments, this time with the help of the already proven
estimate (24.3b)–(24.3c). Similarly, the following estimate holds for the term generated by the first term on RHS (29.2):

C sup
(τ̂,û)∈[τ0,τ]×[−U1,u]

ι−1
F

(
1 + ς−1

)
ϵ̊2 1
|τ̂|3/2

≤ C
(
1 + ς−1

)
ϵ̊2, (29.82)

which is ≤ RHS (29.72) as desired.

We now handle the first term on RHS (29.1), i.e., the one multiplied by the boxed constant
{4× 1.01

1.99
+ 4.13

}
.

Evaluating the term at (τ̂, û), multiplying it by ι−1
F (τ̂, û), multiplying and dividing the integrand by |τ′ |15.6, taking

supτ′∈[τ0,τ̂] |τ′ |15.6
QN (τ′ , û), and pulling the sup-ed out quantity outside of the integral, we deduce:{4× 1.01

1.99
+ 4.13

}
ι−1
F (τ̂, û)

∫ τ̂

τ′=τ0

1
|τ′ |

QN (τ′ , û)dτ′

≤
{4× 1.01

1.99
+ 4.13

}
ι−1
F (τ̂, û)× sup

τ′′∈[τ0,τ̂]

{
|τ′′ |15.6

QN (τ′′ , û)
}
×
∫ τ̂

τ′=τ0

1
|τ′ |16.6 dτ′

≤ 1
15.6

{4× 1.01
1.99

+ 4.13
}
ι−1
F (τ̂, û)× sup

(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′ |15.6

QN (τ′′ ,u′′)
}
× |τ̂|−15.6

≤ 1
15.6

{4× 1.01
1.99

+ 4.13
}
F (τ̂, û)

≤ 1
15.6

{4× 1.01
1.99

+ 4.13
}
F (τ,u).

(29.83)

Taking sup(τ̂,û)∈[τ0,τ]×[−U1,u] of (29.83), we find that sup(τ̂,û)∈[τ0,τ]×[−U1,u] LHS (29.83) ≤ RHS (29.83). We incorporate
the terms on RHS (29.83) as part of the “main terms” located on the second line of RHS (29.72). We clarify that to obtain the
third inequality in (29.83), we multiplied by 1 = lc(τ′′)l−c(τ′′)ec(u′′+U1)e−c(u′′+U1) under the sup, used the monotonicity
properties lc(τ′′) ≤ lc(τ̂) and ec(u′′+U1) ≤ ec(û+U1), pulled lc(τ̂) and ec(û+U1) out of the sup (so the remaining sup-ed

quantity is sup(τ′′ ,u′′)∈[τ0,τ̂],[−U1,û]

{
|τ′′ |15.6l−c(τ′′)e−c(u′′+U1)

QNtop
(τ′′ ,u′′)

}
≤F (τ̂, û)), and then noted that the factors

lc(τ̂), ec(û+U1), and |τ̂|−15.6 (outside of the sup) multiply together to exactly cancel ι−1
F (τ̂, û).

We can handle the second term on RHS (29.1) (which is multiplied by
8× (1.01)2

1.99
) using similar arguments, but we

have to integrate twice in time. We find that the corresponding term is:

≤ 8× (1.01)2

1.99
ι−1
F (τ̂, û)

∫ τ̂

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ , û)

∫ τ′

τ′′=τ0

1
|τ′′ |

Q
1/2
N (τ′′ , û)dτ′′ dτ′

≤ 1
15.6× 7.8

{
8× (1.01)2

1.99

}
F (τ̂, û) ≤ 1

15.6× 7.8

{
8× (1.01)2

1.99

}
F (τ,u).

(29.84)

The terms on RHS (29.84) are also part of the “main terms” located on the second line of RHS (29.72).
We can handle the third term on RHS (29.1) (which is multiplied by 4.13 ) using similar arguments, involving only

one integration in time, to deduce:

4.13 ι−1
F (τ̂, û)

1
|τ̂|1/2

Q
1/2
N (τ̂, û)

∫ τ̂

τ′=τ̂0

1
|τ′ |1/2

Q
1/2
N (τ′ , û)dτ′

≤
{4.13

7.3

}
F (τ̂, û) ≤

{4.13
7.3

}
F (τ,u).

(29.85)
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The terms on RHS (29.85) provide the last contribution to the “main terms” located on the second line of RHS (29.72).
Using the same arguments we used to prove (29.80)–(29.85), we can bound the contribution of the three C∗-multiplied

terms on RHS (29.1) by ≤ CF 1/2(τ,u)G 1/2(τ,u), which in turn is bounded by the last term on RHS (29.72).
The remaining terms on RHS (29.72), which are all generated by the terms on the right-hand side of the inequality

(29.2) for |Error(Top)
N |, are less dangerous than the three main terms we treated in (29.83)–(29.85) because they are either

I) critical with respect to the energy blow-up rates but feature a small factor of Cε, II) sub-critical62 with respect to the
blow-up rates, or III) controlled by the already proven a priori estimates for the transport-variables from Prop. 24.2 (it
turns out that all these terms are sub-critical too). The type I terms can be handled as in (29.83)–(29.85), but they are
much less delicate because we do not have to be careful about the size of the constants; such terms contribute to the
Cε-multiplied terms on the second line of RHS (29.72). The type III terms have already been adequately controlled in
Prop. 24.2 and contribute only to the term C

(
1 + ς−1

)
ϵ̊2 on RHS (29.72), as in (29.81)–(29.82). The type II terms can

be handled using arguments that rely only on the multiplicative factors lc(τ) and ec(u+U1) in (29.69b)–(29.69c). We will
handle three representative type II terms: the term on the next-to-last line of RHS (29.2) featuring a triple integral, the
u′-integral term on the fifth-from-last line of RHS (29.2), and the τ′ integral featuring the lower order term Q[1,N−1] on
the last line of RHS (29.2). The remaining terms on RHS (29.2) can be handled using similar arguments, where we use the
estimates of Prop. 24.2 and argue as in (29.80)–(29.81) to handle error terms that involve the (already bounded) quantities
VM , VM , CM , and DM ; we omit the details.

We will show that the contribution of the first representative term can be bounded as follows:

Cι−1
F (τ̂, û)

∫ τ̂

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ , û)

∫ τ′

τ′′=τ0

1
|τ′′ |

∫ τ′′

τ′′′=τ0

1
|τ′′′ |1/2

Q
1/2
N (τ′′′ , û)dτ′′′ dτ′′ dτ′

≤ C
c
ι−1
F (τ̂, û)l

c
2 (τ̂)

∫ τ̂

τ′=τ0

1
|τ′ |

Q
1/2
N (τ′ , û)

∫ τ′

τ′′=τ0

1
|τ′′ |

sup
(τ′′′ ,u′′′)∈[τ0,τ′′]×[−U1,û]

{
l−

c
2 (τ′′′)Q1/2

N (τ′′′ ,u′′′)
}

dτ′′ dτ′

≤ C
c
ι−1
F (τ̂, û)l

c
2 (τ̂)

× sup
(τ′′′ ,u′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′ |7.8l−

c
2 (τ′′′)Q1/2

N (τ′′′ ,u′′′)
}
× sup

(τ′′′′ ,u′′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′′ |7.8Q1/2

N (τ′′′′ ,u′′′′)
}

×
∫ τ̂

τ′=τ0

1
|τ′ |8.8

∫ τ′

τ′′=τ0

1
|τ′′ |8.8

dτ′′ dτ′

≤ C
c
ι−1
F (τ̂, û)lc(τ̂) sup

(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′ |15.6l−c(τ′′)QN (τ′′ ,u′′)

}∫ τ̂

τ′=τ0

1
|τ′ |16.6 dτ′

≤ C
c
ι−1
F (τ̂, û)|τ̂|−15.6lc(τ̂)ec(û+U1) sup

(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′ |15.6l−c(τ′′)e−c(u′′+U1)

QN (τ′′ ,u′′)
}

≤ C
c

F (τ̂, û) ≤ C
c

F (τ,u).

(29.86)

Taking sup(τ̂,û)∈[τ0,τ]×[−U1,u] of (29.86), we find that sup(τ̂,û)∈[τ0,τ]×[−U1,u] LHS (29.86) ≤ RHS (29.86), which is ≤
RHS (29.72) as desired. We now justify the sequence of inequalities in (29.86). The first inequality follows from multiplying
and dividing the dτ′′′ integrand by l

c
2 (τ′′′), pulling out sup(τ′′′ ,u′′′)∈[τ0,τ′′]×[−U1,û]

{
l−

c
2 (τ′′′)Q1/2

N (τ′′′ ,u′′′)
}
from the

dτ′′′ integral, and using (29.70) to bound the remaining inner-most time integral
∫ τ′′

τ′′′=τ0

l
c
2 (τ′′′)
|τ′′′ |1/2 dτ′′′ by ≤ C

c
l
c
2 (τ̂). The

second inequality follows from multiplying and dividing the dτ′′ integrand by |τ′′ |7.8 and pulling out a sup-ed quantity
from the integral, and from multiplying and dividing the dτ′ integrand by |τ′ |7.8 and pulling out a sup-ed quantity from
the integral. The remaining inequalities follow from straightforward integration, the definitions of the quantities involved,
and the monotonicity of various factors.

62By a “critical term,” we mean a term whose blowup-rate (in terms of powers of |τ|−1) is exactly compatible with the energy blowup-rates stated
in Prop. 24.1. By “sub-critical term,” we mean one whose blowup-rate is less singular (in terms of powers of |τ|−1) than a critical term, i.e., a term that
is not among the most singular.
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Next, using (29.70) and arguments similar to but simpler than the ones we used to prove (29.86), we bound the term
generated by the u′-integral on the fifth-from-last line of (29.2) as follows:

C
(
1 + ς−1

)
ι−1
F (τ̂, û)

∫ û

u′=−U1

QN (τ̂,u′)du′

≤
(
1 + ς−1

)
ι−1
F (τ̂, û) sup

(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
e−c(u′′+U1)

QN (τ′′ ,u′′)
}∫ û

u′=−U1

ec(u′+U1) du′

≤ C
c

(
1 + ς−1

)
ι−1
F (τ̂, û)ec(û+U1) sup

(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
e−c(u′′+U1)

QN (τ′′ ,u′′)
}

≤ C
c
ι−1
F (τ̂, û)|τ̂|−15.6lc(τ̂)ec(û+U1) sup

(τ′ ,u′)∈[τ0,τ̂]×[−U1,û]

{
|τ′ |15.6l−c(τ′)e−c(u′+U1)

QN (τ′ ,u′)
}

≤ C
c

(
1 + ς−1

)
F (τ̂, û) ≤ C

c

(
1 + ς−1

)
F (τ,u),

(29.87)

which is ≤ RHS (29.72) as desired.
Similarly, we bound the term generated by the Q[1,N−1] integral on the last line of RHS (29.2) as follows:

Cι−1
F (τ̂, û)

∫ τ̂

τ′=τ0

1
|τ′ |5/2

Q[1,N−1](τ
′ , û)dτ′

= C|τ̂|15.6l−c(τ̂)e−c(û+U1)
∫ τ̂

τ′=τ0

1
|τ′ |5/2

Q[1,N−1](τ
′ , û)lc(τ′)l−c(τ′)dτ′

≤ C|τ̂|13.6l−c(τ̂)e−c(û+U1) sup
(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
l−c(τ′′)Q[1,N−1](τ

′′ ,u′′)
}∫ τ̂

τ′=τ0

1
|τ′ |1/2

lc(τ′)dτ′

≤ C
c
|τ̂|13.6e−c(û+U1) sup

(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
l−c(τ′′)Q[1,N−1](τ

′′ ,u′′)
}

≤ C
c

sup
(τ′′ ,u′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′ |13.6l−c(τ′′)e−c(u′′+U1)

Q[1,N−1](τ
′′ ,u′′)

}
≤ C

c
H (τ̂, û) ≤ C

c
H (τ,u),

(29.88)

which is ≤ RHS (29.72) as desired. This completes our proof of (29.72).
The estimate (29.73) can be proved via similar arguments that start with evaluating both sides of inequality (29.3) at

(τ̂, û), multiplying the inequality by ι−1
G (τ̂, û), and then taking sup(τ̂,û)∈[τ0,τ]×[−U1,u]. The key difference between the

estimates (29.72) and (29.73) is that the critical boxed-constant-multiplied terms and C∗-multiplied terms appearing on
RHS (29.1) are absent from RHS (29.3). Consequently, using arguments similar to the ones given above, we find that the

terms

{
4×1.01

1.99 +4.13
15.6 +

8(1.01)2
1.99

15.6×7.8 + 4.13
7.3

}
F (τ,u) and CF 1/2(τ,u)G 1/2(τ,u) from RHS (29.72) are absent from RHS (29.73).

The estimate (29.74) can be proved via similar arguments that start with evaluating both sides of inequality (29.4) at
(τ̂, û), multiplying the inequality by ι−1

H (τ̂, û), and then taking the supremum sup(τ̂,û)∈[τ0,τ]×[−U1,u]. Using arguments

similar to the ones given above, we find that the terms Error
(Sub-critical)
N−1 (τ,u) on RHS (29.4) generate terms that can be

bounded by ≤ C
(
1 + ς−1

)
ϵ̊2 +

{
Cς+ C

c

(
1 + ς−1

)}
H (τ,u), which is ≤ RHS (29.74) as desired. To handle the term

generated by the remaining term on RHS (29.4) (i.e., the double time-integral involving Q
1/2
N ), we can bound it using
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straightforward arguments based on multiplying and dividing by |τ′ |6.8 and |τ′′ |7.8 in the two time integrals:

Cι−1
H (τ̂, û)

∫ τ̂

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ , û)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
N (τ′′ , û)dτ′′ dτ′

= C|τ̂|13.6l−c(τ̂)e−c(û+U1)
∫ τ̂

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,N−1](τ

′ , û)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
N (τ′′ , û)dτ′′ dτ′

≤ C|τ̂|13.6l−c(τ̂)e−c(û+U1) sup
(τ′′′ ,u′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′ |6.8Q1/2

[1,N−1](τ
′′′ ,u′′′)

}
× sup

(τ′′′′ ,u′′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′′ |7.8Q1/2

N (τ′′′′ ,u′′′′)
}

×
∫ τ̂

τ′=τ0

1
|τ′ |7.3

∫ τ′

τ′′=τ0

1
|τ′′ |8.3

dτ′′ dτ′

≤ Cl−c(τ̂)e−c(û+U1) sup
(τ′′′ ,u′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′ |6.8Q1/2

[1,N−1](τ
′′′ ,u′′′)

}
× sup

(τ′′′′ ,u′′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′′ |7.8Q1/2

N (τ′′′′ ,u′′′′)
}

≤ C sup
(τ′′′ ,u′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′ |6.8l−

c
2 (τ′′′)e−

c
2 (u′′′+U1)

Q
1/2
[1,N−1](τ

′′′ ,u′′′)
}

× sup
(τ′′′′ ,u′′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′′ |7.8l−

c
2 (τ′′)e−

c
2 (u′′′′+U1)

Q
1/2
N (τ′′′′ ,u′′′′)

}
≤ CH 1/2(τ,u)F 1/2(τ,u) ≤ 1

2
H (τ,u) +CF (τ,u),

(29.89)

where to obtain the last inequality, we used Young’s inequality. We finally observe that RHS (29.89) ≤ RHS (29.74), and we
note that the inequality (29.89) is the only one that contributes the term 1

2H (τ,u) to RHS (29.74). We have therefore
proved (29.89), which completes our proof of (29.72)–(29.74). This also yields the desired bounds for WNtop

and WNtop−1
stated in (24.1a), aside from the issue that, as we noted below (29.71), we will not make the final choice of c until the end
of the proof.

Estimates for W[1,Ntop−2], W[1,Ntop−3], · · · , W1. We now explain how to derive the a priori estimates (24.1a)–(24.1b) for
W[1,Ntop−2], W[1,Ntop−3], · · · , W1 via downward induction, starting with W[1,Ntop−2].

Unlike our analysis of the strongly coupled triple WNtop
, W

(Partial)
Ntop

, and W[1,Ntop−1], we can derive the estimate

for W[1,Ntop−2] using only the integral inequality (29.4), the already proven vorticity and entropy estimates provided
by Prop. 24.2, and our already proven bounds for W[1,Ntop−1] (more precisely, the already proven bound (29.71) for

H ). To begin, we define an analog of (29.69c): ιH̃ (τ,u) def= |τ|−11.6lc(τ)ec(u+U1), as well as an analog of (29.68c):

H̃ (τ,u) def= sup(τ′ ,u′)∈[τ0,τ]×[−U1,u]

{
ι−1
H̃

(τ′ ,u′)W[1,Ntop−2](τ′ ,u′)
}
. Note that compared to our definition (29.69c) of ιH ,

we have reduced the power of |τ|−1 by two in our definition of ιH̃ . As before, we will prove (24.1a) for K = 2 by showing
that there is a uniform C > 0 such that for all sufficiently small ς ∈ (0,1] and ε ≥ 0, we have:

H̃ (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2. (29.90)

To prove (29.90), we will show that:

H̃ (τ,u) ≤ C
(
1 + ς−1

)
ϵ̊2 +

{1
2

+Cς+
C
c

(
1 + ς−1

)}
H̃ (τ,u), (29.91)

where as before, we set c
def= ς−2. Once we have proved (29.91), then if ς ∈ (0,1] and ε ≥ 0 are sufficiently small, we can

absorb all terms on RHS (29.91) except for C
(
1 + ς−1

)
ϵ̊2 back into the left, thereby arriving at the desired bound (29.90).

It remains for us to prove (29.91). To proceed, we set N = Ntop − 1, multiply both sides of (29.4) by ι−1
H̃

, and evaluate

the resulting expression at (τ̂, û) ∈ [τ0,τ]× [−U1,u]. Using same arguments we used to prove (29.74) (in particular using

the already proven estimates of Prop. 24.2), we find that the terms Error
(Sub-critical)
N−1 (τ,u) on RHS (29.4) generate terms
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that we can bound by ≤ C
(
1 + ς−1

)
ϵ̊2 +

{
Cς+ C

c

(
1 + ς−1

)}
H̃ (τ,u). We now handle the remaining term, i.e., the

term generated by the first term on RHS (29.4), which is a double time-integral involving the above-present-order factor
Q

1/2
Ntop−1. Multiplying and dividing by |τ′ |5.8 and |τ′′ |6.8 in the two time integrals, arguing as in the proof of (29.89), and

using the already proven bound (29.71) for H , we bound this term as follows:

Cι−1
H̃

(τ̂, û)
∫ τ̂

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,Ntop−2](τ

′ , û)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
Ntop−1(τ′′ , û)dτ′′ dτ′

= C|τ̂|11.6l−c(τ̂)e−c(û+U1)
∫ τ̂

τ′=τ0

1
|τ′ |1/2

Q
1/2
[1,Ntop−2](τ

′ , û)
∫ τ′

τ′′=τ0

1
|τ′′ |1/2

Q
1/2
Ntop−1(τ′′ , û)dτ′′ dτ′

≤ C|τ̂|11.6l−c(τ̂)e−c(û+U1)

× sup
(τ′′′ ,u′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′ |5.8Q1/2

[1,Ntop−2](τ
′′′ ,u′′′)

}
× sup

(τ′′′′ ,u′′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′′ |6.8Q1/2

Ntop−1(τ′′′′ ,u′′′′)
}

×
∫ τ̂

τ′=τ0

1
|τ′ |6.3

∫ τ′

τ′′=τ0

1
|τ′′ |7.3

dτ′′ dτ′

≤ Cl−c(τ̂)e−c(û+U1) sup
(τ′′′ ,u′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′ |5.8Q1/2

[1,Ntop−2](τ
′′′ ,u′′′)

}
× sup

(τ′′′′ ,u′′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′′ |6.8Q1/2

Ntop−1(τ′′′′ ,u′′′′)
}

≤ C sup
(τ′′′ ,u′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′ |5.8l−

c
2 (τ′′′)e−

c
2 (u′′′+U1)

Q
1/2
[1,Ntop−2](τ

′′′ ,u′′′)
}

× sup
(τ′′′′ ,u′′′′)∈[τ0,τ̂]×[−U1,û]

{
|τ′′′′ |6.8l−

c
2 (τ′′′′)e−

c
2 (u′′′′+U1)

Q
1/2
Ntop−1(τ′′′′ ,u′′′′)

}
≤ CH̃ 1/2(τ̂, û)H 1/2(τ̂, û) ≤ 1

2
H̃ (τ,u) +CH (τ,u)

≤ 1
2
H̃ (τ,u) +C

(
1 + ς−1

)
ϵ̊2,

(29.92)

which is ≤ RHS (29.91) as desired. We have therefore proved (29.90), which in particular implies (24.1a) for K = 2.
The desired bounds (24.1a)–(24.1b) for W[1,Ntop−3], · · · , W1 can be derived by downward induction based on an

argument that is very similar to the one we used to prove the bound (29.90) for W[1,Ntop−2]. The only difference is that

we define an analogous multiplicative factor ιH̃ ,P (τ,u) def= |τ|−P lc(τ)ec(u+U1), where P = 9.6 for W[1,Ntop−3], P = 7.6 for
W[1,Ntop−4], P = 5.6 for W[1,Ntop−5], P = 3.6 for W[1,Ntop−6], P = 1.6 for W[1,Ntop−7], and P = 0 for W[1,Ntop−8]. We

stress that these latter estimates (i.e., (24.1b)) do not involve any singular factor of |τ|−1.
□

29.8. Proof of Prop. 24.4. In this short section, we prove Prop. 24.4, which yields our energy estimates for the acoustic
geometry on the rough foliations, thereby completing our proof of the energy estimates.

To proceed, we note that (18.1) implies ∥f ∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

) ≤ |τ|−1∥µf ∥
L2

(
(n)̃Σ

[−U1 ,U2]
τ

). Hence, the desired bound (24.6a)

follows from inserting the already proven estimates of Props. 24.1 and 24.2 for QM , CM , DM , VM , and SM (for the
relevant values of M ) into RHS (29.14) and integrating in τ. Similarly, (24.6b)–(24.6c) follow from inserting the estimates
(24.1a)–(24.1b) into RHS (25.1b).

□

30. Improvements of the fundamental quantitative L∞ bootstrap assumptions

We continue to work under the assumptions of Sect. 13.2. In this short section, we derive L∞ estimates that yield an
improvement of the fundamental quantitative bootstrap assumptions stated in Sect. 12.3.1. The results follow easily from
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the Sobolev embedding estimate (20.6b) and the estimates for the non-singular energies that we have already derived in
Prop. 24.1.

Proposition 30.1 (Improvement of the fundamental quantitative bootstrap assumptions). Under the parameter-size as-
sumptions of Sect. 10.2, the initial data assumptions of Sects. 11.2.1–11.2.3, and the bootstrap assumptions of Sects. 12 and
24.3, there exists a constant C > 0 such that the following estimates hold for (τ,u) ∈ [τ0,τBoot)× [−U1,U2]:∥∥∥∥P [1,Ntop−10]Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u)

,
∥∥∥P≤Ntop−11(Ω,S)

∥∥∥
L∞((n)̃ℓτ,u) ,

∥∥∥P≤Ntop−12(C,D)
∥∥∥
L∞((n)̃ℓτ,u) ≤ Cϵ̊. (30.1)

In particular, if ϵ̊ is small enough such that Cϵ̊ < ε, then (30.1) yields a strict improvement of the fundamental
quantitative bootstrap assumptions (BA L∞ FUND).

Proof. The estimate (30.1) for
∥∥∥P≤Ntop−11(Ω,S)

∥∥∥
L∞((n)̃ℓτ,u) follows from the Sobolev embedding estimate (20.6a), the

definitions (20.46a)–(20.46b) of V
(Rough Tori)
N (τ,u) and S

(Rough Tori)
N (τ,u), and the rough tori energy estimates (24.4c).

Similarly, the estimate (30.1) for
∥∥∥P≤Ntop−12(C,D)

∥∥∥
L∞((n)̃ℓτ,u) follows from the Sobolev embedding estimate (20.6a), the

definitions (20.48a)–(20.48b) of C
(Rough Tori)
N (τ,u) and D

(Rough Tori)
N (τ,u), and the rough tori energy estimates (24.5c).

To prove the estimate (30.1) for
∥∥∥∥P [1,Ntop−10]Ψ⃗

∥∥∥∥
L∞((n)̃ℓτ,u)

, we use the estimate (20.6b), the data-assumption (11.13a),

Lemma 20.14, and the estimate (24.1b) to conclude that
∥∥∥∥P [1,Ntop−10]Ψ⃗

∥∥∥∥2

L∞((n)̃ℓτ,u)
≲ ϵ̊2+W[1,Ntop−8](τ,u) ≲ ϵ̊2 as desired.

□

31. Existence up to the singular boundary at fixed n via continuation criteria

In this section, we prove our first main theorem, Theorem 31.1, which shows that at fixed n ∈ [0,n0], the solution
exists on the domain (n)M[τ0,0],[−U1,U2], which in particular contains the µ-adapted torus T̆0,−n, a subset of the singular
boundary (see Sect. 32.2). To prove the theorem, we rely mainly on results that we have already established, though we
also rely on standard continuation criteria, which we prove independently in Prop. 31.2. Roughly, given the results we have
already proved, the continuation criteria allow us to continue the solution classically as long as µ has not vanished. We
highlight that our setup guarantees (see in particular (18.1)) that within (n)M[τ0,0],[−U1,U2], the vanishing of µ happens

only along the µ-adapted torus T̆0,−n, which is contained in the top boundary (n)̃Σ
[−U1,U2]
0 , where (n)τ = 0.

31.1. Existence up to the singular boundary torus T̆0,−n. In this section, we state and prove our first main theorem,
which concerns fixed n ∈ [0,n0].

Theorem 31.1 (Existence in a region containing the singular boundary torus T̆0,−n). Fix any of the compactly supported
admissible simple isentropic plane symmetric “background” solutions RPS

(+) from Def. A.7 (recall that R(−), v
2, v3, s, Ω, S ,

C, and D vanish for these background solutions).

Let (R(+),R(−),v
2,v3, s)

∣∣∣
Σ0

def
=

(
R̊(+),R̊(−), v̊

2, v̊3, s̊
)
be perturbed fluid data on the flat Cartesian hypersurface Σ0, as

in (11.1), and let u|Σ0
= −x1 be the initial condition of the eikonal function, as in (3.1) and (A.7b). Let

(
Ω̊i , S̊ i , C̊i ,D̊

)
i=1,2,3

denote the initial data on Σ0 of
(
Ωi ,S i ,Ci ,D

)
i=1,2,3

. Note that these data are determined by
(
R̊(+),R̊(−), v̊

2, v̊3, s̊
)
,

the compressible Euler equations (2.6a)–(2.6c), definition (2.7), and Def. 2.7. Also recall that these data and the data of the
eikonal function determine the data of all the acoustic geometry on Σ0; see Remark 11.1.
Assume the following:

A1) Ntop ≥ 24.

A2) The quantity ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

defined in (11.4) is sufficiently small, where ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is a Sobolev norm of the perturbation

of the fluid data away from the background solution, and U0 > 0 and U2 > 0 are parameters from Sect. 10.1.

A3) Recall that in Appendix B (see in particular Prop. B.2), we showed that the smallness of ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

implies that the

parameter-size assumptions of Sect. 10.2 hold and that the fluid variable and acoustic geometry data induced on

(n)̃ℓτ0,u ,
(n)̃Σ

[−U1,U2]
τ0 , and P

[0, 4
δ̊∗

]

−U1
satisfy the assumptions stated in Sects. 11.2.1–11.2.3, where U1 > 0 and δ̊∗ > 0 are

parameters from Sect. 10.1.
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A4) In particular, Prop. B.2 implies that the parameter ϵ̊ from Sect. 10.1 can be chosen to satisfy ϵ̊ = O
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)
,

where the implicit constants in “O(·)” depend on the background solution.
A5) n ∈ [0,n0], where n0 is the parameter from Sect. 10.2.

Then the following conclusions hold.

The rough time function and classical existence relative to the geometric coordinates.

• There exists a rough time function (n)τ = (n)τ(t,u,x2,x3) (constructed in Sect. 4) with range [τ0,0] = [−m0,0]
(see Def. 4.8), and we denote its level-set portions, viewed as subsets of geometric coordinate space Rt ×Ru ×T2,

as follows: (n)̃Σ
[u1,u2]
τ = {(t,u,x2,x3) | (n)τ(t,u,x2,x3) = τ, u1 ≤ u ≤ u2, (x2,x3) ∈ T

2}. More precisely, (n)τ

is defined on the portion (n)M[τ0,0],[−U1,U2] =
⋃

τ∈[τ0,0]
(n)̃Σ

[−U1,U2]
τ of the maximal classical development of the

data with respect to the differential structure of the geometric coordinates (t,u,x2,x3).
• The change of variables map (n)T (t,u,x2,x3) = ((n)τ,u,x2,x3) is a diffeomorphism from (n)M[τ0,0],[−U1,U2]

onto its image [−m0,0] × [−U1,U2] × T2 satisfying ∥(n)T ∥C2,1
geo ((n)M[τ0 ,0],[−U1 ,U2])

≤ C. Moreover, ∂
∂t

(n)τ ≈ 1 on

(n)M[τ0,0],[−U1,U2].

• The fluid variables Ψ⃗ , Ωi , S i , Ci , and D, the eikonal function u, µ, Li , the Cartesian coordinate functions
(t,x1,x2,x3) and all of the auxiliary quantities constructed out of these quantities exist classically with respect to the
geometric coordinates (t,u,x2,x3) on (n)M[τ0,0],[−U1,U2]. In particular, with respect to the geometric coordinates,
the compressible Euler equations (2.6a)–(2.6c) are satisfied, and the equations of Theorem 2.15 are also satisfied.

• The Hölder estimates of Lemma 15.6, the L∞ estimates of Prop. 17.1 with ε replaced by Cϵ̊, and the energy estimates
of Props. 24.1, 24.2, 24.3, and 24.4 hold with τBoot = 0, i.e., they hold on (n)M[τ0,0],[−U1,U2].

The behavior of µ and properties of Υ .

• For τ ∈ [−m0,0], we have:

min
(n)̃Σ

[−U1 ,U2]
τ

µ = −τ. (31.1)

Moreover, within (n)̃Σ
[−U1,U2]
τ , the minimum value −τ in (31.1) is achieved by µ precisely on the set T̆−τ,−n from

definition 4.3c, which is a C1,1-embedded torus. In particular, in (n)M[τ0,0],[−U1,U2], µ vanishes precisely along the

µ-adapted torus T̆0,−n, which is a subset of
(n)̃Σ

[−U1,U2]
0 that is contained in the singular boundary (see Sect. 32.2).

• On (n)M[τ0,0],[−U1,U2], the change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) is an injection onto its image
in Cartesian coordinate space satisfying ∥Υ ∥C3,1

geo ((n)M[τ0 ,0],[−U1 ,U2])
≤ C. In particular, Υ is a homeomorphism from

the compact set (n)M[τ0,0],[−U1,U2] onto its image.
• With dgeoΥ denoting the Jacobian matrix of Υ , we have:

detdgeoΥ ≈ −µ. (31.2)

Hence, on (n)M[τ0,0],[−U1,U2]\T̆0,−n, Υ is a diffeomorphism.

• For m ∈ [0,m0], Υ
(
T̆m,−n

)
is an embedded two-dimensional C1,1 torus in Cartesian coordinate space. In partic-

ular, the restriction of Υ to T̆m,−n is a diffeomorphism from T̆m,−n onto its image Υ
(
T̆m,−n

)
.

A description of the solution’s singular and regular behavior with respect to Cartesian coordinates.

• (Region without singularities). On the subset Υ
(

(n)M[τ0,0],[−U1,U2]\T̆0,−n
)
of Cartesian coordinate space, the

solution exists classically with respect to the Cartesian coordinates.
• (The fluid singularity). The following lower bound holds in Υ

(
(n)M[τ0,0],[−Uj,Uj]

)
:

|XR(+)| ≥
δ̊∗

µ|c̄;ρ + 1|
, (31.3)

where δ̊∗ > 0 is the data-parameter from (11.6), c̄;ρ
def
= c;ρ(ρ = 0, s = 0) is c;ρ evaluated at the trivial solution,

c̄;ρ + 1 is a non-zero constant by assumption, and the Σt-tangent vectorfield X has Euclidean length satisfying
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a=1(Xa)2 = 1 +O(α̊), where α̊ is the small parameter from Sect. 10.2. In particular, if q ∈ Υ

(
T̆0,−n

)
, then

since T̆0,−n ⊂ (n)M[τ0,0],[− 1
2Uj,

1
2Uj] by (18.3b), and since µ = 0 along Υ

(
T̆0,−n

)
, it follows that |XR(+)|(q′)→∞

as q′→ q in Υ
(

(n)M[τ0,0],[−U1,U2]\T̆0,−n
)
. Similarly, the following lower bounds hold in Υ

(
(n)M[τ0,0],[−Uj,Uj]

)
,

where ρ is the logarithmic density (see (2.3)):

|Xρ| ≥ δ̊∗
4µ|c̄;ρ + 1|

, |Xv1| ≥ δ̊∗
4µ|c̄;ρ + 1|

. (31.4)

• (Regular behavior along the characteristics). The derivatives of Ψ⃗ , Ωi , S i up to order Ntop − 11 with respect to

the vectorfields in the Pu-tangent commutation set P defined in (3.16) and the derivatives of Ci and D up to
order Ntop − 12 with respect to the elements of P are L∞-bounded on Υ

(
(n)M[τ0,0],[−U1,U2]

)
by ≤ C. Finally, for

α = 0,1,2,3 and A = 2,3, the derivatives of gabY a(A)∂αv
b up to order Ntop − 11 with respect to the elements of

P are L∞-bounded on Υ
(

(n)M[τ0,0],[−U1,U2]

)
by ≤ C.

Proof. The standard local well-posedness results and Cauchy stability provided by Prop. B.2 imply that there exists a τLocal ∈
( 3

4τ0,0) such that the solution variables Ψ⃗ , Ωi , S i , Ci , D, u, and (n)τ are classical solutions on (n)M[τ0,τLocal),[−U1,U2]

and such that all of the bootstrap assumptions from Sect. 12 hold on (n)M[τ0,τLocal),[−U1,U2]. Let τMax be the supremum
over all such τLocal. Then the solution exists classically and satisfies all the bootstrap assumptions from Sect. 12 on
(n)M[τ0,τMax),[−U1,U2]. If it were true that τMax < 0, then Prop. 31.2 (which we prove independently in the next section)
would imply that there is a ∆ > 0 with τMax +∆ < 0 such that the solution exists classically and satisfies the bootstrap
assumptions from Sect. 12 on (n)M[τ0,τMax+∆),[−U1,U2], which is impossible in view of the definition of τMax. Hence,
τMax = 0.

Aside from (31.4) and the results concerning the boundedness of the quantities gabY a(A)∂αv
b , the remaining conclusions

of the theorem now follow from (18.1) and the statements just below it, (18.11), Lemma 15.6, and Props. 17.1, 18.4, 24.1, 24.2,
24.3, 24.4, and 30.1, with 0 in the role of τBoot in all these results.

The lower bounds stated in (31.4) follow from (31.3) and the estimates |µXρ| = 1
2 {1 +O(α̊)} |µXR(+)| +O(ϵ̊) and

|µXv1| = 1
2 {1 +O(α̊)} |µXR(+)| +O(ϵ̊), which follow from (2.5), (2.7) (see also Remark 2.6), (9.3e) for c − 1, and the

estimates of Prop. 17.1 and Cor. 17.2.
Finally, we show that the derivatives of gabY a(A)∂αv

b up to order Ntop − 11 with respect to the elements of P

are L∞-bounded on Υ
(

(n)M[τ0,0],[−U1,U2]

)
. We first consider the case α = 0. We start by using (5.9a) to deduce

that gabY a(A)∂tv
b = −L1X1+L2X2+L3X3

c2 gabY a(A)Xv
b + Error, where Error involves only Pu-tangential derivatives of v.

From Prop. 9.1 and Prop. 17.1, it follows that the derivatives of Error up to order Ntop − 11 with respect to the elements

of P are L∞-bounded on Υ
(

(n)M[τ0,0],[−U1,U2]

)
by ≤ C. Next, we use (2.8) and (2.15a)–(2.15b) to compute that

relative to the Cartesian coordinates, we have (where ϵijk is the fully antisymmetric symbol normalized by ϵ123 = 1):
Xvb = Xd∂dvb = Xd∂bvd + ϵdbeX

d(curlv)e = c2Xd∂bv
d + exp(ρ)ϵdbeXdΩe . Again using (2.15a), we find that:

−L
1X1 +L2X2 +L3X3

c2 gabY
a
(A)Xv

b = −L
1X1 +L2X2 +L3X3

c2 XdY(A)v
d

− exp(ρ)
L1X1 +L2X2 +L3X3

c2 gabY
a
(A)ϵdbeX

dΩe.

(31.5)

Finally, using Prop. 9.1 and Prop. 17.1, we see that the derivatives of the products on RHS (31.5) up to order Ntop − 11

with respect to the elements of P are L∞-bounded on Υ
(

(n)M[τ0,0],[−U1,U2]

)
by ≤ C. We have therefore proved the

desired result in the case α = 0. To handle the cases α = 1,2,3, we use a similar argument that relies on the identities
(5.9b)–(5.9d) in place of (5.9a).

□

31.2. Continuation criteria. In the next proposition, we provide the continuation criteria that are needed for the proof
of Theorem 31.1. Roughly, the proposition shows that in the solution regime under study, if τBoot < 0, then the solution
can be continued beyond (n)M[τ0,τBoot],[−U1,U2] as a classical solution with respect to the Cartesian coordinates and with
respect to the geometric coordinates. Central to the proof is the estimate (18.1), which in particular shows that µ is strictly
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positive on (n)M[τ0,τBoot],[−U1,U2] whenever τBoot < 0, i.e., no shocks are present in (n)M[τ0,τBoot],[−U1,U2]. Given the
results we have already established, the proposition is rather standard.

Proposition 31.2 (Continuation criteria). Assume the following:

• The assumptions of Theorem 31.1 hold.
• τBoot < 0.
• The rough time function (n)τ, the solution variables Ψ⃗ ,Ωi , S i , Ci ,D, u, etc. are classical solutions on (n)M[τ0,τBoot),[−U1,U2].
• The bootstrap assumptions of Sect. 12 and 24.3 hold (e.g., the energy bootstrap assumptions (24.12a)–(24.12b) hold for

(τ,u) ∈ [τ0,τBoot)× [−U1,U2]).

Then there exists a ∆ ∈ (0, |τBoot|) such that the rough time function (n)τ, the solution variables Ψ⃗ , Ωi , S i , Ci , D,
u, and all of the other geometric quantities defined throughout the article can be uniquely extended (where the solution
variables are classical solutions) to a strictly larger region of the form (n)M[τ0,τBoot+∆),[−U1,U2] on which all of the bootstrap
assumptions of Sects. 12 and 24.3 hold.

Proof. Throughout this proof, we allow the small positive numbers m > 0 and ∆ > 0 to vary from line to line, sometimes
silently shrinking them as necessary.

Step 1: Extension to (n)M[τ0,τBoot],[−U1,U2]. Since τBoot = −mBoot < 0 by assumption, Lemmas 15.5 and 15.6, Prop. 18.4,

and the bootstrap assumptions imply that the quantities Ψ⃗ , Ωi , S i , Ci , D, Υ , t, x1, x2, x3, u, and all the other geomet-
ric quantities defined throughout the article extend from (n)M[τ0,τBoot),[−U1,U2] to the compact set

(n)M[τ0,τBoot],[−U1,U2] as

classical solutions relative to the geometric coordinates (t,u,x2,x3) such that Υ is a diffeomorphism on (n)M[τ0,τBoot],[−U1,U2].
The same results yields that these quantities extend to the compact set [τ0,τBoot]× [−U1,U2]×T2 as classical solutions
relative to the adapted rough coordinates ((n)τ,u,x2,x3), and to the compact set Υ

(
(n)M[τ0,τBoot],[−U1,U2]

)
as classical

solutions relative to the Cartesian coordinates (t,x1,x2,x3). Moreover, in view of the energy estimates of Sect. 24, it
is a standard result that for all (τ,u) ∈ [τ0,τBoot] × [−U1,U2], the extended quantities enjoy the same Sobolev and

Lebesgue regularity (i.e., the corresponding norms are all finite) with respect to the geometric coordinates on (n)̃Σ
[−U1,U2]
τ ,

(n)̃ℓτ,u , and
(n)P [τ0,τ]

u as the data on (n)̃Σ
[−U1,U2]
τ0 , (n)̃ℓτ0,u , and

(n)P [τ0,τBoot]
−U1

, and that relative to all of the corresponding
Sobolev and Lebesgue function space topologies on these surfaces that we have used throughout the paper, the solution
is continuous with respect to (τ,u) on [τ0,τBoot] × [−U1,U2]; we refer readers to [68, Section 2.7] for the main ideas
behind the proof of these “propagation of regularity” and “continuity-in-norm” results in the context of the relativistic
Euler equations coupled to Nördstrom’s theory of gravity.

Furthermore, by (15.27)–(15.28), there is a τBoot-dependent function tτBoot,n on [−U1,U2]×T2 such that relative to the
geometric coordinates, we have:

(n)̃Σ
[−U1,U2]
τBoot =

{(
tτBoot,n(u,x2,x3),u,x2,x3

)
| (u,x2,x3) ∈ [−U1,U2]×T2

}
,

and such that ∥tτBoot,n∥C2,1([−U1,U2]×T2) ≤ C. In addition, using (6.20a), (6.20b), (6.20c), (18.1), (18.8a), and (18.27), and our

crucial assumption that τBoot < 0, we see that g((n)Ñ , (n)Ñ ) < 0 on (n)̃Σ
[−U1,U2]
τBoot , i.e., that (n)̃Σ

[−U1,U2]
τBoot is g-spacelike.

Also using Prop. 18.4, we further deduce that the hypersurface Υ

(
(n)̃Σ

[−U1,U2]
τBoot

)
in Cartesian coordinate space is C2,1.

Step 2: Extending all quantities – except for the rough time function – beyond (n)M[τ0,τBoot],[−U1,U2]. Let Q denote

the quantities Ψ⃗ , Ωi , S i , Ci , D, Υ , t, x1, x2, x3, u, etc. from the beginning of Step 1. Note that the rough time function
(n)τ is not among these quantities. To extend Q beyond (n)M[τ0,τBoot],[−U1,U2], we will use the Cauchy stability arguments
given in Appendix B; while it is not essential for us to use the results of Appendix B here, it allows us to avoid treating the
characteristic initial value problem for the compressible Euler equations, which would have involved inessential technical
complications. Specifically, in Step 3 of the proof of Prop. B.2, we used Cauchy stability to show that Q exists classically in

the (geometric coordinate) region CS
[0,5T PS

Shock]
Small depicted in Fig. 16. Moreover, in the proof of Lemma 27.3, we showed that

we can extend the rough time function (n)τ into a subset (n)M[τ0,τBoot],[−U∗,−U1] of CS
[0,5T PS

Shock]
Small (where U∗ > U1 > 0)

so that it is defined on a region (n)M[τ0,τBoot],[−U∗,U2] containing (n)̃Σ
[−(U1+ϵ),U2]
τBoot for all sufficiently small ϵ > 0 (see

Footnote 73) and such that, by (15.22) and (27.6), we have ∥(n)τ∥C2,1
geo ((n)M[τ0 ,τBoot],[−U∗ ,U2])

≤ C. In particular, combining these

results with (11.17a), (B.2), and the results we derived in Step 1 of the present proof, we see that there is an ϵ > 0 such that
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(n)̃Σ
[−(U1+ϵ),U2]
τBoot ⊂ (n)M[τ0,τBoot],[−(U1+ϵ),U2] ⊂ (n)M[τ0,τBoot],[−U1,U2] ∪CS

[0,5T PS
Shock]

Small . Shrinking ϵ if necessary, and using

a standard compactness argument, we can assume that Υ is a diffeomorphism on (n)M[τ0,τBoot],[−(U1+ϵ),U2]. Hence,

the quantities Q and the rough time function (n)τ extend to (n)M[τ0,τBoot],[−(U1+ϵ),U2] as classical solutions with respect

to the geometric coordinates, and similarly with respect to the Cartesian coordinates (on Υ
(

(n)M[τ0,τBoot],[−(U1+ϵ),U2]

)
).

Moreover, by continuity and the results of Step 1 of the present proof, we see that (n)̃Σ
[−(U1+ϵ),U2]
τBoot is a g-spacelike

hypersurface portion if ϵ > 0 is small enough.
We now use standard local well-posedness (see [68, Section 2.7] for the main ideas behind the analysis in the con-

text of the relativistic Euler equations coupled to Nördstrom’s theory of gravity) for the compressible Euler equations
and the eikonal equation (3.1) relative to the Cartesian coordinates. That is, starting from the data on the g-spacelike

hypersurface portion Υ

(
(n)̃Σ

[−(U1+ϵ),U2]
τBoot

)
in Cartesian coordinate space, we consider the corresponding local solution

to (2.6a)–(2.6c) and the solution u to the eikonal equation (3.1). By Theorem 2.15, Ψ⃗ , Ωi , S i , Ci , and D are solu-
tions to the equations of Theorem 2.15. This “extended” solution is classical and enjoys the same regularity as the
solution in (n)M[τ0,τBoot],[−(U1+ϵ),U2]; we will discuss this in more detail below. For the extended solution, we let

D+
ϵ = D+

ϵ

(
Υ

(
(n)̃Σ

[−(U1+ϵ),U2]
τBoot

))
denote the future domain of dependence in Cartesian coordinate space Rt ×Rx1 ×T2

of the set Υ

(
(n)̃Σ

[−(U1+ϵ),U2]
τBoot

)
with respect to the acoustical metric g. For each small δ > 0, let D+

ϵ;δ denote the

subset of D+
ϵ consisting of the points in D+

ϵ that can be joined to Υ

(
(n)̃Σ

[−(U1+ϵ),U2]
τBoot

)
by a C1 curve in D+

ϵ that has

length ≤ δ with respect to the standard Euclidean metric on Rt ×Rx1 ×T2; D+
ϵ;δ is, in particular, a neighborhood of

Υ

(
(n)̃Σ

[−(U1+ϵ),U2]
τBoot

)
in D+

ϵ such that the lateral boundaries of D+
ϵ;δ contain g-null hypersurface portions, one of which

is a portion of PU2
; see Fig. 12 for a picture of the setup in geometric coordinate space, with the (x2,x3)-directions

suppressed. Since Υ is a diffeomorphism on (n)M[τ0,τBoot],[−(U1+ϵ),U2], a standard compactness argument yields that if

δ and ϵ > 0 are small enough, then Υ −1 is a diffeomorphism from D+
ϵ;δ onto its image in geometric coordinate space

Rt ×Ru × T2. In particular, by using Υ −1 to change variables to geometric coordinates after extending in Cartesian
coordinates, we see that the quantities Q – but not yet the rough time function – can be extended as classical solutions
relative to the geometric coordinates to a larger region (n)M̃m of the following form for some sufficiently small m > 0:

(n)M̃m
def= (n)M[τ0,τBoot],[−U1,U2] ∪ (n)M̃(New region)

m , (31.6)

(n)M̃(New region)
m

def=
⋃{(

tτBoot,n(u,x2,x3) +m′ ,u,x2,x3
)
| (m′ ,u,x2,x3) ∈ [0,m]× [−U1,U2]×T2

}
⊂ Υ −1

(
D+
ϵ;δ

)
,

(31.7)

such that each of the following hypersurfaces:{(
tτBoot,n(u,x2,x3) +m′ ,u,x2,x3

)
| (u,x2,x3)× [−U1,U2]×T2

}
(31.8)

is g-spacelike and such that Υ is a diffeomorphism from (n)M̃m onto its image in Cartesian coordinate space. We clarify
that in carrying out this argument, we have taken into account that the g-null boundary of (n)M̃m on which u ≡ U2

lies in the future domain of dependence (with respect to the acoustical metric g) of (n)̃Σ
[−U1,U2]
τBoot (without needing to

extend to u ∈ [−(U1 + ϵ),U2]); this is tied to the fact that by construction, the level-sets of u are “right-moving” in
Cartesian coordinate space, as is shown in Fig. 1B. In contrast, the g-null boundary of (n)M̃m on which u ≡ −U1 does

not lie in the future domain of dependence of (n)̃Σ
[−U1,U2]
τBoot . It does, however, lie in the future domain of dependence

of (n)̃Σ
[−(U1+ϵ),U2]
τBoot whenever ϵ > 0 and m is small compared to ϵ (this is the reason we are working with the extended

hypersurface (n)̃Σ
[−(U1+ϵ),U2]
τBoot ). Moreover, thanks to the bound ∥tτBoot,n∥C2,1([−U1,U2]×T2) ≤ C from Step 1, arguments

similar to the ones we used in the proof of Lemma 15.5 can be used to show that (n)M̃m is quasi-convex in the sense of
Item 6 in the statement of that lemma.
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Υ −1(D+
ϵ;δ)

(n)P [τ0,τBoot]
U2

{(tτBoot,n(u,x2,x3) +m,u,x2,x3)}

(n)P [τ0,τBoot]
−(U1+ϵ)

(n)̃Σ
[−(U1+ϵ),U2]
τ0

(n)̃Σ
[−(U1+ϵ),U2]
τBoot

t

U2 −U1

−(U1 + ϵ)

(n)M[τ0,τBoot],[−(U1+ϵ),U2] P
[0,tτBoot ,n+m]
−U1

u

Figure 12. The extension to (n)M̃(New region)
m in geometric coordinates

Given the energy estimate framework we established in the bulk of the paper (which yields L2estimates up to top-order
under commutations with the elements of the Pu-tangent commutation set P ), it is also standard (see [68, Section 2.7]
for the main ideas) that, as in Step 1, the solution enjoys the same regularity with respect to the geometric coordinates in

the extended region (n)M̃m as it does in (n)M[τ0,τBoot],[−U1,U2], where in (n)M̃(New region)
m , regularity is measured on the

spacelike hypersurfaces (31.8) in geometric coordinate space as well as constant-u g-null hypersurface portions contained
in (n)M̃m. Similarly, the solution enjoys the same regularity with respect to the Cartesian coordinates in Υ

(
(n)M̃m

)
as it

does in Υ
(

(n)M[τ0,τBoot],[−U1,U2]

)
.

Step 3: Extending the rough time function beyond (n)M[τ0,τBoot],[−U1,U2]. We first note that Lemmas 15.5, 15.6, and 15.7

and the relation (5.5) imply that the map M̆ (t,u,x2,x3) = (µ, X̆µ,x2,x3) defined in (5.3a) is a C1,1
geo diffeomorphism from

(n)M[τ0,τBoot],[−Uj,Uj] onto a set containing [mBoot,m0]×{−n}×T2 such that {mBoot}×{−n}×T2 ⊂ M̆
(

(n)̃Σ
(−Uj,Uj)
τBoot

)
.

By exploiting the compactness of (n)M̃m, we can, recalling that ∂
∂tµ < 0 when |u| ≤ Uj by (18.8b) and shrinking m if

necessary, assume that M̆ is a C1,1
geo diffeomorphism from (n)M̃m∩{|u| ≤Uj} onto a set containing {mBoot}× {−n}×T2

in its interior, and that there is a ∆ ∈ (0,mBoot) such that [mBoot −∆,mBoot +∆]× [−n−∆,−n+∆]×T2 is contained in

the interior of M̆
(

(n)M̃m ∩ {|u| ≤Uj}
)
. In particular, for m ∈ [mBoot −∆,mBoot +∆], the µ-adapted tori T̆m,−n defined

in (4.3c) are two-dimensional C1,1
geo sub-manifolds contained in the interior of (n)M̃m ∩ {|u| ≤ Uj}, and the hypersurface

portion X̆
[−mBoot−∆,−mBoot+∆]
−n

def= X̆−n ∩
{
(t,u,x2,x3) ∈R×R×T2 | mBoot −∆ ≤ µ(t,u,x2,x3) ≤mBoot +∆

}
is a three-

dimensional C1,1
geo sub-manifold contained in the interior of (n)M̃m ∩ {|u| ≤ Uj} (see (4.3c) for the definition of X̆−n,

and compare with the alternate definition (4.7b) of X̆
[−mBoot−∆,−mBoot+∆]
−n , which will eventually agree with the definition

given above). Moreover, the estimate (BA µ cnvx), which by continuity holds in (n)M̃m ∩ {|u| ≤ Uj} with different

constants, implies that the vectorfield (n)W̆ is transversal to X̆
[−mBoot−∆,−mBoot+∆]
−n . Considering also that (n)W̆ is tangent

to the lower boundary (n)̃Σ
[−U1,U2]
τBoot of (n)M̃(New region)

m , we see that these results are sufficient to allow us to extend

the construction of the rough time function (n)τ (see Sect. 4.1, Lemma 14.2, and Lemma 15.1) from (n)M[τ0,τBoot],[−U1,U2]

to all of (n)M̃m, i.e., so that (n)τ is defined on (n)M̃m (where we have perhaps shrunk m if necessary) and satisfies
∥(n)τ∥W 3,∞

geo (int((n)M̃m)) ≤ C. From this bound, the quasi-convexity of (n)M̃m mentioned in Step 2, and the Sobolev

embedding result (15.26) – which also holds for the domain (n)M̃m thanks to its quasi-convexity – we also find that
∥(n)τ∥C2,1

geo ((n)M̃m) ≤ C. Considering also the estimate ∂
∂t

(n)τ ≈ 1, which holds in (n)M̃m by (15.12a) and continuity, we

further deduce that the map (n)T (t,u,x2,x3) = ((n)τ,u,x2,x3) is a diffeomorphism from (n)M̃m onto its image, and
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that there is a ∆ > 0 (perhaps smaller than before) such that the image set contains [τ0,τBoot + ∆] × [−U1,U2] ×T2.
That is, ∥(n)τ∥C2,1

geo ((n)M[τ0 ,τBoot+∆],[−U1 ,U2])
≲ 1, and (n)T is a diffeomorphism from (n)M[τ0,τBoot+∆],[−U1,U2] onto its image.

Step 4: Propagation of regularity on the foliation induced by the extended (n)τ. We have constructed the solution

on the extended region (n)M[τ0,τBoot+∆],[−U1,U2] as well as the foliation
{

(n)̃Σ
[−U1,U2]
τ

}
τ∈[τ0,τBoot+∆]

of it. We can now

argue as in Step 2 to deduce that the solution enjoys the same regularity with respect to the geometric coordinates in
the extended region (n)M[τ0,τBoot+∆],[−U1,U2] as it does in (n)M[τ0,τBoot],[−U1,U2], where, as in the bulk of the paper,

regularity is measured on the hypersurfaces (n)̃Σ
[−U1,U2]
τ (which, by continuity, are g-spacelike for ∆ sufficiently small),

on constant-u g-null hypersurface portions (n)P [τ0,τ0+∆]
u , and on the rough tori (n)̃ℓτ,u .

Step 5: The bootstrap assumptions hold for the extended solution. The results we proved throughout the paper have
yielded, on (n)M[τ0,τBoot),[−U1,U2], strict improvements of all the bootstrap assumptions of Sects. 12 and 24.3; see Sect. 12.5
for a description of the results that yield the improvements. Hence, by exploiting the continuity guaranteed by local well-
posedness, we conclude that all the bootstrap assumptions of Sects. 12 and 24.3 also hold on (n)M[τ0,τBoot+∆),[−U1,U2].

□

32. Developments of the data, the singular boundary and the crease, and a new time function

In Sect. 34, we will state and prove Theorem 34.1, which is our main theorem on the behavior of the solution up to
the singular boundary. To prove Theorem 34.1, we will amalgamate some of our prior results that we derived at fixed
n ∈ [0,n0]. In this section, we carry out some of these tasks by constructing a new region MInteresting that contains the

portion of the singular boundary featured in Theorem 34.1. We also construct a corresponding time function (Interesting)τ
that foliatesMInteresting, and our construction is such that the singular boundary portion of interest (including the crease)

is contained in the level-set {(Interesting)τ = 0}, which forms the top boundary ofMInteresting. Finally, we derive fundamental

properties ofMInteresting and
(Interesting)τ.

Actually, as part of our construction in this section (see Sect. 32.2), we rigorously define the singular boundary and
crease. In Theorem 34.1, we reveal the behavior of the solution up to these sets, and the results of the theorem will justify
our definitions.

32.1. Definitions of developments. For each n ∈ [0,n0], Theorem 31.1 yields the development (n)M[τ0,0],[−U1,U2] of the

data, which contains the µ-adapted torus T̆0,−n, a subset of the singular boundary. Using the (n)M[τ0,0],[−U1,U2] as
building blocks, we now define other developments, including MInteresting, on which we will derive refined estimates at
the low derivative levels, revealing the detailed structure of the singular boundary. In particular, in Prop. 32.3, we exhibit
various key properties ofMInteresting.

Definition 32.1 (The development MInteresting and constituent subsets). We define the following subsets of geometric

coordinate space (see Fig. 13), where the subset (n)MI,J is defined in (4.6d), the hypersurface portion X̆
[τ0,0]
−n is defined in

(4.7b), and to obtain the second equality in (32.1b), we used (15.44):

MLeft
def= (0)M[τ0,0],[Uj,U2] ∪

(
(0)M[τ0,0],[−Uj,Uj] ∩ {X̆µ > 0}

)
, (32.1a)

MSingular
def=

⋃
n∈[0,n0]

X̆
[τ0,0]
−n =

⋃
(m,n)∈[0,m0]×[0,n0]

T̆m,−n, (32.1b)

MRight
def= (n0)M[τ0,0],[−U1,−Uj] ∪

(
(n0)M[τ0,0],[−Uj,Uj] ∩ {X̆µ < −n0}

)
, (32.1c)

MInteresting
def=MLeft ∪MSingular ∪MRight. (32.1d)

Remark 32.2 (|u| ≤ 1
2Uj inMSingular). Note that by (18.3a), we have |u| ≤ 1

2Uj inMSingular. In our subsequent analysis,
we often silently use this fact.

Remark 32.3 (The constituent pieces ofMLeft join smoothly, and similarly forMRight). The two subsets
(0)M[τ0,0],[Uj,U2]

and (0)M[τ0,0],[−Uj,Uj]∩{X̆µ > 0}, whose (non-disjoint) union definesMLeft, join smoothly. The reason is that by (15.35a),
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Σ0

(x2,x3) ∈ T2

t
u ∈R

MLeft MSingular

MRight

(Interesting)Σ
[−U1,U2]
τ0

(Interesting)Σ
[−U1,U2]
0

(0)P [τ0,0]
Uj

(0)̃ℓτ0,Uj

(0)̃ℓ0,Uj

T̆−τ0,0

(n0 )̃ℓτ0,−Uj

(n0 )̃ℓ0,−Uj

(n0)P [τ0,0]
−Uj

T̆−τ0,−n0

T̆0,0

T̆0,−n0

B[0,n0]

X̆
[τ0,0]
0

X̆
[τ0,0]
−n0

Figure 13. The regionMInteresting featured in Theorems 1.4 and 34.1

X̆µ is strictly positive along (0)P [τ0,0]
Uj

. Analogous remarks apply forMRight, in view of the estimate (15.35b), which shows

that X̆µ is strictly less than −n0 along (n0)P [τ0,0]
−Uj .

32.2. The singular boundary and the crease. We are now ready to define the singular boundary and the crease. In
Prop. 32.3, we derive some crucial properties that these sets enjoy.

Definition 32.4 (M̆
[0,n0]
m , the singular boundary portion B[0,n0], and the crease ∂−B[0,n0]). For each fixed m ∈ [0,m0],

we define the set M̆
[0,n0]
m as follows, where T̆m,−n is the µ-adapted torus defined in (4.3c):

M̆
[0,n0]
m

def=
⋃

n∈[0,n0]

T̆m,−n. (32.2)

We define the singular boundary portion B[0,n0] as follows:

B[0,n0] def= M̆
[0,n0]
0 =

⋃
n∈[0,n0]

T̆0,−n. (32.3)

We define the crease ∂−B[0,n0] as follows:

∂−B[0,n0] def= T̆0,0. (32.4)
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From (32.1b) and definitions (32.3)–(32.4), it follows that B[0,n0] ⊂MSingular and ∂−B[0,n0] ⊂MSingular. We also note
that from Def. 4.2, (32.1b), and (32.2), it follows that:

M̆
[0,n0]
m = {(t,u,x2,x3) | µ(t,u,x2,x3) = m} ∩MSingular (32.5)

and that:

MSingular =
⋃

m∈[0,m0]

M̆
[0,n0]
m . (32.6)

32.3. The structure ofMLeft,MRight,MSingular, B[0,n0], and ∂−B[0,n0]. In the next proposition, we derive key properties
of the sets that we defined in Sects. 32.1 and 32.2.

Proposition 32.5 (The structure ofMLeft,MRight,MSingular, B[0,n0], and ∂−B[0,n0]). Assume the hypotheses and conclu-

sions of Theorem 31.1 for n ∈ [0,n0]. Let (n)̃ℓτ,u ,
(n)P Iu , T̆m,−n, and X̆

I
−n be the sets defined in (4.6b), (4.6c), (4.7b), and (4.3c)

respectively. Then the following conclusions hold (see Figs. 6 and 13).

Differential-topological structure ofMLeft in geometric coordinate space.

• The left lateral boundary of the set MLeft defined in (32.1a) is (0)P [τ0,0]
U2

, which is a smooth hypersurface with

boundary components (0)̃ℓ0,U2
and (0)̃ℓτ0,U2

, each of which are C2,1 graphs over T2.

• The right lateral boundary ofMLeft is X̆
[τ0,0]
0 , which is a C1,1 hypersurface with boundary components T̆0,0 and

T̆−τ0,0, each of which are C
1,1 graphs over T2. Moreover, X̆

[τ0,0]
0 = {(t,u,x2,x3) | (t,x2,x3) ∈ (0)H[0,m0], u =

(0)h(t,x2,x3)}, where (0)h is the C1,1 function on (0)H[0,m0] = {(t,x2,x3) ∈ R × T2 | Tm0,0(x2,x3) ≤ t ≤
T0,0(x2,x3)} from Cor. 15.8.

• The top boundary ofMLeft is the C
2,1 hypersurface {(t,u,x2,x3) | (x2,x3) ∈ T2,U0,0(x2,x3) ≤ u ≤U2, and t =

t0,0(u,x2,x3)}, where U0,0 is the C
1,1 function from Lemma 15.7 and t0,0 is the C

2,1 function from Lemma 15.5.

The two boundary components of this hypersurface are (0)̃ℓ0,U2
, which is a C2,1 graph over T2, and the crease T̆0,0,

which is a C1,1 graph over T2.
• The bottom boundary of MLeft has an analogous structure: it is the C

2,1 hypersurface {(t,u,x2,x3) | (x2,x3) ∈
T

2,Uτ0,0(x2,x3) ≤ u ≤U2, and t = tτ0,0(u,x2,x3)}, which has the C2,1 boundary component (0)̃ℓτ0,U2
and the

C1,1 boundary component T̆τ0,0, each of which are graphs over T
2.

• MLeft is not closed, but it contains all of its limit points, except for the points in its right lateral boundary X̆
[τ0,0]
0 .

Differential-topological structure ofMRight in geometric coordinate space.

• The left lateral boundary of the set MRight defined in (32.1c) is equal to X̆
[τ0,0]
−n0 , which is a C1,1 hypersurface

with boundary components T̆0,−n0
and T̆−τ0,−n0

, each of which are C1,1 graphs over T2. Moreover, X̆
[τ0,0]
−n0 =

{(t,u,x2,x3) | (t,x2,x3) ∈ H
[0,m0]
n0 , u = (n0)h(t,x2,x3)}, where (n0)h is the C1,1 function on (n0)H[0,m0] =

{(t,x2,x3) ∈R×T2 | Tm0,−n0
(x2,x3) ≤ t ≤ T0,−n0

(x2,x3)} from Cor. 15.8.

• The right lateral boundary of MRight is
(n0)P [τ0,0]

−U1
, which is a smooth hypersurface with boundary components

(n0 )̃ℓ0,−U1
and (n0 )̃ℓτ0,−U1

, each of which are C2,1 graphs over T2.
• The top boundary ofMRight is the C

2,1 hypersurface {(t,u,x2,x3) | (x2,x3) ∈ T2, −U1 ≤ u ≤U0,n0
(x2,x3), and t =

t0,n0
(u,x2,x3)}, whereU0,n0

is the C1,1 function from Lemma 15.7 and t0,n0
is the C2,1 function from Lemma 15.5.

The two boundary components are (n0 )̃ℓ0,−U1
, which is a C2,1 graph over T2, and T̆0,−n0

, which is a C1,1 graph
over T2.

• The bottom boundary ofMRight has an analogous structure: it is the C
2,1 hypersurface {(t,u,x2,x3) | (x2,x3) ∈

T
2,Uτ0,n0

(x2,x3) ≤ u ≤U2, and t = tτ0,n0,(u,x
2,x3)}, which has the C1,1 boundary component T̆τ0,n0

and the

C2,1 boundary component (n0 )̃ℓτ0,−U1
, each of which are graphs over T2.

• MRight is not closed, but it contains all of its limit points except for the points in its left lateral boundary X̆
[τ0,0]
−n0 .



L. Abbrescia and J. Speck 229

A diffeomorphism ontoMSingular. Let E be the map from [0,m0] × [0,n0] ×T2 into geometric coordinate space Rt ×
Ru ×T2 defined by:

E(m,n,x2,x3)
def
= (n)E(m,x2,x3) =

(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
, (32.7)

where (n)E, Tm,−n, and Um,−n are the functions from (12.4) and Cor. 15.8. Then the following results hold.

• For (m,n) ∈ [0,m0]× [0,n0], we have:

E({m} × {n} ×T2) = T̆m,−n. (32.8)

• E is a diffeomorphism from [0,m0]× [0,n0]×T2 onto the setMSingular (which we view to be a subset of geometric
coordinate space) defined in (32.1b) such that the following estimate holds:

∥E∥C1,1([0,m0]×[0,n0]×T2) ≤ C. (32.9)

• In particular, the map S defined by:

S(n,x2,x3)
def
= E(0,n,x2,x3) (32.10)

is a diffeomorphism from [0,n0]×T2 onto the singular boundary portion B[0,n0] defined in (32.3) such that:

S({n} ×T2) = T̆0,−n (32.11)

and:

∥S∥C1,1([0,n0]×T2) ≤ C. (32.12)

• For (m,n) ∈ [0,m0]× [0,n0] the torus T̆m,−n is a C
1,1 graph over T2 that is g-spacelike.

• There exists a constant C > 1 such that for (m,n) ∈ [0,m0]× [0,n0], we have:

−C ≤ min
(x2,x3)∈T2

∂
∂m

Tm,−n(x2,x3) ≤ max
(x2,x3)∈T2

∂
∂m

Tm,−n(x2,x3) ≤ − 1
C
, (32.13a)

−C ≤ min
(x2,x3)∈T2

∂
∂n

Um,−n(x2,x3) ≤ max
(x2,x3)∈T2

∂
∂n

Um,−n(x2,x3) ≤ − 1
C
. (32.13b)

• For each fixed m ∈ [0,m0], the map (m)ȷ defined by:

(m)ȷ(n,x2,x3)
def
=

(
Um,−n(x2,x3),x2,x3

)
(32.14)

satisfies the following estimates, where d(n,x2,x3)
(m)ȷ denotes the differential of (m)ȷ with respect to (n,x2,x3):

∥(m)ȷ∥C1,1([0,n0]×T2) ≤ C, (32.15a)

detd(n,x2,x3)
(m)ȷ ≈ −1, on [0,n0]×T2. (32.15b)

Moreover, (m)ȷ is a diffeomorphism from [0,n0]×T2 onto the image set (m)ȷ([0,n0]×T2), which is:

D
[0,n0]
m

def
=

{
(u,x2,x3) | (x2,x3) ∈ T2,Um,−n0

(x2,x3) ≤ u ≤Um,0(x2,x3)
}
. (32.16)

Furthermore, D
[0,n0]
m is a quasi-convex subset of Ru ×T2 in the following sense: every pair of points r1, r2 ∈

D
[0,n0]
m is connected by a C1 curve in D

[0,n0]
m whose length with respect to the standard Euclidean metric on

Ru ×T2 is ≲ distflat(r1, r2), where distflat(r1, r2) is the standard Euclidean distance between r1 and r2 in the flat
space Ru ×T2.
Finally, the map (m)ȷ−1 satisfies the following estimate:

∥(m)ȷ−1∥
C1,1

(
D

[0,n0]
m

) ≤ C. (32.17)

t is a function of (u,x2,x3) along the level-sets of µ inMSingular. Let M̆
[0,n0]
m be the set defined in (32.2), and recall

that M̆
[0,n0]
m is the portion of the level-set {(t,u,x2,x3) | µ(t,u,x2,x3) = m} inMSingular. Then the following results hold.
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• Recall that the set D [0,n0]
m is defined in (32.16). Then for each m ∈ [0,m0], there exists a function T̆m : D

[0,n0]
m →R

such that relative to the geometric coordinates, we have:

M̆
[0,n0]
m =

{(
T̆m(u,x2,x3),u,x2,x3

)
| (u,x2,x3) ∈D

[0,n0]
m

}
. (32.18)

• There exists a C > 0 such that following estimate holds for m ∈ [0,m0]:

∥T̆m∥C2,1
(
D

[0,n0]
m

) ≤ C. (32.19)

In particular, M̆
[0,n0]
m is a 3-dimensional C2,1 sub-manifold-with-boundary in geometric coordinate space.

• The boundary of M̆[0,n0]
m in geometric coordinate space Rt ×Ru ×T2 satisfies ∂M̆

[0,n0]
m = T̆m,0 ∪ T̆m,−n0

, where

the µ-adapted tori T̆m,−n are C
1,1 graphs over T2 (as is indicated in (15.43)).

Differential-topological structure ofMSingular.

• (Quasi-convexity) MSingular is quasi-convex. That is, there is a constant C > 0 such that every pair of points
p1,p2 ∈MSingular is connected by a C

1
geo curve inMSingular whose length with respect to the standard flat Euclidean

metric on geometric coordinate space Rt ×Ru × T2 is ≤ Cdistflat(p1,p2), where distflat(p1,p2) is the standard
Euclidean distance between p1 and p2 in the flat space Rt ×Ru ×T2.

• (Sobolev embedding). There is a constant C > 0 such that the following Sobolev embedding result holds for scalar
functions f on int(MSingular):

∥f ∥C0,1
geo (MSingular)

≤ C∥f ∥W 1,∞
geo (int(MSingular))

. (32.20)

• Let E−1 denote the inverse function of the map E from (32.7), i.e., E−1(t,u,x2,x3) =
(
µ,−X̆µ,x2,x3

)
. Then E−1

is a C1,1
geo diffeomorphism fromMSingular onto [0,m0]× [0,n0]×T2.

• E−1(T̆m,−n) = {m} × {−n} ×T2.
• The following estimates hold: ∥∥∥E−1

∥∥∥
C1,1
geo (MSingular)

≤ C, (32.21a)

∥µ∥C2,1
geo (MSingular)

≤ C. (32.21b)

• The following estimates hold onMSingular, where dgeoE
−1 denotes the differential of E−1 with respect to the geometric

coordinates:

detdgeoE
−1 ≈ 1 onMSingular, (32.22)

−9
8
δ̊∗ ≤ min

MSingular

∂
∂t

µ ≤ max
MSingular

∂
∂t

µ ≤ −7
8
δ̊∗ (32.23)

M2

2
≤ min
MSingular

∂
∂u
X̆µ ≤ max

MSingular

∂
∂u
X̆µ ≤ 2

M2
. (32.24)

• The two lateral boundaries ofMSingular are the C
1,1 embedded hypersurfaces X̆

[τ0,0]
0 and X̆

[τ0,0]
−n0 mentioned above,

which have C1,1 boundaries. In particular, X̆
[τ0,0]
0 is the left lateral boundary of MSingular, while X̆

[τ0,0]
−n0 is its

right lateral boundary.

• The top boundary ofMSingular is M̆
[0,n0]
0 , which is equal to the singular boundary portion B[0,n0] defined in (32.3).

It is a C2,1 embedded hypersurface with the boundary components T̆0,0 and T̆0,−n0
, which are C1,1 graphs over

T
2.

• The bottom boundary ofMSingular is M̆
[0,n0]
m0 , and it is a C2,1 embedded hypersurface with the boundary components

T̆m0,0 and T̆m0,−n0
, which are C1,1 graphs over T2.

Proof. Throughout the proof, we will silently use Theorem 31.1, which shows that the bootstrap assumptions and results
proved prior to Theorem 31.1 hold with τBoot = 0 and mBoot = 0.
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Proof of the properties MLeft and MRight: We give the proof only for MLeft since the properties of MRight can be

derived using similar arguments. The fact that the left lateral boundary of MLeft is
(0)P [τ0,0]

U2
follows from Def. 4.11 and

definition (32.1a). These same definitions also imply that (0)P [τ0,0]
U2

is contained inMLeft. The regularity and structure of

the boundary components of (0)P [τ0,0]
U2

, namely (0)̃ℓ0,U2
and (0)̃ℓτ0,U2

, follow from the estimate (15.18) and the fact that
(0)̃ℓ0,U2

= (n)T −1
(
{0} × {U2} ×T2

)
and (0)̃ℓτ0,U2

= (n)T −1
(
{τ0} × {U2} ×T2

)
.

The fact that the right lateral boundary of MLeft is X̆
[τ0,0]
0 follows from definition (32.1a), (18.3a), and Lem-

mas 15.5 Lemma 15.7 with n = 0, which in particular imply that X̆
[τ0,0]
0 = (0)T −1 ◦ (0)Φ−1

(
[0,m0]× {0} ×T2

)
⊂

(0)M[τ0,0],[− 3
4Uj,

3
4Uj]. We also see, in view of definition (32.1a) and the fact that X̆µ = 0 along X̆

[τ0,0]
0 , that X̆

[τ0,0]
0

does not belong toMLeft. We established the regularity and structure of X̆
[τ0,0]
0 and its boundary components T̆0,0 and

T̆−τ0,0 in Cor. 15.8 (with n = 0).
Next, we note that the arguments given in the previous paragraph, together with (15.32), (15.43), and (15.28), imply that

the top boundary ofMLeft is the subset of
(0)̃Σ

[−U1,U2]
0 = {(t,u,x2,x3) | t = t0,0(u,x2,x3), (u,x2,x3) ∈ [−U1,U2]×T2}

in which U0,0(x2,x3) ≤ u ≤ U2. In particular, the two boundary components of the subset under consideration are
(0)̃Σ

[−U1,U2]
0 ∩ {u = U2} = (0)̃ℓ0,U2

and (0)̃Σ
[−U1,U2]
0 ∩ {(t,u,x2,x3) | u = U0,0(x2,x3)} = T̆0,0, where to obtain the last

identity, we used (15.37) with n = 0. We derived the C2,1-regularity of t0,0 in (15.27). We derived the C2,1-regularity

of (0)̃ℓ0,U2
and the C1,1-regularity of T̆0,0 earlier in the proof. We have therefore established the claimed properties of

MLeft.

Proof of the properties of E and S: To establish these results, we will study the following map:˜̆M (t,u,x2,x3) def=
(
µ,−X̆µ,x2,x3

)
(32.25)

on the domain MSingular in geometric coordinate space. Note the sign difference of −X̆µ on RHS (32.25) compared

to the definition (5.3a) of M̆ ; we inserted the minus sign on RHS (32.25) to facilitate the discussion in parts of this

proof. We will show that ˜̆M is a diffeomorphism from MSingular onto [0,m0] × [0,n0] × T2, and our proof will

show that the desired map E is equal to ˜̆M −1
. To proceed, we first compose the maps (n)T and (n)Φ (recall

(5.5), which states that (n)Φ ◦ (n)T (t,u,x2,x3) = M̆ (t,u,x2,x3) = (µ, X̆µ,x2,x3)) and use Lemmas 15.5 and 15.7
and (15.44) to deduce that for each fixed n ∈ [0,n0], M̆ is a C1,1

geo diffeomorphism on a subset of (n)M[τ0,0],[−U1,U2]

containing X̆
[τ0,0]
−n =

⋃
m∈[0,m0] T̆m,−n. Hence, using (15.33), definition (32.1b), Lemma 15.9, and the estimates of Prop. 17.1,

we see (accounting for the minus sign difference between M̆ and ˜̆M ) that ˜̆M is a diffeomorphism from MSingular

onto [0,m0] × [0,n0] × T2 whose Jacobian determinant satisfies the bound detdgeo
˜̆M ≈ 1 on MSingular and such

that for (m,n) ∈ [0,m0] × [0,n0], we have ˜̆M (T̆m,−n) = {µ} × {n} × T2. We clarify that the estimates (15.46)–(15.47)
(which hold on MSingular) and the convexity of the image set [0,m0] × [0,n0] × T2 guarantee the global injectivity

of ˜̆M on MSingular. Also using the Hölder estimates provided by Lemma 15.6 and Rademacher’s theorem, we see

that ∥˜̆M ∥W 2,∞
geo (int(MSingular))

≲ 1. From (BA µ− TORI STRUCTURE), Cor. 15.8, and (15.32), it follows that the inverse

map ˜̆M −1
is precisely the map E defined in (32.7). Thus, denoting ˜̆M −1

by E, we can use these estimates and

differentiate the identity E◦ ˜̆M (t,u,x2,x3) = (t,u,x2,x3) up to two times to deduce that ∥E∥W 2,∞((0,m0)×(0,n0)×T2) ≲ 1.
Since (0,m0) × (0,n0) × T2 is convex, we further deduce from Sobolev embedding (as in the proof of (15.18)) that
∥E∥C1,1([0,m0]×[0,n0]×T2) ≲ ∥E∥W 2,∞((0,m0)×(0,n0)×T2) ≲ 1, which yields (32.9). The properties of the map S defined in
(32.10), including (32.11), follow from the above arguments.

Proof of the quasi-convexity of MSingular and (32.20): First, we note that Lemma 15.9 (in particular the Jacobian
estimate (15.47)), the estimates of Prop. 17.1, and the convexity of [0,m0] × [−n0,0] × T2 imply that for every pair of
points q1,q2 ∈ [0,m0] × [−n0,0] ×T2, we have the following estimates: distflat(q1,q2) ≈ distflat

(
M̆ −1(q1),M̆ −1(q2)

)
,

where distflat(q1,q2) is the standard Euclidean distance between q1 and q2 in the flat space R × R × T
2, and

distflat
(
M̆ −1(q1),M̆ −1(q2)

)
is the standard Euclidean distance between M̆ −1(q1) and M̆ −1(q2) in the flat space
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Rt ×Ru ×T2 (note that M̆ −1(q1),M̆ −1(q2) ∈ MSingular). From this bound, the convexity of [0,m0] × [−n0,0] ×T2,

and the estimates of Prop. 17.1, we conclude thatMSingular = M̆ −1
(
[0,m0]× [−n0,0]×T2

)
is quasi-convex in the sense

stated in the proposition. From this quasi-convexity, it is a standard result (see, for example, [40, Theorem 7]), that the
Sobolev embedding result (32.20) holds on MSingular, where the constant C on RHS (32.20) depends on the constant (a
different one, also called C) in the definition of quasi-convexity.

Proof of (32.22)–(32.24): Since E−1 = ˜̆M , the estimate (32.22) follows from the fact that on MSingular, we have

detdgeo
˜̆M ≈ 1, as we showed above.

(32.23) follows from the estimate (18.8b) (which holds on (n)M[τ0,τBoot],[− 1
2Uj,

1
2Uj] for every n ∈ [0,n0]), the definition

MSingular of (32.1b), and the fact that X̆
[τ0,0]
−n ⊂ (n)M[τ0,τBoot],[− 1

2Uj,
1
2Uj] by (18.3a). From similar reasoning, based on the

estimate (18.5), we conclude (32.24).

Proof of (32.13a)–(32.13b): We define the vectorfields J and K as follows:

J
def=

1

∂
∂tµ−

( ∂∂t X̆µ) ∂∂uµ
∂
∂u X̆µ

 ∂∂t − ∂
∂t X̆µ
∂
∂u X̆µ

∂
∂u

 , (32.26)

K
def=

−1

∂
∂u X̆µ−

( ∂
∂uµ) ∂∂t X̆µ

∂
∂tµ

 ∂
∂u
−

∂
∂uµ

∂
∂tµ

∂
∂t

 . (32.27)

From definitions (32.26)–(32.27) and straightforward computations, we find that:

Jµ = 1, − JX̆µ = Jx2 = Jx3 = 0. (32.28)

Hence, J is the partial derivative with respect to µ in the coordinate system (µ,−X̆µ,x2,x3) (corresponding to RHS (32.25))
on the region [0,m0]× [0,n0]×T2. Similarly, we compute that:

−KX̆µ = 1, Kµ = Kx2 = Kx3 = 0, (32.29)

and thus K is the partial derivative with respect to −X̆µ in the coordinate system (µ,−X̆µ,x2,x3). From (32.25) and

the inverse function theorem, we compute that the 2 × 2 upper left-hand block of the matrix [dgeo
˜̆M ]−1 is equal to(

Jt Kt
Ju Ku

)
. Using (32.26)–(32.27), (18.5), and (18.8b), and the fact that ˜̆M is a diffeomorphism from MSingular (see also

Remark 32.2) onto [0,m0]× [0,n0]×T2, we deduce that the diagonal entries of the 2× 2 upper left-hand block of the

matrix [dgeo
˜̆M ]−1 satisfy the following estimates on [0,m0]× [0,n0]×T2, where C > 1:

−C ≤ Jt ≤ − 1
C
, −C ≤ Ku ≤ − 1

C
. (32.30)

Since E = ˜̆M −1
, we see that the estimates in (32.30) are precisely (32.13a)–(32.13b).

Proof of the diffeomorphism property of (m)ȷ, the quasiconvexity of D
[0,n0]
m , and the estimates (32.15a)–(32.15b) and

(32.17): The estimates (32.15a)–(32.15b) and the fact that (m)ȷ is a diffeomorphism on [0,n0]×T2 follow from the estimate
(32.9), the monotonicity estimate (32.13b), and the inverse function theorem.

The quasi-convexity of D
[0,n0]
m follows by combining the estimate (32.15a) and the monotonicity estimate (32.13b) with

arguments similar to the ones we used to prove (15.25) and the quasi-convexity of (n)M[τ0,τBoot],[−U1,U2]; we omit the
details.

The estimate (32.17) for (m)ȷ−1 follows from the estimates (32.15a)–(32.15b), the inverse function theorem, and the

quasi-convexity of D
[0,n0]
m .

Proof of (32.21a) and (32.21b): Lemma 5.5 and Prop. 17.1 imply ∥µ∥W 3,∞
geo (int(MSingular)) ≲ 1 and ∥X̆µ∥W 2,∞

geo (int(MSingular)) ≲ 1.

Also using (32.20), we deduce (32.21b) and the bound ∥X̆µ∥C1,1
geo (MSingular)

≲ 1. From these estimates and (32.25), it follows

that ∥˜̆M ∥C1,1
geo (MSingular)

≤ C. Since E−1 = ˜̆M , we conclude (32.21a).
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Proof of the existence of T̆m and the properties of T̆m and M̆
[0,n0]
m . We define the function (m)M(n,x2,x3) to be the

composition of the map (n,x2,x3)→ E(m,n,x2,x3) with (m)ȷ−1, where we clarify that (m)M has domain equal to the

set D
[0,n0]
m from (32.16). In view of (32.2), (32.8), and the diffeomorphism properties of E and (m)ȷ−1, we see that (m)M

is a diffeomorphism from D
[0,n0]
m onto M̆

[0,n0]
m (where we view M̆

[0,n0]
m to be a subset of geometric coordinate space).

Hence, the function T̆m is equal to the first component of (m)M . We have therefore shown (32.18).
We now prove (32.19). First, recalling that T̆m is the first component of (m)M , we use the bounds (32.9) and (32.17) to de-

duce that ∥T̆m∥C1,1
(
D

[0,n0]
m

) ≤ C. It remains for us to show that the second-order derivatives of the function T̆m(n,x2,x3)

are bounded in the norm ∥·∥
C0,1

(
D

[0,n0]
m

) by ≤ C. To this end, we differentiate the identity µ(
T̆m(u,x2,x3),u,x2,x3

)
= m

(which holds on D
[0,n0]
m ) up to two times with elements of

{
∂
∂u ,

∂
∂x2 ,

∂
∂x3

}
and use the implicit function theorem, the chain

rule, (18.8b), (32.21b), and the already proven bound ∥T̆m∥C1,1
(
D

[0,n0]
m

) ≤ C. We have therefore proved (32.19). From this

bound, (32.16), and (32.18), we conclude that for each fixed m ∈ [0,m0], the set M̆[0,n0]
m is a C2,1 embedded hypersurface

in geometric coordinate space Rt ×Ru × T2. Also using the bounds sup(m,n)∈[0,m0]×[0,n0] ∥Tm,−n∥C1,1(T2) ≤ C and

sup(m,n)∈[0,m0]×[0,n0] ∥Um,−n∥C1,1(T2) ≤ C implied by (32.9), we conclude that the two boundary components of M̆
[0,n0]
m

are C1,1. Finally, since diffeomorphisms map boundaries to boundaries, we conclude from (32.8) that the two boundary

components of M̆
[0,n0]
m are E({m} × {0} ×T2) = T̆m,0 and E({m} × {n0} ×T2) = T̆m,−n0

.

Proof of the properties of the boundary of MSingular: Since E is a diffeomorphism from [0,m0]× [0,n0]×T2 onto
MSingular, and since diffeomorphisms map boundaries to boundaries, it follows that the boundary of MSingular is the
union of four sets: E([0,m0]× {0} ×T2), E({0} × [0,n0]×T2), E([0,m0]× {n0} ×T2), and E({m0} × [0,n0]×T2). In

view of the form (32.25) of the map ˜̆M (which is equal to E−1), definitions (4.3a)–(4.3c), (4.7b), and (32.1b), and (15.44), we

conclude (recalling that τ0 = −m0) that the boundary ofMSingular is the union of the four sets X̆
[τ0,0]
0 , M̆

[0,n0]
0 = B[0,n0],

X̆
[τ0,0]
−n0 , and M̆

[0,n0]
m0 , as is stated in the proposition. The regularity properties of these boundary portions was derived

earlier in the proof. Finally, using the monotonicity guaranteed by (32.23)–(32.24), we find that the four sets mentioned
above are respectively (see Fig. 13) the left lateral boundary of MSingular, the top boundary of MSingular, the right lateral
boundary ofMSingular, and the bottom boundary ofMSingular.

This completes our proof of the proposition.
□

32.4. The character of M̆
[0,n0]
m , T̆m,−n, and ∂−B[0,n0]. In this section, we study the character of various sub-manifolds

of geometric coordinate space, i.e., whether they are g-timelike, null, or spacelike. The singular boundary is degenerate
for reasons discussed in Remark 32.8. Hence, we postpone our investigation of the character of the singular boundary
until Prop. 33.2, where we describe how it is embedded into the physical Cartesian coordinate space equipped with the
acoustical metric g.

We start with the following simple lemma, which provides various identities involving the gradient vectorfield of µ.

Lemma 32.6 (Identities involving D#µ). Let Dµ denote the gradient one-form of µ, let D#µ denote the g-dual vectorfield
of the gradient one-form, and let ∇/ #µ denote the ℓt,u-tangent vectorfield equal to the g/-dual of ∇/ µ. Then the following
identities hold:

µD#µ = −(µLµ+ X̆µ)L− (Lµ)X̆ +µ∇/ #µ, (32.31a)

µg(D#µ,D#µ) = µ(g−1)αβ(∂αµ)∂βµ = −2(Lµ)X̆µ−µ
{
(Lµ)2 − |∇/ µ|2g/

}
. (32.31b)

In particular, if 0 < µ′ ≤ m0, q ∈ {(t,u,x2,x3) | µ(t,u,x2,x3) = µ′} ∩ {|u| ≤ Uj}, and if X̆µ|q ≤ 0, then since
(18.8a) and (28.31) imply that RHS (32.31b) < 0 at q, it follows that {(t,u,x2,x3) | µ(t,u,x2,x3) = µ′} is g-spacelike (i.e.,
g(D#µ,D#µ) < 0) at q.

Proof. (32.31a)–(32.31b) follow from a straightforward computation based on the fact that (D#)α def= (g−1)αβ∂β and the

identity (g−1)αβ = −LαLβ −XαLβ −LαXβ + (g/−1)αβ , which follows from (3.34b). □

In the next lemma, we exhibit the character of various sub-manifolds of geometric coordinate space.
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Lemma 32.7 (The character of M̆
[0,n0]
m , T̆m,−n, ∂−B[0,n0]). Assume the hypotheses and conclusions of Theorem 31.1 for

n ∈ [0,n0]. Recall that for (m,n) ∈ [0,m0]× [0,n0], the µ-adapted torus T̆m,−n defined in (4.3c) is contained inMSingular

(see (32.1b)), and that for m ∈ [0,m0], the set M̆[0,n0]
m defined in (32.2) is the m-level-set of µ in MSingular. Then the

following results hold.
The character of T̆m,−n and ∂−B[0,n0] .

• For (m,n) ∈ [0,m0]× [0,n0], the torus T̆m,−n is a 2-dimensional, g-spacelike sub-manifold.
• In particular, the crease ∂−B[0,n0] = T̆0,0 is a 2-dimensional, g-spacelike sub-manifold.

The character of M̆
[0,n0]
m and B[0,n0] .

• For 0 <m ≤m0, M̆
[0,n0]
m is a 3-dimensional, g-spacelike sub-manifold-with-boundary.

Remark 32.8 (Acoustical metric degeneracies along the singular boundary). Note that Lemma 32.7 does not address the

causal structure of the singular boundary portion B[0,n0] = M̆
[0,n0]
0 (see definition 32.3, and recall that µ vanishes along

M̆
[0,n0]
0 ), viewed as a subset of geometric coordinate space. We have avoided discussing the causal structure of B[0,n0]

because relative to the geometric coordinates (t,u,x2,x3), some components of the acoustical metric g degenerate along

M̆
[0,n0]
0 . In particular, using Lemma 3.9 and Lemma 5.5, one can check that along B[0,n0], all vectors V ∈ span

{
L, ∂∂u

}
are g-null, i.e, they satisfy g(V ,V ) = 0. In contrast, even along B[0,n0], the Cartesian component matrix {gαβ}α,β=0,1,2,3
of the acoustical metric is a non-degenerate 4×4 Lorentzian matrix (in fact, by (2.16)–(2.17) and the estimates of Prop. 17.1,
the matrix is close to the standard Minkowski matrix). The discrepancy between the properties of g in the two coordinate
systems is caused by the fact that the change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) has a non-injective Jacobian
matrix along B[0,n0]; see Prop. 33.2. We refer to Prop. 33.2 for a description of the structure of Υ (B[0,n0]), that is, the
structure of the image of B[0,n0] in Cartesian coordinate space under the map Υ , which, in the proposition, is shown to
be an injective map on all ofMInteresting.

Proof of Lemma 32.7. We already showed in Prop. 32.5 that T̆m,−n is a 2-dimensional manifold and that M̆
[0,n0]
m is a

3-dimensional, g-spacelike sub-manifold-with-boundary.

Proof that T̆m,−n is g-spacelike: Consider the map ˜̆M (t,u,x2,x3) =
(
µ,−X̆µ,x2,x3

)
from (32.25). In the proof of

Prop. 32.5, we showed that ˜̆M is a diffeomorphism fromMSingular onto [0,m0]×[0,n0]×T2. Using Lemma 5.5, Prop. 9.1,
and the L∞ estimates of Prop. 17.1 (with ε replaced by Cϵ̊, which Theorem 31.1 allows for) we compute that:

dgeo
˜̆M =


∂
∂tµ

∂
∂uµ ∗ ∗

− ∂∂t X̆µ − ∂
∂u X̆µ ∗ ∗

0 0 1 0
0 0 0 1

 , (32.32)

where dgeo
˜̆M is the Jacobian matrix of ˜̆M and “∗” denotes quantities that are bounded in magnitude by O(ϵ̊). From

(32.32), (18.5), and (18.8b), we deduce that detdgeo
˜̆M ≈ 1. It follows that:

[dgeo
˜̆M ]−1 =

1

detdgeo
˜̆M


− ∂
∂u X̆µ − ∂

∂uµ ∗ ∗
∂
∂t X̆µ

∂
∂tµ ∗ ∗

0 0 1 0
0 0 0 1

 . (32.33)

Fix any (m,n) ∈ [0,m0] × [0,n0]. Since µ ≡ m and X̆µ ≡ −n along T̆m,−n, the last two columns of (32.33) are the

components of vectorfields V(2) = ∗ ∂∂t + ∗ ∂∂u + ∂
∂x2 and V(3) = ∗ ∂∂t + ∗ ∂∂u + ∂

∂x3 that, when restricted to T̆m,−n, span the

tangent space of T̆m,−n. Using Lemma 3.9, Lemma 5.5, (3.31a), Prop. 9.1 and the L∞ estimates of Prop. 17.1, we compute
that g(V(A),V(B)) = δAB +O(α̊), where δAB is the Kronecker delta. From this estimate, it easily follows that T̆m,−n is
g-spacelike, even in the case of the crease (in which m = n = 0).

Proof that M̆
[0,n0]
m is g-spacelike when m > 0: Fix any m ∈ (0,m0]. Note that µ ≡ m along M̆

[0,n0]
m , that X̆µ ≤ 0

along M̆
[0,n0]
m (by (32.2) and the fact that X̆µ ≡ −n along T̆m,−n), and that Lµ < 0 along M̆

[0,n0]
m (by Remark 32.2 and
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(18.8a)). Using these results, the estimate |∇/ µ|g/ ≲ ε (see (28.31)), and the identity (32.31b), we conclude that along M̆
[0,n0]
m ,

we have g(D#µ,D#µ) < 0. This implies that the g-normal to M̆
[0,n0]
m is g-timelike, which is the desired result.

□

32.5. A new time function and related geometric objects. In this section, on MInteresting, we define a time function
(Interesting)τ as well as several related geometric objects. We also derive some geometric and analytic properties of these
objects.

32.5.1. Definitions.

Definition 32.9 ((Interesting)τ, (Interesting)T (t,u,x2,x3) = ((Interesting)τ,u,x2,x3), (Interesting)tτ, H̆ , and Ğ). LetMInteresting =
MLeft ∪MSingular ∪MRight be the set defined in (32.1d) and depicted in Figs. 6 and 13.

Definition of (Interesting)τ. OnMInteresting, we define the scalar function (Interesting)τ as follows:

(Interesting)τ(t,u,x2,x3) def=


(0)τ(t,u,x2,x3), inMLeft,

−µ(t,u,x2,x3), inMSingular,
(n0)τ(t,u,x2,x3), inMRight.

(32.34)

Definition of level-set portions of (Interesting)τ. For −U1 ≤ u1 ≤ u2 ≤U2 and τ ∈ [τ0,0], we define:

(Interesting)Σ
[−U1,U2]
τ

def=
{
(t,u,x2,x3) | (u,x2,x3) ∈ [u1,u2]×T2, (Interesting)τ(t,u,x2,x3) = τ

}
. (32.35)

Definition of (Interesting)T and (Interesting)tτ. We define the map (Interesting)T :MInteresting→ [τ0,0]× [−U1,U2]×T2 as
follows:

(Interesting)T (t,u,x2,x3) = ((Interesting)τ,u,x2,x3). (32.36)

Next, for each τ ∈ [τ0,0], we define the function (Interesting)tτ : [−U1,U2]×T2→R as follows:

(Interesting)tτ(u,x2,x3) def=


tτ,0(u,x2,x3), if U−τ,0(x2,x3) < u ≤U2,

T̆−τ(u,x2,x3), if U−τ,−n0
(x2,x3) ≤ u ≤U−τ,0(x2,x3),

tτ,n0
(u,x2,x3), if −U1 ≤ u <U−τ,−n0

(x2,x3),

(32.37)

where tτ,n is the function from (15.28), Um,−n is the function on T
2 from (15.37), and T̆m is the function from (32.18).

Definition of H̆ and Ğ. In MInteresting, we define the vectorfields H̆ and Ğ as follows, where φ is the cut-off function
from Def. 4.1:

H̆
def=



X̆ − X̆A
(
∂
∂xA
−

∂
∂xA

(0)τ

∂
∂t

(0)τ

∂
∂t

)
, inMLeft,(

X̆ − X̆µ
Lµ L

)
−
(
X̆A − X̆µ

Lµ L
A
)(

∂
∂xA
−

∂
∂xA

µ

∂
∂tµ

∂
∂t

)
, inMSingular,(

X̆ +φ n0
LµL

)
−
(
X̆A +φ n0

LµL
A
)(

∂
∂xA
−

∂
∂xA

(n0)τ

∂
∂t

(n0)τ

∂
∂t

)
, inMRight,

(32.38a)

Ğ
def=


1

∂
∂t

(0)τ

∂
∂t , inMLeft,

− 1
∂
∂tµ

∂
∂t , inMSingular,

1
∂
∂t

(n0)τ

∂
∂t , inMRight.

(32.38b)

Remark 32.10 (The regularity of (Interesting)τ and the connection to the causal structure of {µ = 0}). In Prop. 32.11, we show
that (Interesting)τ ∈ C1,1

geo (MInteresting). That regularity is optimal in the sense that generally, (Interesting)τ < C2
geo(MInteresting).

The reason is that with respect to the geometric coordinates (t,u,x2,x3), τ and −µ generally agree only to first-order

along X̆
[τ0,0]
0 , which is the common boundary of the regions MLeft and MSingular in the piecewise-defined definition

(32.34) of (Interesting)τ; the first-order agreement along X̆
[τ0,0]
0 follows from definition (32.34), (4.4b), (15.44), and (15.10),

while (4.4) implies that D(n)W̆ (n)τ ≡ 0 along X̆
[τ0,0]
0 , an identity that does not hold for µ in the solution regime under
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study (see, for example, the transversal convexity condition (18.5)). It follows that the second-order partial derivatives of
(Interesting)τ with respect to the geometric coordinates can jump across X̆

[τ0,0]
0 .

Moreover, it is generally impossible to modify the construction of (Interesting)τ andMInteresting to enforce C2 agreement

of (Interesting)τ with −µ across X̆
[τ0,0]
0 in a manner such that the zero level-set of the new (Interesting)τ, which we denote by

τ′Interesting, still contains the singular boundary portion B
[0,n0]. The reason is that if τ′Interesting were C

2 with respect to the

geometric coordinates and agreed with −µ up to second-order along X̆
[τ0,0]
0 , then by Taylor expanding τ′Interesting starting

from the crease T̆0,0 (i.e., the subset of X̆
[τ0,0]
0 ∩ {τ′Interesting = 0} along which µ = X̆µ = 0), and using the estimates

(18.5), (18.8a), and (28.31) for µ (which by Taylor expansion imply corresponding estimates for τ′Interesting), one could prove

the following result: on near-zero level-sets of τ′Interesting, in a region near the crease T̆0,0 with µ > 0, we would have:

µg(D#τ′Interesting,D
#τ′Interesting) > 0. This would imply that the level-sets of τ′Interesting are spacelike near the crease, i.e.,

τ′Interesting could not be used as a time function. The main idea of the proof is that formally, along the level-set {µ = 0},
RHS (32.31b) becomes positive as one passes through the crease in the direction of increasing u because X̆µ becomes
positive (thanks to (18.5)) while Lµ is strictly negative everywhere near the crease (thanks to (18.8a)).

32.5.2. Properties of (Interesting)τ and related quantities. In the next proposition, we derive some fundamental properties of
the quantities from Def. 32.9 as well as implications of these properties for the structure of MInteresting and the behavior
of µ onMInteresting.

Proposition 32.11 (Properties of (Interesting)τ, (Interesting)T , (Interesting)tτ, Ğ, H̆ , andMInteresting). Let
(Interesting)τ, (Interesting)tτ,

(Interesting)T , Ğ, and H̆ be as in Def. 32.9. Then these quantities enjoy the following properties onMInteresting.

Properties of (Interesting)τ.

• The following estimate holds:

∥(Interesting)τ∥C1,1
geo (MInteresting)

≤ C. (32.39)

• The following estimate holds:
∂
∂t

(Interesting)τ ≈ 1, onMInteresting. (32.40)

• For τ ∈ [τ0,0], the level-set portions (Interesting)Σ
[−U1,U2]
τ defined in (32.35) are g-spacelike, except along the singular

boundary portion B[0,n0] ⊂ (Interesting)Σ
[−U1,U2]
0 ∩MSingular.

The behavior of µ onMInteresting.

• For τ ∈ [τ0,0], we have:

min
(Interesting)Σ

[−U1 ,U2]
τ

µ = −τ. (32.41)

Moreover, within (Interesting)Σ
[−U1,U2]
τ , the minimum value of −τ in (32.41) is achieved by µ precisely on the set

M̆
[0,n0]
−τ

def
=

⋃
n∈[0,n0] T̆−τ,−n from definition (32.2).

• In particular, by the previous point and definition (32.3), it follows that withinMInteresting, µ is positive, except along

the singular boundary portion B[0,n0] = M̆
[0,n0]
0 , which is a subset of (Interesting)Σ

[−U1,U2]
0 .

Properties of (Interesting)tτ.

• For each τ ∈ [τ0,0], we have:

∥(Interesting)tτ∥C1,1([−U1,U2]×T2) ≤ C. (32.42)

• The level-set portions (Interesting)Σ
[−U1,U2]
τ defined in (32.35) have the following graph structure:

(Interesting)Σ
[−U1,U2]
τ =

{
(t,u,x2,x3) | (u,x2,x3) ∈ [−U1,U2]×T2, t = (Interesting)tτ(u,x2,x3)

}
. (32.43)

Properties of (Interesting)T .
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• The change of variables map (Interesting)T (t,u,x2,x3) = ((Interesting)τ,u,x2,x3) is a diffeomorphism fromMInteresting

onto [τ0,0]× [−U1,U2]×T2.
• The following estimate holds:

∥(Interesting)T ∥C1,1
geo (MInteresting)

≤ C. (32.44)

Properties of Ğ.

• InMInteresting, we have:

Ğ(Interesting)τ = 1, Ğu = Ğx2 = Ğx3 = 0. (32.45)

In particular, Ğ is the partial derivative with respect to (Interesting)τ in the coordinate system ((Interesting)τ,u,x2,x3).
• The following estimate holds:

∥Ğ∥C0,1
geo (MInteresting)

≤ C. (32.46)

Properties of H̆ .

• InMInteresting, we have:

H̆u = 1, H̆ (Interesting)τ = H̆x2 = H̆x3 = 0. (32.47)

In particular, H̆ is the partial derivative with respect to u in the coordinate system ((Interesting)τ,u,x2,x3).
• The following estimate holds:

∥H̆∥C0,1
geo (MInteresting)

≤ C. (32.48)

• Every u-parametrized integral curve of H̆ is defined on the interval [−U1,U2], and the images of these integral
curves are contained inMInteresting.

• For each fixed τ ∈ [τ0,0], every u-parametrized integral curve of H̆ in the level-set (Interesting)Σ
[−U1,U2]
τ intersects

the torus T̆−τ,0 ⊂ X̆
[τ0,0]
0 in precisely one point. Moreover, T̆−τ,0 ⊂ (Interesting)Σ

[− 1
2Uj,

1
2Uj]

τ .

Properties ofMInteresting. The following results hold.

• MInteresting is a compact subset of geometric coordinate space Rt ×Ru ×T2.
•

MInteresting =
⋃

τ∈[τ0,0]

(Interesting)Σ
[−U1,U2]
τ . (32.49)

• For every pair of points q1,q2 ∈ [τ0,0]× [−U1,U2]×T2, we have:

distflat
(

(Interesting)T −1(q1), (Interesting)T −1(q2)
)
≈ distflat(q1,q2), (32.50)

where on both sides of (32.50), distflat(A,B) is the standard Euclidean distance between A and B in the flat space
R×R×T2.

• (Quasi-convexity) MInteresting is quasi-convex. That is, there is a constant C > 0 such that every pair of points
p1,p2 ∈ MInteresting is connected by a C

1
geo curve in MInteresting whose length with respect to the standard flat

Euclidean metric on geometric coordinate space R×R×T2 is ≤ Cdistflat(p1,p2).
• (Sobolev embedding) There is a constant C > 0 such that the following Sobolev embedding result holds for scalar
functions f on int(MInteresting):

∥f ∥C0,1
geo (MInteresting)

≤ C∥f ∥W 1,∞
geo (int(MInteresting))

. (32.51)

Proof.
Proof of (32.49): From definition (32.1a), we see that MLeft ⊂ (0)M[τ0,0],[−U1,U2]. Hence, since (0)M[τ0,0],[−U1,U2] is

foliated by the level-sets of (0)τ, it follows from definition (32.34) that MLeft is foliated by the level-sets of (Interesting)τ,
which have the range [τ0,0]. Using similar reasoning based on definition (32.1c), we see that MRight is foliated by the

level-sets of (Interesting)τ. Moreover, using (32.5)–(32.6), we see that MSingular is foliated by the level-sets of µ, which have
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the range [0,m0] = [0,−τ0] inMSingular. Hence, from definition (32.34), we see thatMSingular is foliated by the level-sets

of (Interesting)τ, which have the range [τ0,0]. From these facts and definition (32.1d), we conclude (32.49).

Proof of (32.43): In Prop. 32.5, we showed that the top boundary ofMLeft, which is contained in the level-set {(0)τ = 0}, is
the hypersurface

{
(t,u,x2,x3) | (x2,x3) ∈ T2,U0,0(x2,x3) ≤ u ≤U2, and t = t0,0(u,x2,x3)

}
. The proof, in conjunction

with (15.28) and (15.37), also shows that T̆0,0 =
{
(t,u,x2,x3) | (x2,x3) ∈ T2, u = U0,0(x2,x3)and t = t0,0(u,x2,x3)

}
,

and that although T̆0,0 is in the closure of MLeft, it does not belong to MLeft. The same arguments, together with
definition (32.34), also yield that MLeft is foliated by the level sets of (Interesting)τ, and that for each fixed τ ∈ [τ0,0], we
have

{
(Interesting)τ = τ

}
∩MLeft =

{
(t,u,x2,x3) | (x2,x3) ∈ T2,U−τ,0(x2,x3) < u ≤U2, and t = t−τ,0(u,x2,x3)

}
. Simi-

larly,MRight is foliated by the level sets of (Interesting)τ, and for each fixed τ ∈ [τ0,0], we have
{
(Interesting)τ = τ

}
∩MRight ={

(t,u,x2,x3) | (x2,x3) ∈ T2, −U1 ≤ u <U−τ,n0
(x2,x3), and t = t−τ,−n0

(u,x2,x3)
}
. Moreover, from Prop. 32.5 (in par-

ticular (32.16) and (32.18)) and definition (32.34), we see that for each fixed τ ∈ [τ0,0], we have
{
(Interesting)τ = τ

}
∩

MSingular =
{(
T̆−τ(u,x2,x3),u,x2,x3

)
| (x2,x3) ∈ T2,U−τ,−n0

(x2,x3) ≤ u ≤U−τ,0(x2,x3)
}
. From these facts, (32.49),

and definition (32.37), we conclude (32.43).

Proof of (32.40): From definitions (32.1a), (32.1c), and (32.34), and Lemma 15.6 in the cases n = 0 and n = n0, we see
that (Interesting)τ ∈ C2,1

geo (cl(MLeft)) and (Interesting)τ ∈ C2,1
geo (cl(MRight)), where cl denotes set closure in geometric coordinate

space. Similarly, from definition (32.34) and the estimate (32.21b), we see that (Interesting)τ ∈ C2,1
geo (MSingular). Moreover,

Prop. 32.5 yields that MLeft and MSingular have the common C1,1 boundary X̆
[τ0,0]
0 , and from the above observations,

definition (32.34), and Lemma 15.3 with n = 0, we see that (Interesting)τ and its first partial derivatives with respect to the
geometric coordinates (t,u,x2,x3) are continuous across this common boundary. Similar arguments yield that MRight

andMSingular have the common C1,1 boundary X̆
[τ0,0]
−n0 , and that (Interesting)τ and its first partial derivatives with respect to

the geometric coordinates (t,u,x2,x3) are continuous across this common boundary. From these facts, definition (32.36),
and Rademacher’s theorem, it follows that (Interesting)τ, (Interesting)T ∈W 2,∞

geo (int(MInteresting))∩C1
geo(MInteresting), and that

the following estimates hold:

∥(Interesting)τ∥W 2,∞
geo (int(MInteresting))

, ∥(Interesting)T ∥W 2,∞
geo (int(MInteresting))

≤ C, (32.52)

∥(Interesting)τ∥C1(MInteresting), ∥
(Interesting)T ∥C1(MInteresting) ≤ C. (32.53)

Next, we use definition (32.34) and the estimate (15.20) to deduce that ∂
∂t

(Interesting)τ|MLeft
≈ 1 and ∂

∂t
(Interesting)τ|MRight

≈ 1.

Similarly, since definitions (32.1b), (32.34), and Def. 4.5 imply that (Interesting)τ|
X̆

[τ0 ,0]
−n

= (n)τ|
X̆

[τ0 ,0]
−n

, we deduce from (15.20)

that ∂
∂t

(Interesting)τ|MSingular
≈ 1. From these bounds and (32.53), we conclude (32.40).

Proof that (Interesting)T is a diffeomorphism, proof thatMInteresting is compact, and proof of (32.42): From the defini-

tion (32.36) of (Interesting)T , the estimates (32.40) and (32.53), and the inverse function theorem, we see that (Interesting)T

is a local diffeomorphism on MInteresting. Also using (32.49) and the graph structure of (Interesting)Σ
[−U1,U2]
τ from (32.43),

we see that (Interesting)T is injective onMInteresting and that (Interesting)T (MInteresting) = [τ0,0]× [−U1,U2]×T2. That is,
(Interesting)T is a global diffeomorphism fromMInteresting onto [τ0,0]× [−U1,U2]×T2. The compactness ofMInteresting

now follows since it is the image of the compact set [τ0,0]× [−U1,U2]×T2 under the inverse of the diffeomorphism
(Interesting)T .

Next, using (32.40), (32.52), and (32.53), we deduce that the inverse map satisfies ∥(Interesting)T −1∥C1([τ0,0]×[−U1,U2]×T2) ≤
C and ∥(Interesting)T −1∥W 2,∞((τ0,0)×(−U1,U2)×T2) ≤ C. Thanks to the convexity of (τ0,0) × (−U1,U2) × T2, standard

Sobolev embedding also yields ∥(Interesting)T −1∥C1,1([τ0,0]×[−U1,U2]×T2) ≤ C∥(Interesting)T −1∥W 2,∞((τ0,0)×(−U1,U2)×T2) ≤ C.
Since (Interesting)tτ is the first component function of (Interesting)T −1, we conclude (32.42).

Proof of (32.41) and related properties of µ: From (32.5)–(32.6), and definition (32.34), it follows that (Interesting)Σ
[−U1,U2]
τ ∩

MLeft = (0)̃Σ
[−U1,U2]
τ ∩MLeft,

(Interesting)Σ
[−U1,U2]
τ ∩MRight = (n0 )̃Σ

[−U1,U2]
τ ∩MRight, and

(Interesting)Σ
[−U1,U2]
τ ∩MSingular =

M̆
[0,n0]
−τ . The result (32.41) and the results stated just below (32.41) follow from these three identities, the fact that
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(Interesting)Σ
[−U1,U2]
τ = ((Interesting)Σ

[−U1,U2]
τ ∩MLeft)∪ ((Interesting)Σ

[−U1,U2]
τ ∩MRight)∪ ((Interesting)Σ

[−U1,U2]
τ ∩MSingular),

the result (18.1) and the results stated just below (18.1), and (32.5) (which shows that µ ≡ −τ along M̆
[0,n0]
−τ ).

Proof of (32.50), of the quantitative quasi-convexity of MInteresting, and of (32.51): Thanks to the estimate (32.40), the

estimate ∥(Interesting)T −1∥C1([τ0,0]×[−U1,U2]×T2) ≤ C proved above, and the convexity of [τ0,0]× [−U1,U2]×T2, we can
use arguments similar to the ones given in the proof of Lemma 15.5 to conclude (32.50), the quasi-convexity ofMInteresting,
and the Sobolev embedding result (32.51).

Proof of (32.39) and (32.44): These estimates follow from (32.51) and (32.52).

Proof that the (Interesting)Σ
[−U1,U2]
τ are g-spacelike for τ ∈ [τ0,0], except along B[0,n0]: This follows from defini-

tion (32.34), Lemma 32.7 (note that MSingular\B[0,n0] =
⋃

m∈(0,m0]M̆
[0,n0]
m ), (6.20a), (6.20c), (18.8a) (which implies that

−Lµ ≈ 1 on the support of φ), and (18.27), which collectively show that the vectorfield (n)Ñ (which is g-orthogonal to
(n)̃Σ

[−U1,U2]
τ ) is g-timelike in regions where µ > 0. We clarify that µ > 0 onMLeft∪MRight by virtue of definitions (32.1a)

and (32.1c), (18.1) and the results stated below (18.1), and the fact for each n ∈ [0,n0], we have that X̆µ = −n along the
µ-adapted torus T̆0,n in (n)M[τ0,τ),[−U1,U2] where µ vanishes.

Proof of (32.45) and (32.47): These identities are straightforward to verify from Def. 32.9, Lemma 3.9, and equation (4.4a).

Proof of (32.46) and (32.48): Since we have already shown that H̆ and Ğ are coordinate partial derivatives in the
coordinate system ((Interesting)τ,u,x2,x3), the estimates (32.46) and (32.48) follow from (32.44) and the estimate

∥(Interesting)T −1∥C1,1([τ0,0]×[−U1,U2]×T2) ≤ C

noted above.

Proof of the remaining properties of H̆ : Since (32.47) shows that H̆ is the partial derivative with respect to u
in the coordinate system ((Interesting)τ,u,x2,x3), it trivially follows that every u-parametrized integral curve of H̆ that

starts in the level-set (Interesting)Σ
[−U1,U2]
τ (for some τ ∈ [τ0,0]) is defined on the interval [−U1,U2] and remains in

(Interesting)Σ
[−U1,U2]
τ .

Finally, we show that in (Interesting)Σ
[−U1,U2]
τ , every integral curve from the previous paragraph must intersect T̆−τ,0

in a unique point. To this end, we note that Prop. 32.5 implies that E−1 is a C1,1
geo diffeomorphism from MSingular onto

[0,m0]×[0,n0]×T2. In particular, considering the form (32.7) of E, and using (18.3b) and the fact that (Interesting)τ|
X̆

[τ0 ,0]
0

=

(0)τ|
X̆

[τ0 ,0]
0

, we see that T̆−τ,0 ⊂ X̆
[τ0,0]
0 ∩ (Interesting)Σ

[− 1
2Uj,

1
2Uj]

τ ⊂MSingular, and that along T̆−τ,0, u is a C1,1 function

of (x2,x3) ∈ T2 satisfying |u| ≤ 1
2Uj. Combining these results and using that H̆u = 1 and H̆x2 = H̆x3 = 0, we see

that every integral curve from the previous paragraph must intersect T̆−τ,0. The uniqueness of the point follows from
the fact that X̆µ|T̆−τ,0 = 0 and the fact that when |u| ≤ Uj, we have the estimate H̆X̆µ ≈ 1; this estimate follows from
definition (32.38a), Lemma 5.5, Prop. 9.1, (18.5), (18.8a), and the estimates of Lemma 15.5 and Prop. 17.1.

□

33. Homeomorphism and diffeomorphism properties of Υ onMInteresting and a description of the singular boundary in
Cartesian coordinate space

In this section, we reveal the homeomorphism and diffeomorphism properties of the change of variables map
Υ (t,u,x2,x3) = (t,x1,x2,x3) on the region MInteresting. We also reveal how the singular boundary B[0,n0] is em-

bedded in Cartesian coordinate space under Υ , i.e., we exhibit various properties of the set Υ (B[0,n0]), including its
structure as a g-null hypersurface in the Cartesian coordinate differential structure. We refer to Remark 33.3 for a
discussion of interesting degeneracies in the vectorfield L that occur along Υ (B[0,n0]).

33.1. Homeomorphism and diffeomorphism properties of Υ on MInteresting. In the next proposition, we reveal the
homeomorphism and diffeomorphism properties of the change of variables map Υ . The proposition is crucial for
translating results that we have derived with respect to the geometric coordinates onMInteresting into results with respect
to the Cartesian coordinates on Υ (MInteresting). This will become apparent in the proof of Theorem 34.1.
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Proposition 33.1 (Homeomorphism and diffeomorphism properties of Υ on MInteresting). Assume the hypotheses and
conclusions of Theorem 31.1 for n ∈ [0,n0]. Recall thatMInteresting is the set defined in (32.1d) and depicted in Figs. 6 and
13. Then the change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) enjoys the following properties.
• Υ is a continuous, injective map on the set MInteresting defined in (32.1d), which is compact by Prop. 32.11. In
particular, Υ is a homeomorphism fromMInteresting onto its image.

• The following estimates hold onMInteresting:

∥Υ ∥C3,1
geo (MInteresting)

≤ C, (33.1)

det
∂Υ (t,u,x2,x3)
∂(t,u,x2,x3)

= µ
c2

X1 = −{1 +O(α̊)}µ. (33.2)

• Υ is a global diffeomorphism on the subsetMInteresting\B[0,n0], i.e., it is a diffeomorphism away from the singular
boundary.

Proof. Using Lemma 5.5, Prop. 9.1, and Prop. 17.1, we compute that ∥Υ ∥W 4,∞
geo (MInteresting)

≲ 1. From this estimate and (32.51),

we further deduce that ∥Υ ∥C3,1
geo (MInteresting)

≲ 1 as desired.

(33.2) follows from same the arguments we used to prove (18.20). From these facts, the fact that µ is positive on
MInteresting\B[0,n0] (see Prop. 32.11), and the inverse function theorem, we deduce that Υ is a local diffeomorphism on

MInteresting\B[0,n0].
The rest of proof is similar to the proof of Prop. 18.4. We will silently use the following results from Prop. 32.11: the

vectorfield H̆ is the partial derivative with respect to u in the coordinate system ((Interesting)τ,u,x2,x3), and the vectorfield
Ğ is the partial derivative with respect to (Interesting)τ in the coordinate system ((Interesting)τ,u,x2,x3). Moreover, we will
use the notation “∗” to denote any quantity that is pointwise bounded in magnitude by O(α̊).

To complete the proof of the proposition, we must show that Υ is injective on MInteresting. In view of the diffeomor-

phism properties of (Interesting)T shown in Prop. 32.11, we see that it suffices to show that Υ ◦ (Interesting)T −1, which maps
((Interesting)τ,u,x2,x3)→ (t,x1,x2,x3), is injective on the domain [τ0,0]× [−U1,U2]×T2.

As an intermediate step, we will show that the map ((Interesting)τ,u,x2,x3)→ ((Interesting)τ,x1,x2,x3) is injective on
the domain [τ0,0] × [−U1,U2] × T2 and is a diffeomorphism away from the crease. Below we will show that the
map ((Interesting)τ,x1,x2,x3)→ (t,x1,x2,x3) is also injective, which will complete the proof. To achieve the intermediate
step, we will show that for every fixed (τ,x2,x3) ∈ [τ0,0] × T2, the map u → x1(τ,u,x2,x3) is strictly decreasing
(here we stress that τ denotes a fixed value of (Interesting)τ) on the domain [−U1,U2] such that H̆x1 < 0 away from
(Interesting)T

(
∂−B[0,n0]

)
, i.e., away from the image of the crease under (Interesting)T . To this end, we first use Lemma 5.5,

Prop. 9.1, (32.38a), and the estimates of Lemma 15.5 and Props. 17.1 and 32.11 to deduce the following estimates, where φ is
the cut-off from Definition 4.1:

H̆x1 =


µ(−1 + ∗), in (Interesting)T (MLeft) ,

−(1 + ∗)µ− (1 + ∗) X̆µLµ , in (Interesting)T
(
MSingular

)
,

−(1 + ∗)µ+φ(1 + ∗) n0
Lµ , in (Interesting)T

(
MRight

)
.

(33.3)

Recall now that by Prop. 32.11, we have µ > 0 in (Interesting)T
(
MInteresting

)
, except along the singular boundary portion

(Interesting)T
(
B[0,n0]

)
, where (Interesting)T

(
B[0,n0]

)
⊂ (Interesting)T

(
(Interesting)Σ

[−U1,U2]
0

)
⊂ (Interesting)T

(
MSingular

)
. More-

over, from Prop. 18.1 definitions (4.3c) and (32.1b), and Remark 32.2, it follows that in (Interesting)T
(
MSingular

)
, we have

Lµ ≈ −1 and X̆µ < 0, except along the subset (Interesting)T
(
X̆

[τ0,0]
0

)
, where X̆µ vanishes. Moreover, using (15.44), we

see that along (Interesting)T
(
X̆

[τ0,0]
0

)
, we have µ > 0, except on the crease (Interesting)T

(
∂−B[0,n0]

)
= (Interesting)T

(
T̆0,0

)
.

That is, (Interesting)T
(
T̆0,0

)
is precisely the subset of (Interesting)T

(
MInteresting

)
along which both µ and X̆µ vanish. Note

also that (Interesting)T
(
T̆0,0

)
⊂ (Interesting)T

(
B[0,n0]

)
⊂ (Interesting)T

(
(Interesting)Σ

[−U1,U2]
0

)
. From these facts and (33.3),

we see that within (Interesting)T
(
MSingular

)
, we have H̆x1 < 0, except along the crease (Interesting)T

(
T̆0,0

)
, which is a

subset of (Interesting)T
(

(Interesting)Σ
[−U1,U2]
0

)
, where H̆x1|(Interesting)T (T̆0,0) = 0. In addition, Prop. 32.11 implies that every
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u-parameterized integral curve of H̆ in (Interesting)T
(

(Interesting)Σ
[−U1,U2]
0

)
(i.e., in the level-set {(Interesting)τ = 0}) intersects

the crease at a unique value of u ∈ [−1
2Uj,

1
2Uj]. In total, we have shown that along every u-parameterized integral

curve of H̆ in [τ0,0]× [−U1,U2]×T2, we have H̆x1 < 0, except at possibly one point on the integral curve. From this
fact and the mean value theorem, we conclude that at every fixed (τ,x2,x3) ∈ [τ0,0]×T2, the map u→ x1(τ,u,x2,x3)
is strictly decreasing. We have therefore shown that the map ((Interesting)τ,u,x2,x3)→ ((Interesting)τ,x1,x2,x3) is injective
on the domain [τ0,0]× [−U1,U2]×T2 and is a C1 diffeomorphism away from (Interesting)T

(
∂−B[0,n0]

)
.

Next, for use below, we use definitions (32.34) and (32.38b), Lemma 5.5, Prop. 9.1, and the estimates of Props. 17.1 and
Prop. 32.11, to compute that in (Interesting)T

(
MInteresting

)
, we have Ğx1 ≈ ∂

∂tx
1 ≈ Lx1 −LA ∂

∂xA
x1 ≈ L1 ≈ 1.

The rest of the proof now mirrors the proof of the injectivity of Υ on (n)M[τ0,τBoot],[−U1,U2] provided by Prop. 18.4,

where the estimate Ğx1 ≈ 1 plays the role of the estimate (18.22) used in that proof. We will sketch the details. Specifically,
the argument requires that we show that 1

∂t (Interesting)τ
> 0 on MInteresting, except possibly when (Interesting)τ = 0, where

∂t is the Cartesian partial time derivative vectorfield. To prove this result, we first use (3.10), (3.13), (3.26a), (4.2), (4.4),
(5.9a), Lemma 5.5, Prop. 9.1, definition (32.34), and the estimates of Lemma 15.5 and Props. 17.1 and 32.11 to compute that
∂t = L+ (1 + ∗)X + ∗Y(2) + ∗Y(3) and that the following estimates hold, where φ is the cut-off from Definition 4.1:

1
∂t (Interesting)τ

≈


1, inMLeft,

1
1− X̆µµ

= µ

µ−X̆µ , inMSingular,

1
1+ n0φ

µ

= µ
µ+n0φ

, inMRight.

(33.4)

We now recall that X̆µ|
X̆

[τ0 ,0]
−n

= −n (and thus by (32.1b), X̆µ ≤ 0 in MSingular), and that within MInteresting, µ vanishes

precisely on the singular boundary B[0,n0], which is contained in (Interesting)Σ
[−U1,U2]
0 , i.e., µ can vanish only when

(Interesting)τ = 0. From these facts, definitions (32.1a)–(32.1d), (32.49), and (33.4), it follows that within MInteresting, we

have 1
∂t (Interesting)τ

> 0, except possibly when (Interesting)τ = 0, which is the desired result. This concludes the proof of the

proposition.
□

33.2. Description of the singular boundary in Cartesian coordinate space. In the next proposition, we reveal how
the singular boundary B[0,n0] is embedded in Cartesian coordinate space, i.e., we exhibit various properties of Υ (B[0,n0]).
Among the main conclusions is that Υ (B[0,n0]) is ruled, in a degenerate sense made clear in the proposition and
Remark 33.3, by integral curves of the g-null vectorfield L.

Proposition 33.2 (Description of the singular boundary in Cartesian coordinate space). Assume the hypotheses and
conclusions of Theorem 31.1 for n ∈ [0,n0]. Let Υ be the change of variables map from geometric to Cartesian coordinates
defined in (5.1), and let S be the C1,1 diffeomorphism defined in (32.10). Recall that B[0,n0] is a portion of the singular
boundary in geometric coordinate space and that ∂−B[0,n0] denotes the crease, viewed as subsets of geometric coordinate
space. Recall also that in Prop. 32.5, we showed that S is a diffeomorphism from [0,n0] × T2 onto B[0,n0]. Then the
following conclusions hold.

A homeomorphism onto Υ (B[0,n0]) and a diffeomorphism onto Υ (B[0,n0]\∂−B[0,n0]). Υ ◦S is a C1,1 injective map

from [0,n0]×T2 onto Υ (B[0,n0]) - the image of B[0,n0] in Cartesian coordinate space - that satisfies:

∂[Υ ◦S](n,x2,x3)
∂(n,x2,x3)

=
∂(t,x1,x2,x3)
∂(n,x2,x3)

=


n

( ∂
∂uµ) ∂∂t X̆µ−( ∂∂tµ) ∂∂u X̆µ

∗ ∗
{1+∗}n

( ∂
∂uµ) ∂∂t X̆µ−( ∂∂tµ) ∂∂u X̆µ

∗ ∗

0 1 ∗
0 ∗ 1

 , (33.5)

where ∗ denotes terms of size O(α̊), and the denominator-terms satisfy ( ∂∂uµ) ∂∂t X̆µ − ( ∂∂tµ) ∂∂u X̆µ ≈ 1. Moreover, on
(0,n0]×T2, Υ ◦S is an embedding, i.e., the differential of Υ ◦S is injective on (0,n0]×T2, and Υ ◦S is a diffeomorphism
from (0,n0]×T2 onto its image Υ (B[0,n0]\∂−B[0,n0]) in Cartesian coordinate space. In addition, the following estimate



242 Lecture notes on: The emergence of the singular boundary

holds:

∥Υ ◦S∥C1,1([0,n0]×T2) ≤ C. (33.6)

Furthermore, the map (z,x2,x3)→ [Υ ◦S](
√
z,x2,x3) is a diffeomorphism from [0,n2

0]×T2 onto its image Υ (B[0,n0])
in Cartesian coordinate space, and the map is bounded in the norm ∥ · ∥

C1, 12 ([0,n2
0]×T2)

by ≤ C. That is, Υ (B[0,n0]) =

Υ ◦S
(
[0,n2

0]×T2
)
is a C1, 12 embedded sub-manifold-with-boundary of Cartesian coordinate space.

A description of the g-spacelike embedded tori Υ (T̆0,−n). For each fixed n ∈ [0,n0], the map (x2,x3)→ [Υ ◦S](n,x2,x3)

is a diffeomorphism from T
2 onto Υ (T̆0,−n), where T̆0,−n is the µ-adapted torus defined in (4.3c). In particular, the differ-

ential of this map is injective, and Υ (T̆0,−n) is an embedded C1,1 graph over T2 in Cartesian coordinate space such that
at each q ∈ T̆0,−n, Υ (T̆0,−n) is spacelike with respect to g|Υ (q) at the point Υ (q).

The causal structure of Υ (B[0,n0]\∂−B[0,n0]). The vectorfield Q defined by:

Q
def
= L− Lµ

X̆µ
X̆ (33.7)

enjoys the following properties:

• Q is well-defined on and tangent to B[0,n0]\∂−B[0,n0], viewed as a subset of geometric coordinate space (which is
the target of S).

• The integral curves of Q foliate B[0,n0]\∂−B[0,n0] and satisfy Qu < 0 and Qt > 0 along B[0,n0]\∂−B[0,n0]. In
particular, the integral curves are transversal to the characteristics Pu .

• Along B[0,n0]\∂−B[0,n0], g(Q,V ) = 0 holds for every vectorfield V = V t ∂
∂t+V

u ∂
∂u+V 2 ∂

∂2 +V 3 ∂
∂3 on B

[0,n0]\∂−B[0,n0],

regardless of whether V is tangent to B[0,n0]\∂−B[0,n0]. In particular, on B[0,n0]\∂−B[0,n0], we have that
g(Q,Q) = 0.

• For every q ∈ B[0,n0]\∂−B[0,n0], the pushforward vectorfield [dgeoΥ (q)] ·Q(q), which is tangent to the hypersurface
Υ (B[0,n0]\∂−B[0,n0]) in Cartesian coordinate space, is equal to L|Υ (q) = [Lα∂α]|Υ (q).

• For every q ∈ B[0,n0]\∂−B[0,n0], L|Υ (q) is g|Υ (q)-orthogonal to the tangent space of Υ (B[0,n0]\∂−B[0,n0]) at Υ (q).
• Q is the unique such vectorfield with the above properties.

In particular, in the differential structure on spacetime induced by the Cartesian coordinates, there exist integral curves of
the g-null vectorfield L = Lα∂α that foliate Υ (B[0,n0]) and that are everywhere g-orthogonal to Υ (B[0,n0]\∂−B[0,n0]).
Considering also that the Υ (T̆0,−n) are g-spacelike, we see that Υ (B[0,n0]\∂−B[0,n0]) is a g-null hypersurface in the
Cartesian coordinate differential structure.

Remark 33.3 (Non-uniqueness of the integral curves of Lα∂α along Υ (B[0,n0])). Note that along Υ (B[0,n0]), even though
the scalar functions X̆Lβ = µXLβ remain bounded, the non-µ-weighted quantities XLβ = Xα∂αL

β can blow up, due
to the vanishing of µ there. Since Xα∂α is a non-degenerate (i.e., everywhere non-zero and bounded) vectorfield in
the Cartesian differential structure, it follows that the Cartesian partial derivatives ∂αL

β can blow up along Υ (B[0,n0]).
Hence, in the Cartesian differential structure, the vectorfield L does not have sufficient regularity to ensure uniqueness
of its integral curves up to Υ (B[0,n0]), i.e., standard uniqueness theorems would require Lipschitz regularity for Lα . This
lack of uniqueness is the mechanism that allows for the existence of integral curves of L that foliate Υ (B[0,n0]), even
though integral curves of L also foliate the characteristics Pu , which are distinct from Υ (B[0,n0]).

More precisely, consider any fixed point p0 ∈ B[0,n0]\∂−B[0,n0], and let u0 denote the eikonal function evaluated at
p0 (i.e., the u-coordinate of p0 in geometric coordinates). By Prop. 33.2, there exists an interval I of u-values containing
u0 and a unique integral curve γp0

: I →B[0,n0]\∂−B[0,n0] of Q in geometric coordinate space satisfying:

d
du

γp0
(u) =Q ◦γp(u), γp(u0) = p0. (33.8)

It also follows from Prop. 33.2 that the pushforward of the tangent vector d
duγp0

(u0) under Υ is precisely L|Υ (p0).
Similarly, since p0 ∈ Pu0

, L is tangent to Pu0
, and Lt = 1, there is an interval J of t-values and a t-parameterized

integral curve Λ : J → Pu0
of L in geometric coordinate space such that the integral curve is tangent to Pu0

and such
that p0 = Λ(t0) for some t0 ∈ J (here, t0 is the Cartesian time function evaluated at p0). Hence, in Cartesian coordinate
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space, there are two distinct integral curves of L through Υ (p0), namely Υ ◦γ and Υ ◦Λ, each with the same tangent
vector L|Υ (p0); see Fig. 14.

Σ0

(x2,x3) ∈ T2

t

Υ (p0)

x1 ∈R
[Lα∂α]|Υ (p0) = [dgeoΥ ]|p0

·γp0
(u0)

Υ (B[0,n0])

Υ ◦γ

Pu0
Pu1

, where u1 < u0

Υ ◦Λ

Figure 14. Non-uniqueness of integral curves of L along Υ (B[0,n0]) in Cartesian coordinates.

Proof of Prop. 33.2. The injectivity of Υ ◦S and the estimate (33.6) follow from Props. 32.5 and 33.1. At the end of the
proof, we will prove (33.5) and the denominator-term estimate ( ∂∂uµ) ∂∂t X̆µ− ( ∂∂tµ) ∂∂u X̆µ ≈ 1. Taking these for granted

for the time being, we deduce from the explicit form of (33.5) that the differential of Υ ◦S (with respect to (n,x2,x3)) is
injective on (0,n0]×T2 and thus Υ ◦S is a diffeomorphism from (0,n0]×T2 onto its image, as is desired.

Proof of the properties of the map (z,x2,x3)→ [Υ ◦S](
√
z,x2,x3): We set z

def= n2. From the previous paragraph,
(33.5) (note that the first column of the matrix on RHS (33.5) features a linear factor of n), and the chain rule, it follows
that the map (z,x2,x3)→ [Υ ◦S](

√
z,x2,x3) is injective on [0,n2

0]×T2, that:

∂[Υ ◦S](
√
z,x2,x3)

∂(z,x2,x3)
=


1
2 ( ∂∂uµ) ∂∂t X̆µ−

1
2 ( ∂∂tµ) ∂∂u X̆µ ∗ ∗

{− 1
2 +∗}

( ∂
∂uµ) ∂∂t X̆µ−( ∂∂tµ) ∂∂u X̆µ

∗ ∗

0 1 ∗
0 ∗ 1

 , (33.9)

and that ∂[Υ ◦S](
√
z,x2,x3)

∂(z,x2,x3) can be expressed as C0,1 function of (n,x2,x3). Since the map z→
√
z is C0,1/2, it follows

that ∂[Υ ◦S](
√
z,x2,x3)

∂(z,x2,x3) can be expressed as a C0,1/2 function of (z,x2,x3). Since (33.9) implies that the differential of the

map (z,x2,x3)→ [Υ ◦S](
√
z,x2,x3) is injective (when α̊ is sufficiently small), we conclude that the map is a C1, 12

diffeomorphism from [0,n2
0]×T2 onto Υ (B[0,n0]), as is desired.
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Proof of the properties of Υ (T̆0,−n): From the explicit form of (33.5), we see that the last two columns of the matrix
on RHS (33.5) are linearly independent when α̊ is sufficiently small (even if n = 0). Also considering (32.11), we see that
for any n ∈ [0,n0], the map (x2,x3)→ [Υ ◦S](n,x2,x3) is a diffeomorphism from T

2 onto Υ (T̆0,−n), and the map
is C1,1 by (33.6). Since Lemma 32.7 shows that each T̆0,−n is g-spacelike (in the differential structure of the geometric
coordinates), and since Prop. 18.4 implies that Υ |T̆0,−n

is a diffeomorphism, we immediately conclude that Υ (T̆0,−n) is
g-spacelike.
Proof of the properties of Q: The uniqueness statement made about Q follows from the already proven fact that the
differential of Υ ◦S is injective on (0,n0]×T2 and our assumption that [dgeoΥ (q)] ·Q(q) is equal to [Lα∂α]|Υ (q).

Next, in view of (33.7), we see that Q is well-defined at points where X̆µ < 0, a condition that is satisfied on
B[0,n0]\∂−B[0,n0] by (32.3)–(32.4) and the fact that X̆µ|T̆0,−n

≡ −n. We also note that Qµ = 0 (i.e., Q is tangent

to the singular boundary). Furthermore, using Lemma 3.9, X̆µ|T̆0,−n
≡ −n, (18.3b), and (18.8a), we find that along

B[0,n0]\∂−B[0,n0], we have Qt = 1 > 0 and Qu = − Lµ
X̆µ

< 0, as desired.

Next, using Lemma 3.9, we compute that g(Q,L) = µ Lµ
X̆µ

, g(Q,X̆) = −µ + µ2 Lµ
X̆µ

, and g(Q, ∂
∂xA

) = 0 for A = 2,3.

Note that on B[0,n0]\∂−B[0,n0], where µ = 0, all of these inner products vanish. Since
{
L,X̆, ∂∂2 ,

∂
∂3

}
spans the geometric

coordinate tangent space, it follows that along B[0,n0]\∂−B[0,n0], Q is g-orthogonal to every vectorfield, as we claimed
in the proposition.

Proof of properties tied to foliations of B[0,n0]\∂−B[0,n0] and Υ
(
B[0,n0]\∂−B[0,n0]

)
: Using (18.5), (18.8a), the fact that

X̆µ|T̆0,−n
≡ −n, and (33.7), we find that QX̆µ > 0 on B[0,n0]\∂−B[0,n0]. Hence, since (32.3) implies that the level-sets of

X̆µ foliate B[0,n0] = {(t,u,x2,x3) | µ(t,u,x2,x3) = 0, −n0 ≤ X̆µ(t,u,x2,x3) ≤ 0, (x2,x3) ∈ T2}, and since QX̆µ > 0
implies that Q is transversal to the level-sets of X̆µ, we deduce that the integral curves of Q foliate B[0,n0]\∂−B[0,n0].
Hence, the pushforward of Q|B[0,n0]\∂−B[0,n0] by Υ is a vectorfield tangent to Υ (B[0,n0]\∂−B[0,n0]), which is foliated

by the integral curves. We now come to the key point: for any q ∈ B[0,n0]\∂−B[0,n0], the pushforward of Q|q by Υ

is [Lα∂α]|Υ (q). The reason is that the pushforward of X̆ |q by Υ is [µXα∂α]|Υ (q), which, in the Cartesian differential

structure, vanishes along Υ (B[0,n0]), where µ ≡ 0.
To complete the proof of the proposition, it remains for us to prove (33.5). We first complement the vectorfields J and

K defined in (32.26)–(32.27) with the following pair of vectorfields (A = 2,3):

P(A)
def=

∂

∂xA
−
(
∂

∂xA
µ

)
J +

(
∂

∂xA
X̆µ

)
K. (33.10)

As in (32.28), we compute (recalling that KX̆µ = −1) that:

P(2)x
2 = 1, P(2)µ = −P(2)X̆µ = Jx3 = 0. (33.11)

It follows from (33.11) that P(2) is the partial derivative with respect to x2 in the coordinates (n,x2,x3) on [0,n0]×T2,

i.e., on the domain of Υ ◦S. Similarly, P(3) is the partial derivative with respect to x3 in the coordinates (n,x2,x3) on
[0,n0]×T2. Hence, {K,P(2), P(3)} are the coordinate partial derivative vectorfields on [0,n0]×T2, and using Lemma 5.4,
(32.27), (32.29), and (33.10), we calculate that the Jacobian matrix on LHS (33.5) can be expressed as:

∂[Υ ◦S](n,x2,x3)
∂(n,x2,x3)

=
∂(t,x1,x2,x3)
∂(n,x2,x3)

=



∂
∂u

µ

∂
∂t

µ

∂
∂u X̆µ−

( ∂
∂u

µ) ∂
∂t
X̆µ

∂
∂t

µ

P(2)t P(3)t

−1

∂
∂u X̆µ−

( ∂
∂u

µ) ∂
∂t
X̆µ

∂
∂t

µ

{
µc2

X1 −
(

∂
∂uµ

∂
∂tµ

)(
L1X1+L2X2+L3X3

X1

)}
P(2)x

1 P(3)x
1

0 1 0
0 0 1


.

(33.12)
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(33.5) and the estimate ( ∂∂uµ) ∂∂t X̆µ − ( ∂∂tµ) ∂∂u X̆µ ≈ 1 now follow from (32.26)–(32.27), (33.10), (33.12), (3.10), (3.13),

Lemma 5.5, Prop. 9.1, the L∞ estimates of Prop. 17.1, (18.5), (18.8a), the facts that µ|T̆0,−n
≡ 0 and X̆µ|T̆0,−n

≡ −n, and the

fact that by (5.7b), X̆ = ∂
∂u along the singular boundary (where µ ≡ 0).

We have therefore proved the proposition.
□

34. The main results

In this section, we state and prove the main theorem of the paper. The theorem provides an assimilated version of
results we have already proved.

Theorem 34.1 (The development and structure of the singular boundary). Fix any of the compactly supported admissible
simple isentropic plane symmetric “background” solutions RPS

(+) from Def. A.7 (recall that R(−), v
2, v3, s, Ω, S , C, and D

vanish for these background solutions). Let (R(+),R(−),v
2,v3, s)

∣∣∣
Σ0

def
=

(
R̊(+),R̊(−), v̊

2, v̊3, s̊
)
be perturbed fluid data on

the flat Cartesian hypersurface Σ0, as in (11.1), and let u|Σ0
= −x1 be the initial condition of the eikonal function, as in

(3.1) and (A.7b). Assume the hypotheses and conclusions of Theorem 31.1. In particular, assume the assumptions (A1)–(A5)

stated in the theorem, which include the assumption that Ntop ≥ 24, as well as the assumption that the quantity ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

defined in (11.4) is sufficiently small, where ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is a Sobolev norm of the perturbation of the fluid data away from the

background solution. Then the corresponding solution exhibits the following properties, where U0, U1, U2, τ0, n0, m0, α̊,
ϵ̊, etc. are the parameters from Theorem 31.1.

Classical existence with respect to the geometric coordinates onMInteresting.

• There exists a compact regionMInteresting in geometric coordinate space Rt ×Ru ×T2, which is defined in Def. 32.1,
depicted in Figs. 6 and 13, and which has the properties revealed by Props. 32.5 and 32.11. MInteresting is contained

in
⋃

n∈[0,n0]
(n)M[τ0,0],[−U1,U2], where the

(n)M[τ0,0],[−U1,U2] are the developments from Theorem 31.1. Moreover,

the singular boundary portion B[0,n0], described below, is contained in the top boundary ofMInteresting.

• The fluid solution wave-variables Ψ⃗ = (R(+),R(−),v
2,v3, s) (see (2.11a)), the eikonal function u, µ, Li , and all

of the auxiliary quantities (such as the null second fundamental form χ) constructed out of these quantities exist
classically with respect to the geometric coordinates (t,u,x2,x3) on all of MInteresting, including the singular

boundary portion B[0,n0] described below. In particular, with respect to the geometric coordinates, the fluid
variables are solutions to equations (2.6a)–(2.6c) and the equations of Theorem 2.15 onMInteresting.

• The following quantities extend as solutions to the compact setMInteresting as elements of the following spacetime
Hölder spaces63 with respect to the geometric coordinates, and their corresponding spacetime Hölder norms on
MInteresting are bounded by ≤ C:
– Ψ⃗ ,Ωi , S i , Ci ,D ∈ C3,1

geo (MInteresting)
– Υ ∈ C3,1

geo (MInteresting)
– Li , µ ∈ C2,1

geo (MInteresting)
• MInteresting is foliated by the level-sets of a time function

(Interesting)τ, which satisfies ∥(Interesting)τ∥C1,1
geo (MInteresting)

≤ C

and has the range [τ0,0]
def
= [−m0,0] onMInteresting. That is,MInteresting =

⋃
τ∈[τ0 ,0]

(Interesting)Σ
[−U1,U2]
τ , where for

τ ∈ [τ0,0], (Interesting)Σ
[−U1,U2]
τ

def
=

{
(t,u,x2,x3) ∈R× [−U1,U2]×T2 | (Interesting)τ(t,u,x2,x3) = τ

}
.

• The L∞ estimates of Prop. 17.1 hold on MInteresting with ε replaced by Cϵ̊. Moreover, on each development
(n)M[τ0,0],[−U1,U2] with n ∈ [0,n0], the solution enjoys the energy estimates guaranteed by Theorem 31.1.

• For τ ∈ [τ0,0], we have:

min
(Interesting)Σ

[−U1 ,U2]
τ

µ = −τ. (34.1)

63Actually, thanks to the estimates offered by Prop. 17.1, the solution enjoys additional regularity in directions tangent to the characteristics compared
to what we have stated here; we have stated simpler, sub-optimal regularity conclusions only to avoid cluttering the presentation.
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Moreover, within (Interesting)Σ
[−U1,U2]
τ , the minimum value of −τ in (34.1) is achieved by µ precisely on the set

M̆
[0,n0]
−τ

def
=

⋃
n∈[0,n0] T̆−τ,−n from definition (32.2), which is a three-dimensional C2,1 embedded sub-manifold con-

tained in (Interesting)Σ
[−U1,U2]
τ with C1,1 boundary components T̆−τ,0 and T̆−τ,−n0

. In particular, withinMInteresting,

µ vanishes precisely along M̆
[0,n0]
0 , which by Def. 32.4 is equal to the singular boundary portion B[0,n0] and which

is contained in (Interesting)Σ
[−U1,U2]
0 .

• The change of variables map (Interesting)T (t,u,x2,x3) = ((Interesting)τ,u,x2,x3) defined in (32.36) is a diffeomor-
phism fromMInteresting onto its image [τ0,0]× [−U1,U2]×T2 satisfying ∥(Interesting)T ∥C1,1

geo (MInteresting)
≤ C.

The geometric coordinate description of the singular boundary.

• The singular boundary portion B[0,n0] =
⋃

n∈[0,n0] T̆0,−n from Def. 32.4 is contained in ∂MInteresting, and B[0,n0]

is a 3-dimensional C2,1-embedded sub-manifold-with-boundary of geometric coordinate space. Its two boundary
components are its future boundary T̆0,−n0

and its past boundary ∂−B[0,n0] = T̆0,0, which refer to as the crease
(see definition (32.4)).

• The boundary components T̆0,−n0
and ∂−B[0,n0] are C1,1 embedded 2-dimensional tori in geometric coordinate

space that are spacelike with respect to the acoustical metric g (see definition (2.15a)).

The Cartesian coordinate description of the singularity formation in Υ
(
MInteresting

)
.

• OnMInteresting, the change of variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) is an injection onto its image Υ
(
MInteresting

)
in Cartesian coordinate space Rt×Rx1×T2 verifying ∥Υ ∥C3,1

geo (MInteresting)
≤ C. In particular, Υ is a homeomorphism

from the compact set MInteresting onto its image. Moreover, on MInteresting\B[0,n0] (where B[0,n0] is the singular
boundary portion from Def. 32.4), Υ is a diffeomorphism.

• On Υ
(
MInteresting\B[0,n0]

)
, the solution exists classically with respect to the Cartesian coordinates.

• The following lower bound holds in Υ
(
MInteresting ∩ {(t,u,x2,x3) | |u| ≤Uj}

)
:

|XR(+)| ≥
δ̊∗

µ|c̄;ρ + 1|
, (34.2)

where δ̊∗ > 0 is the data-parameter from (11.6), c̄;ρ
def
= c;ρ(ρ = 0, s = 0) is c;ρ evaluated at the trivial solution,

c̄;ρ + 1 is a non-zero constant by assumption, and the Σt-tangent vectorfield X has Euclidean length satisfying√∑3
a=1(Xa)2 = 1 +O(α̊), where α̊ is the small parameter from Sect. 10.2. In particular, if q ∈ Υ

(
B[0,n0]

)
, then

since B[0,n0] ⊂MInteresting ∩
{
(t,u,x2,x3) | |u| ≤ 1

2Uj

}
by (32.3) and (18.3b), and since µ = 0 along Υ

(
B[0,n0]

)
, it

follows that |XR(+)|(q′)→∞ as q′ → q in Υ
(
MInteresting\B[0,n0]

)
. Similarly, the following lower bounds hold in

Υ
(
MInteresting ∩ {(t,u,x2,x3) | |u| ≤Uj}

)
, where ρ is the logarithmic density (see (2.3)):

|Xρ| ≥ δ̊∗
4µ|c̄;ρ + 1|

, |Xv1| ≥ δ̊∗
4µ|c̄;ρ + 1|

. (34.3)

• (Regular behavior64 along the characteristics). The derivatives of Ψ⃗ ,Ωi , and S i up to order Ntop−11 with respect to
the vectorfields in the Pu-tangent commutation set P defined in (3.16), and the derivatives of Ci and D up to order
Ntop − 12 with respect to the elements of P are L∞-bounded on Υ

(
MInteresting

)
. Finally, for α = 0,1,2,3 and

A = 2,3, the derivatives of gabY a(A)∂αv
b up to order Ntop −11 with respect to the elements of P are L∞-bounded

on Υ
(
MInteresting

)
.

The Cartesian coordinate description of the singular boundary and the crease.

64Here we have only highlighted some of the quantities that remain L∞-bounded on Υ
(
MInteresting

)
. We refer to Prop. 17.1 for more comprehensive

results.
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• Υ (B[0,n0]) is a C1, 12 embedded g-null hypersurface in Cartesian coordinate space that is foliated by the integral
curves of L; see Prop. 33.2 for a more detailed description.

• For n ∈ [0,n0], Υ (T̆0,−n) ⊂ Υ (B[0,n0]) is an embedded C1,1 graph over T2 in Cartesian coordinate space such
that at each q ∈ T̆0,−n, Υ (T̆0,−n) is spacelike with respect to g|Υ (q) at the point Υ (q).

• In particular, considering the case n = 0 in the previous point, we see that the image of the crease under Υ , namely
Υ (T̆0,0), is an embedded C1,1 graph over T2 in Cartesian coordinate space that is g-spacelike at each of its points.

Proof.

Proof that MInteresting ⊂
⋃

n∈[0,n0]
(n)M[τ0,0],[−U1,U2]: This result follows from Def. 32.1 and the fact that X̆

[τ0,0]
−n ⊂

(n)M[τ0,0],[−U1,U2], which in turn follows from the decomposition (n)M[τ0,0],[−U1,U2] =
⋃

τ∈[τ0,0]
(n)̃Σ

[−U1,U2]
τ , the fact

that T̆−τ,−n ⊂ (n)̃Σ
[−U1,U2]
τ (see Def. 15.32), and (15.44) with τBoot = mBoot = 0. In the remainder of the proof, we will

silently use the fact that MInteresting ⊂
⋃

n∈[0,n0]
(n)M[τ0,0],[−U1,U2] and the following consequence of Theorem 31.1: at

fixed n ∈ [0,n0], all results proved in the paper prior to Theorem 31.1 hold with τBoot = 0.

Proof of classical existence with respect to the geometric coordinates on MInteresting: Theorem 31.1 yields that for

fixed n ∈ [0,n0], the solution exists classically with the respect to the geometric coordinates on (n)M[τ0,0],[−U1,U2]. Since

MInteresting ⊂
⋃

n∈[0,n0]
(n)M[τ0,0],[−U1,U2], we immediately conclude classical existence with respect to the geometric

coordinates onMInteresting.

Proof of the Hölder bounds: To derive the Hölder bounds ∥Ψ⃗ ∥C3,1
geo (MInteresting)

≤ C , ∥Ωi∥C3,1
geo (MInteresting)

≤ C , etc.,
we first use Lemma 15.6 with τBoot = 0 (i.e., we use the lemma on (n)M[τ0,0],[−U1,U2]), the fact that MInteresting ⊂⋃

n∈[0,n0]
(n)M[τ0,0],[−U1,U2], and Rademacher’s theorem to deduce that ∥Ψ⃗ ∥W 4,∞

geo (MInteresting)
≤ C , ∥Ωi∥W 4,∞

geo (MInteresting)
≤

C , etc. From these bounds and the Sobolev embedding result (32.51), we conclude the desired Hölder bounds.

Proof of the properties of the time function (Interesting)τ and the map (Interesting)T (t,u,x2,x3): We derived these
results in Prop. 32.11.

Proof of the properties of Υ and classical existence with respect to the Cartesian coordinates on the domain
Υ

(
MInteresting\B[0,n0]

)
: We derived the properties of Υ in Prop. 33.1. Since the proposition in particular shows that

Υ is a global diffeomorphism MInteresting\B[0,n0], and since we have already shown classical existence with respect to
the geometric coordinates on MInteresting, we conclude that the solution exists classically with respect to the Cartesian

coordinates on the domain Υ
(
MInteresting\B[0,n0]

)
in Cartesian coordinate space.

Proof of the regular behavior along the characteristics: These results follow from the last item stated in Theorem 31.1.

Proof of the properties of B[0,n0], T̆0,−n0
, and ∂−B[0,n0] = T̆0,0: We derived these results in in Prop. 32.5.

Proof of (34.1) and related properties of µ: In Prop. 32.11, we proved (34.1) and showed that within (Interesting)Σ
[−U1,U2]
τ ,

the minimum value of −τ in (34.1) is achieved by µ precisely on the set M̆
[0,n0]
−τ

def=
⋃

n∈[0,n0] T̆−τ,−n.

Proof of the lower bounds (34.2) and (34.3): These estimates follow from the estimates (31.3) and (31.4), which hold in⋃
n∈[0,n0]Υ

(
(n)M[τ0,0],[−Uj,Uj]

)
, and the fact that Υ

(
MInteresting ∩ {(t,u,x2,x3) | |u| ≤Uj}

)
⊂

⋃
n∈[0,n0]Υ

(
(n)M[τ0,0],[−Uj,Uj]

)
(sinceMInteresting ⊂

⋃
n∈[0,n0]

(n)M[τ0,0],[−U1,U2]).

Proof of the Cartesian coordinate description of the singular boundary and the crease: We derived these results in
Prop. 33.2.

□

Acknowledgements

We are grateful to John Anderson for providing helpful feedback on an earlier version of this paper.



248 Lecture notes on: The emergence of the singular boundary

Appendix A. Simple isentropic plane-symmetric solutions

In this appendix, we show that there exists a large family of shock-forming simple isentropic plane-symmetric solutions
whose induced data on late-time rough hypersurfaces satisfy the assumptions stated in Sect. 11. As we will see, simple
isentropic plane-wave solutions are characterized by ϵ̊ = 0, where ϵ̊ is the data-size parameter featured in the assumptions
of Sect. 11. In Appendix B, we combine the results of this appendix with Cauchy stability arguments to show that there
exists an open set of data satisfying the assumptions of Sect. 11. By “open set,” we mean open relative to the topologies

corresponding to the norm ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

on Σ0 defined in (11.4), where Ntop ≥ 24.

A.1. Plane symmetric and simple plane-symmetric solutions. We begin with a quick presentation of the isentropic
compressible Euler equations in plane-symmetry. By isentropic plane-symmetric solutions, we mean those solutions with
the following properties: ρ and v1 are functions of only t and x1, “the symmetry breaking fluid variables” satisfy
v2,v3 ≡ 0, and s is constant. For convenience, we will assume that s ≡ 0, though that is not essential for our main
results, i.e., we could have easily handled solutions with s ≡ s0, where s0 is a constant. It is straightforward to see that
for such solutions, the fluid vorticity curlv also vanishes. In Appendix B, we will view our isentropic plane-symmetric
solutions as “background” solutions in three spatial dimensions with trivial dependence on the (x2,x3) coordinates.
However, in this appendix, to shorten the presentation, we will completely suppress the variables (x2,x3) and instead
view the plane-symmetric solutions as solutions in 1 + 1 dimensions.

Throughout this appendix, we adorn symbols related to the background plane-symmetric solutions by a “PS.” For

example, we denote the logarithmic density by ρPS, and we set vPS
def= v1. Although the eikonal function also depends

on the background solution through the dependence of the coefficients of the eikonal equation (3.1) on the fluid, we will
continue to denote it by “u” instead of “uPS.” This is consistent with the point of view we take in Appendix B during
our discussion of Cauchy stability, where for convenience, we will “fix” geometric coordinate space Rt ×Ru × T2

x2,x3

and consider families of solutions that exist with respect to the geometric coordinates on a common domain. Note
that, although for general solutions, the maps (t,u,x2,x3)→ xi(t,u) from geometric coordinates to a Cartesian spatial
coordinate depend on the fluid solution, to avoid clutter, in this appendix, we will not adorn x1 with a “PS” subscript.

However, we do adorn the corresponding change of variables map: ΥPS(t,u) def= (t,x1).

A.1.1. The Riemann invariants in isentropic plane-symmetry. In plane-symmetry with s ≡ 0, we define the Riemann
invariants to be the following functions of vPS and ρPS:

RPS
(+)

def= vPS +FPS(ρPS), RPS
(−)

def= vPS −FPS(ρPS), (A.1)

where FPS = FPS(z) is defined to be the solution to the following ODE initial value problem:

FPS(0) = 0,
d
dz
FPS(z) = cPS(z), (A.2)

where we recall that by our assumption (2.5), we have cPS(0) = 1. On RHS (A.2) and throughout, cPS(z) def= c(z,0), where
c(z,0) is the speed of sound (see (1.3)), viewed as a function of the logarithmic density z and the entropy s, evaluated at
s = 0. We note that vPS and ρPS can respectively be expressed in terms of the Riemann invariants as follows:

vPS =
1
2

(
RPS

(+) +RPS
(−)

)
, ρPS = (FPS)−1 ◦

{1
2

(
RPS

(+) −R
PS
(−)

)}
, (A.3)

where (FPS)−1 is the inverse function of FPS. Note that by (A.2) and (2.5), (FPS)−1 is well-defined and smooth in a
neighborhood of 0. Note that the Riemann invariants (A.1) agree with the almost Riemann invariants defined in (2.7).
Much like in the bulk of the paper, when we are deriving estimates for the fluid, it is understood that all fluid variables
are to be viewed as functions of the Riemann invariants via (A.3).

A.1.2. The compressible Euler equations in terms of the Riemann invariants in isentropic plane-symmetry. Due to the
isentropic plane-symmetry, the Riemann invariants are in fact invariant along the characteristics. More precisely, it is
straightforward to verify that for smooth isentropic plane-symmetric solutions, the compressible Euler equations (2.6a)–
(2.6c) are equivalent to the following 2× 2 system of quasilinear transport equations:

LPSRPS
(+) = 0, LPSRPS

(−) = 0, (A.4)
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where:

LPS
def= ∂t + (vPS + cPS)∂1, LPS

def= ∂t + (vPS − cPS)∂1. (A.5)

We denote the initial data for (A.4) by:

RPS
(+)|Σ0

= R̊PS
(+), RPS

(−)|Σ0
= R̊PS

(−). (A.6)

In the rest of the appendix, we will consider only simple isentropic plane-symmetric solutions, defined to be solutions
with RPS

(−) ≡ 0. From (A.4), it follows that such solutions arise from initial data with R̊PS
(−) ≡ 0.

A consequence of standard methods going back Riemann’s famous work [64] is that any non-trivial compactly supported
initial datum R̊PS

(+) launches a shock-forming simple isentropic plane-symmetric solution to (A.4). In the forthcoming

subsections, we will construct compactly supported data along Σ0 that launch “admissible" (see Def. A.7) solutions whose
perturbations we study in Appendix B. To this end, we find it useful to revisit our construction of the acoustical geometry
so that we can capitalize on the many simplifications that occur in simple isentropic plane-symmetry.

A.2. The acoustic geometry and explicit solution formulas in simple isentropic plane-symmetry.

A.2.1. Definitions and identities. We begin by defining the eikonal function in plane-symmetry to be the solution to the
following transport equation initial value problem:

LPSu = 0, (A.7a)

u|Σ0
= −x1. (A.7b)

Note that the initial condition stated in (A.7b) is the same as the one (3.1) we assumed in the bulk of the paper. It is
straightforward to check (cf. (7.5)) that in plane-symmetry, (g−1)αβ∂αu∂βu = −(LPSu)LPSu, and that u solves (A.7a)–
(A.7b) if and only if it solves (3.1). In particular, in plane-symmetry, the (fully nonlinear) eikonal equation (3.1) is equivalent
to (A.7a), which is linear in u because the operator LPS can be defined by equation (A.5), which does not depend on u.

We now define the inverse foliation density as follows:

µPS def= − 1
cPS∂1u

. (A.8)

One can check that in isentropic plane-symmetry, the quantity “µPS” defined by (A.8) is equal to the quantity “µ” defined
in (3.2).

Straightforward calculations yield that in isentropic plane-symmetry, with LPS as in (A.5), we have:

LPS = LPS + 2XPS, XPS = −cPS∂1, X̆PS def= µPSXPS, (A.9)

where, given our construction of u in (A.7a)–(A.7b), LPS, XPS, X̆PS coincide with the vectorfields defined in Def. 3.8, while
LPS coincides with the vectorfield defined in Def. 7.1.

Next, using (A.7b) and definition A.8, we compute that the following identities hold on Σ0:

µPS
∣∣∣
Σ0

=
1

cPS|Σ0

=⇒ (cPSµPS)
∣∣∣
Σ0

= 1. (A.10)

As in the bulk of the paper, we define (t,u) to be the geometric coordinates, and we denote the corresponding

geometric coordinate vectorfields as
{
∂
∂t ,

∂
∂u

}
. In plane-symmetry, LPSx2 = LPSx3 = XPSx2 = XPSx2 = 0 and thus, by

Lemma 5.5, we have:

LPS =
∂
∂t
, X̆PS =

∂
∂u
. (A.11)

It follows that:

[LPS, X̆PS] = 0. (A.12)

We will often silently use (A.11)–(A.12) in the rest of this appendix.
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A.2.2. Explicit solution formula in geometric coordinates. From (A.11), we see that the transport equation (A.4) for RPS
(+)

takes the following form in geometric coordinates:

∂
∂t
RPS

(+)(t,u) = 0. (A.13)

From (A.13) and (A.6), we see (recalling that R̊PS
(−) ≡ 0 by assumption) that in geometric coordinates, the solution to (A.13)

is:

RPS
(+)(t,u) = R̊PS

(+)(u). (A.14)

A.2.3. The evolution equation for µPS. The following lemma provides the evolution equation for µPS.

Lemma A.1 (Transport equation satisfied by µPS). For simple isentropic plane-symmetric solutions, the inverse foliation

density satisfies the following transport equation, where ċPS = ċPS(ρ)
def
= d

dρc
PS(ρ) is the derivative of the speed of sound

with respect to the logarithmic density:

LPS(cPSµPS) =H, (A.15)

H
def
= −1

2

{
ċPS

cPS
+ 1

}
X̆PSRPS

(+). (A.16)

Moreover,

LPSLPSµPS = LPSLPS(cPSµPS) = 0. (A.17)

Finally, we have the following identities:

H = X̆PSH, (A.18a)

H = H[RPS
(+)]

def
= −ḞPS ◦ (FPS)−1 ◦

(1
2
RPS

(+)

)
− 1

2
RPS

(+) + cPS, (A.18b)

d

dRPS
(+)

H[RPS
(+)] = −1

2
F̈PS

ḞPS
◦ (FPS)−1 ◦

(1
2
RPS

(+)

)
− 1

2
, (A.18c)

where ḞPS = ḞPS(ρ)
def
= d
dρF

PS(ρ) = c(ρ), cPS
def
= ḞPS(ρ)|ρ=0, (FPS)−1 is the inverse of the map ρ→ FPS(ρ), F̈PS = F̈PS(ρ) =

ċPS(ρ)
def
= d
dρc(ρ), H′[RPS

(+)]
def
= d
dRPS

(+)
H[RPS

(+)], and ◦ denotes the composition of functions.

Remark A.2. Note that H[0] = 0. We will use this basic fact in Sect. A.5.

Proof of Lemma A.1. The transport equation (A.15) follows from (3.44), (3.46), and our assumption that the solution is
isentropic, simple, and plane-symmetric, which in particular implies that LPScPS = 0. Equation (A.17) follows from
differentiating (A.15) with LPS and using (A.12) along with LPSRPS

(+) = 0. (A.18a)–(A.18c) follow from the chain rule, (A.2),

and (A.3). □

A.2.4. Recalling the non-degeneracy condition. As in (2.4), we will assume the following non-degeneracy condition:

ċPS

cPS
+ 1 , 0, (A.19)

where LHS (A.19) denotes the factor in braces on RHS (A.16) evaluated at the trivial solution ρPS ≡ 0 (which, in the present

context, is equivalent to RPS
(+) ≡ 0). In view of our normalization assumption (2.5) (which implies that cPS = 1) and (A.18c),

it follows that (A.19) is equivalent to:

−2
d

dRPS
(+)

H[RPS
(+)]|RPS

(+)=0 = ċPS + 1 , 0. (A.20)

Note that (A.20) is equivalent to RHS (A.18c) being non-zero when it is evaluated at RPS
(+) = 0, and that it implies the

invertibility of the map RPS
(+) → H[RPS

(+)] in a neighborhood of the origin (i.e., near RPS
(+) = 0). As we discussed in

Sect. 3.13, for any equation of state except for that of a Chaplygin gas, there are always background densities ϱ > 0 such
that (A.20) holds.
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Next, we note that in simple isentropic plane-symmetry, the quantity H defined in (A.16) can be viewed as a function
of RPS

(+) and X̆
PSRPS

(+). To emphasize this point of view, we use the notation H[RPS
(+), X̆

PSRPS
(+)]. Moreover, by (A.14), in

geometric coordinates, H[RPS
(+), X̆

PSRPS
(+)] is a function of only u. To simplify the presentation, we will emphasize this

point of view with the shorthand notation H(u), i.e.,

H[RPS
(+), X̆

PSRPS
(+)](t,u) def= H[RPS

(+)(t,u), X̆PSRPS
(+)(t,u)] =H[R̊PS

(+)(u),
∂
∂u
R̊PS

(+)(u)] def= H(u). (A.21)

In a similar vein, cPS = ḞPS can be viewed as a function of RPS
(+), where R

PS
(+) is a function of u alone, and we will

use the following shorthand notation:

cPS[RPS
(+)](t,u) def= ḞPS[RPS

(+)(t,u)] = ḞPS[R̊PS
(+)(u)] def= cPS(u). (A.22)

A.2.5. Explicit expressions for various solution variables. The following corollary is a straightforward consequence of the
prior discussion in this appendix, and we therefore omit the simple proof.

Corollary A.3 (Explicit expressions for µPS, LPSµPS, and ∂1RPS
(+)). For simple isentropic plane-symmetric solutions, the

following identities hold relative to the geometric coordinates:

LPS
{
cPS(u)µPS(t,u)

}
=H(u) =

d
du

H[R̊PS
(+)(u)] = −1

2

{
F̈PS

ḞPS
◦ (FPS)−1 ◦

(1
2
RPS

(+)

)
+ 1

}
d
du
R̊PS

(+)(u), (A.23a)

cPS(u)µPS(t,u) = 1 + tH(u) = 1 + t
d
du

H[R̊PS
(+)(u)] = 1 + tH′[R̊PS

(+)(u)]
d
du
R̊PS

(+)(u), (A.23b)

X̆PSµPS(t,u) =
t d

2

du2 H[R̊PS
(+)(u)]

ḞPS[R̊PS
(+)(u)]

−


d
du Ḟ

PS[R̊PS
(+)(u)]

ḞPS[R̊PS
(+)(u)]


{

1 + t
d
du

H[R̊PS
(+)(u)]

}
, (A.24)

[∂1RPS
(+)](t,u) = − 1

cPS(u)µPS(t,u)
∂
∂u
RPS

(+)(u) = −
d
du R̊

PS
(+)(u)

1 + tH(u)
= −

d
du R̊

PS
(+)(u)

1 + tH′[R̊PS
(+)(u)] ddu R̊

PS
(+)(u)

. (A.25)

A.3. The rough time function in simple isentropic plane-symmetry. In simple isentropic plane-symmetry, using (A.11),
we can write the transport equation (4.4a) for (n)τPS(t,u) as follows:

(n)W̆ PS(n)τPS(t,u) =
∂
∂u

(n)τPS(t,u) +φ(u)
n

∂
∂tµ

PS(t,u)

∂
∂t

(n)τPS(t,u) = 0, (A.26)

where φ(u) = ψ
(
u
Uj

)
is the cut-off from Definition 4.1, and the differential operator on LHS (A.26) is the adapted rough

coordinate vectorfield ∂̃
∂̃u

, i.e., we have the following identities (see (5.15)):

∂̃

∂̃u
= (n)W̆ PS =

∂
∂u

+φ
n

∂
∂tµ

PS

∂
∂t
. (A.27)

We also note that the initial condition (4.4b) is equivalent to:

(n)τPS|{X̆PSµPS=−n} = −µPS|{X̆PSµPS=−n}. (A.28)

A.4. Admissible background simple isentropic plane-symmetric solutions. In this section, we construct a large class
of “admissible" simple isentropic plane-symmetric solutions to (A.4) that, on a rough hypersurface, induce data satisfying
the assumptions stated in Sect. 11. The main results are Theorem A.4 and Cor. A.6. We formalize the notion of “admissible”
in Def. A.7.

In Theorem A.4, we will state some Sobolev estimates for the solution that involve high order ∂
∂u derivatives. The

availability of these estimates will simplify our discussion of Cauchy stability in Appendix B, although with additional
effort, it would have been possible for us to prove the needed Cauchy stability result without such high order ∂

∂u
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estimates. We now define the corresponding Sobolev norms. Given a scalar function f = f (t,u) of the geometric
coordinates, N ∈N, and real numbers u1 ≤ u2, we define:

∥f ∥
HN
u (Σ

[u1 ,u2]
t )

def=

√√√
N∑
M=0

∫ u2

u1

∣∣∣∣∣∣
(
∂
∂u

)M
f (t,u)

∣∣∣∣∣∣
2

du. (A.29)

If M ∈N and f = f (t,u) is a scalar function with bounded derivatives up to order M on a subset S ⊂ Rt ×Ru ,
then we define:

∥f ∥CMgeo(S)
def=

∑
M1+M2≤M

sup
p∈S

∣∣∣∣∣∣
(
∂
∂t

)M1
(
∂
∂u

)M2

f (p)

∣∣∣∣∣∣ . (A.30)

Moreover, if M ∈N and f = f (u) is a scalar function with bounded derivatives up to order M on a subset S ⊂ R,
then we define:

∥f ∥CMu (S)
def=

∑
M ′≤M

sup
p∈S

∣∣∣∣∣∣∣
(
∂
∂u

)M ′
f (p)

∣∣∣∣∣∣∣ . (A.31)

As at end of Sect. 8.1.2, we extend the above norms to array- or matrix-valued functions.

A.5. Construction of the initial data that lead to admissible shock-forming solutions. In this section, we will exhibit
a large family of profiles that, upon rescaling, yield initial data that launch admissible solutions.

A.5.1. Assumptions on the “seed” profile. To start, we fix any scalar “seed profile” ϕ̊ with the following properties (it is
straightforward to show that such functions exist):

• ϕ̊ = ϕ̊(u) is compactly supported in an interval [−U1,U2] of u-values, where U1,U2 > 1.

• ϕ̊ ∈HNtop+1
u (Σ[−U1,U2]

0 ) for some integer Ntop ≥ 24.

• d
du ϕ̊(u) has a unique, non-degenerate minimum at u = 0. In particular, d3

du3 ϕ̊(0) > 0.
• Modifying ϕ̊ by multiplying it by a constant and composing it with a linear map of the form u→ zu for some

constant z ∈R if necessary, we assume that (the modified ϕ̊) satisfies:

d
du
ϕ̊(u)|u=0 = −1,

d2

du2 ϕ̊(u)|u=0 = 0, (A.32)

that there is a constant b satisfying:

b > 0 (A.33)

such that d3

du3 ϕ̊(0) = b and such that 1
2b ≤

d3

du3 ϕ̊(u) ≤ 2b when |u| ≤ 1, and that there is a constant p satisfying:

0 ≤ p < 1, (A.34)

such that

d
du
ϕ̊(u) > −p, if |u| ≥ 1. (A.35)

See Fig. 15 for the graph (with u increasing from right to left) of a representative seed profile.

A.5.2. Construction of one-parameter families of initial data for RPS
(+). Let ϕ̊ be as in Sect. A.5.1. Given a real parameter

a > 0, we define:

ϕ̊a(u) def= aϕ̊(u), (A.36)

(R̊PS
(+))a(u) def= H−1[ϕ̊a(u)], (A.37)

where H−1 is the inverse function of of the map RPS
(+)→ H[RPS

(+)] define by (A.18b).

Taking into account Remark A.2 and (A.20), we deduce from Taylor expansions and the standard Sobolev calculus that
if a is sufficiently small, then the following conclusions hold:
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u =U2 u = 1 u = 0 u = −1 u = −U1

u

ϕ̊(u)

Figure 15. The graph of a representative “seed profile.”

• (R̊PS
(+))a is compactly supported in [−U1,U2] and satisfies the following bounds:∥∥∥∥∥∥ dMduM (R̊PS

(+))a

∥∥∥∥∥∥
L∞(Σ

[−U1 ,U2]
0 )

≲ a, M = 0,1,2,3,4, (A.38a)∥∥∥∥(R̊PS
(+))a

∥∥∥∥
H
Ntop+1
u (Σ

[−U1 ,U2]
0 )

≲ a. (A.38b)

• d
duH[(R̊PS

(+))a(u)] has a unique, negative, non-degenerate minimum at u = 0. In particular, d3

du3 H[(R̊PS
(+))a(u)]|u=0 >

0.
• There is a differentiable function F : [−U1,U2]→R such that ∥F ∥

C1
geo(Σ

[−U1 ,U2]
0 )

≲ 1 and such that:

d
du

H[(R̊PS
(+))a(u)] = −a+

1
2
abu2 +F (u)au3. (A.39)

• For j = 1,2,3, there exists a continuous function Fj : [−U1,U2]→ (0,∞) such that:

Fj (u) ≈ 1, u ∈ [−U1,U2], (A.40)

and such that for M = 0,1,2, we have:

dM

duM

(
d
du

H[(R̊PS
(+))a(u)] + a

)
= FM+1(u)au2−M , if |u| ≤ 1, (A.41a)

d
du

H[(R̊PS
(+))a(u)] ≥ −pa, if |u| ≥ 1, (A.41b)

where p ∈ [0,1) is the non-negative constant in (A.35). In the above relations, all implicit constants are independent of a
and u, though they depend on ϕ̊ and its derivatives.

A.6. Admissible solutions. We now prove the main results of Appendix A, i.e., we show that when a is sufficiently
small, the initial datum (R̊PS

(+))a launches a simple isentropic plane-symmetric solution that satisfies all the assumptions

we stated in stated in Sect. 11.

A.6.1. Some preliminary definitions. Given any initial data function R̊PS
(+) = R̊PS

(+)(u), as in (A.6), we define:

δ̊PS∗ = δ̊PS∗ [R̊PS
(+)]

def= max
u∈[−U1,U2]

[H(u)]− = max
u∈[−U1,U2]

[
H′[R̊PS

(+)(u)]
d
du
R̊PS

(+)(u)
]
−
, (A.42a)

T PS
Shock

def=
1

δ̊PS∗
, (A.42b)

where [z]−
def= max{−z,0}. In view of (A.16) and (A.21), we see that for simple isentropic plane-wave solutions, δ̊PS∗

coincides with the quantity defined in (11.6). Moreover, from Cor. A.3, we see that T PS
Shock is the Cartesian time of first

blowup of ∂1RPS
(+).
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A.6.2. The existence of admissible simple isentropic plane-symmetric solutions. We now state and prove the main results
of this appendix.

Theorem A.4 (The existence of admissible simple isentropic plane-symmetric solutions). Let ϕ̊ be a “seed profile” function
with the properties stated in Sect. A.5. In particular, ϕ̊ is supported in the interval [−U1,U2] of u-values (where by (A.7b),
u = −x1 along Σ0), and ∥ϕ̊∥HNtop+1

u (Σ
[−U1 ,U2]
0 )

< ∞. There exist small constants a0 > 0 and ζ > 0, depending on ϕ̊

(including the constant b > 0 from (A.33)) and satisfying65 ζ <min{1,1− p} (where p ∈ [0,1) is the non-negative constant
in (A.34)–(A.35)) such that if 0 < a ≤ a0, then the following conclusions hold, where in all estimates, the constants (including
the implicit ones corresponding to “≲”) are independent of a, ζ, t, and u (on the domains where the estimates are asserted
to hold).
Let (R̊PS

(+))a be the initial datum, defined by (A.36)–(A.37), for the simple isentropic plane-symmetric compressible Euler

equations, i.e., for (A.4) with RPS
(−) ≡ 0. Let τ0 be any negative real number such that:

−1
4
< −ζ

4
< τ0 < 0, (A.43)

and define Uj > 0 and n0 > 0 by:

Uj
def
=

a

b2 , (A.44)

n0
def
=
|τ0|a
16b

, (A.45)

where b > 0 is the ϕ̊-dependent constant from Sect. A.5.1.

Classical existence with respect to the geometric coordinates. With respect to the geometric coordinates (t,u), the so-

lution RPS
(+) is a function of u alone (i.e., R

PS
(+)(t,u) = RPS

(+)(u) = (R̊PS
(+))a(u)), vanishes on the complement of the region

{(t,u) ∈R×R | u ∈ [−U1,U2]}, and exists classically for (t,u) ∈ [0,T PS
Shock]×R, where the parameter δ̊

PS
∗ = δ̊PS∗ [(R̊PS

(+))a]
defined by (A.42a) satisfies:

δ̊PS∗ = a, (A.46)

and:

T PS
Shock

def
=

1

δ̊PS∗
=

1
a
. (A.47)

Similarly, the null vectorfield LPS and inverse foliation density µPS exist classically for (t,u) ∈ [0,T PS
Shock] ×R, and on

the complement of {(t,u) ∈ R ×R | u ∈ [−U1,U2]}, we have (LPS)1 = LPSx1 = 1 and µPS = 1. Finally, µPS > 0 on(
[0,T PS

Shock]×R
)
\{(T PS

Shock,0)}, and µPS(T PS
Shock,0) = 0.

Description of the crease relative to the geometric coordinates. Relative to the geometric coordinates (t,u), the crease,

which by definition is ∂−BPS
def
= {(t,u) | µPS(t,u) = 0}∩ {(t,u) | X̆PSµPS(t,u) = 0}∩

(
[0,T PS

Shock]× [−Uj,Uj]
)
, is equal to

the single point (T PS
Shock,0).

The Cartesian coordinate description of the singularity formation up to the crease.

• Let ΥPS(t,u)
def
= (t,x1) denote the change of variables map from geometric to Cartesian coordinates. Then ΥPS is a

homeo- (resp. diffeo)-morphism from [0,T PS
Shock]×R (resp. from

(
[0,T PS

Shock]×R
)
\∂−BPS) onto its image.

• The solutionRPS
(+) exists classically with respect to the Cartesian coordinates on the subset ΥPS

(
([0,T PS

Shock]×R) \∂−BPS
)

of Cartesian coordinate space Rt ×Rx1 .
• There exists a past neighborhoodN of ΥPS(∂−BPS) in Cartesian coordinate space such that, withRPS

(+) =RPS
(+)(t,u) =

RPS
(+)(u), we have:∣∣∣∣[∂1RPS

(+)] ◦Υ
−1
PS (t,x1)

∣∣∣∣ =
1
µPS

∣∣∣∣∣ 1
cPS
X̆PSRPS

(+)

∣∣∣∣∣ ◦Υ −1
PS (t,x1) ≳

a

µPS
, (t,x1) ∈ N . (A.48)

65Our assumption ζ < 1− p ensures that (11.21) is satisfied; see (A.43) and (A.78), and recall that in the bulk of the paper, we have m0 = −τ0 .
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In particular, for any sequence of points {qn}n∈N ⊂ ΥPS

(
([0,T PS

Shock]×R) \∂−BPS
)
converging to the point ΥPS(∂−BPS)

(i.e., Υ −1
PS (qn)→ (T PS

Shock,0)), we have that |∂1RPS
(+)| ◦Υ

−1
PS (qn)→∞ as n→∞.

Estimates for the solution and acoustic geometry with respect to the geometric coordinates. For (t,u) ∈ [0,T PS
Shock]×

R, the speed of sound satisfies the following estimate:

cPS(t,u) = cPS(u) = 1 +O(a). (A.49)

For t ∈ [0,T PS
Shock], the following Sobolev estimates hold:∥∥∥∥RPS

(+)

∥∥∥∥
H
Ntop+1
u (Σt)

≲ a, (A.50a)∥∥∥∥(LPS(Small))
1
∥∥∥∥
H
Ntop+1
u (Σt)

≲ a, (A.50b)∥∥∥∥∥ ∂∂tµPS
∥∥∥∥∥
H
Ntop
u (Σt)

≲ a, (A.50c)∥∥∥µPS
∥∥∥
H
Ntop
u (Σt)

≲ 1. (A.50d)

For M = 0,1,2,3,4 and t ∈ [0,T PS
Shock], the following estimates hold:∥∥∥∥(X̆PS)MRPS

(+)

∥∥∥∥
L∞(Σt)

≲ a, (A.51a)∥∥∥∥(X̆PS)M (LPS(Small))
1
∥∥∥∥
L∞(Σt)

≲ a. (A.51b)

Similarly, for M = 0,1,2,3 and t ∈ [0,T PS
Shock], we have:∥∥∥LPS(X̆PS)MµPS

∥∥∥
L∞(Σt)

=
1
2

∥∥∥∥∥∥(X̆PS)M
{

1
cPS

(
(cPS)′

cPS
+ 1

)
X̆PSRPS

(+)

}∥∥∥∥∥∥
L∞(Σ0)

≲ a, (A.52a)

∥∥∥(X̆PS)MµPS
∥∥∥
L∞(Σt)

≤
∥∥∥∥∥(X̆PS)M

{ 1
cPS

}∥∥∥∥∥
L∞(Σ0)

+
1
2

1

δ̊PS∗

∥∥∥∥∥∥(X̆PS)M
{

1
cPS

(
(cPS)′

cPS
+ 1

)
X̆PSRPS

(+)

}∥∥∥∥∥∥
L∞(Σ0)

≲ 1.

(A.52b)

Estimates tied to the change of variables map ΥPS. For t ∈ [0,T PS
Shock], the Cartesian spatial coordinate x

1 = x1(t,u)
satisfies the following estimates:

−U2 + t ≤ min
Σ

[−U1 ,U2]
t

x1 ≤ max
Σ

[−U1 ,U2]
t

x1 ≤U1 + t. (A.53)

Moreover,

dgeoΥPS(t,u)
def
=
∂ΥPS(t,u)
∂(t,u)

=
(

1 0
(LPS)1 −cPSµPS

)
, (A.54)

and the following estimates hold for t ∈ [0,T PS
Shock]: ∥∥∥dgeoΥPS

∥∥∥
C
Ntop−1
geo (Σt)

≲ 1, (A.55a)∥∥∥∥∥ ∂∂t dgeoΥPS

∥∥∥∥∥
H
Ntop
u (Σt)

,

∥∥∥∥∥ ∂∂t dgeoΥPS

∥∥∥∥∥
C
Ntop−1
geo (Σt)

≲ a. (A.55b)

Properties of the rough time functions (n)τPS and the location of their level-sets. We define:

∆PS def
=
|τ0|
16

T PS
Shock =

|τ0|
16a

. (A.56)
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For τ ∈ [2τ0,
1
2τ0] and n ∈ [0,n0], there exist functions tPSτ,n : R→ [T PS

Shock−2ζT PS
Shock,T

PS
Shock−2∆PS], depending on τ and

n and strictly increasing with respect to τ, such that ∥tPSτ,n∥C3
u ((−∞,∞)) ≲ 1 and such that the rough time function (n)τPS

exists as a C3 function of (t,u) on the domain (n)MPS
[2τ0,

1
2τ0],(−∞,∞)

defined by:

(n)MPS
[2τ0,

1
2τ0],(−∞,∞)

=
{
(t,u) | tPS2τ0,n

(u) ≤ t ≤ tPS1
2τ0,n

(u), u ∈ (−∞,∞)
}
, (A.57)

and such that relative to the geometric coordinates, the level-sets (n)Σ̃PS
τ

def
= {(t,u) ∈R×R | (n)τPS(t,u) = τ} are the following

graphical surfaces:

(n)Σ̃PS
τ =

{
(t,u) | t = tPSτ,n(u), u ∈R

}
. (A.58)

In particular, ⋃
τ∈[2τ0,

1
2τ0]

(n)Σ̃PS
τ ⊂

⋃
t∈[T PS

Shock−2ζT PS
Shock,T

PS
Shock−2∆PS]

Σt . (A.59)

Moreover, the following estimates hold for (t,u) ∈ (n)MPS
[2τ0,

1
2τ0],(−∞,∞)

:

31
32

δ̊PS∗ ≤
∂
∂t

(n)τPS(t,u) ≤ 33
32

δ̊PS∗ , (A.60)∣∣∣∣∣ ∂∂u (n)τPS

∣∣∣∣∣ ≤ 2n0 =
|τ0|a
8b

. (A.61)

Properties of (n)TPS and
(n)JPS. The change of variables map (n)TPS defined by:

(n)TPS(t,u)
def
= ((n)τPS,u) (A.62)

is a diffeomorphism from (n)M[2τ0,
1
2τ0],(−∞,∞) onto its image, which is [2τ0,

1
2τ0]× (−∞,∞), and it satisfies:

∥(n)TPS∥C3
geo((n)MPS

[2τ0 ,
1
2 τ0],(−∞,∞)

) ≲ 1, (A.63)

31
32

δ̊PS∗ ≤ det
(
dgeo

(n)TPS

)
=
∂
∂t

(n)τPS ≤
33
32

δ̊PS∗ , on (n)MPS
[2τ0,

1
2τ0],(−∞,∞)

. (A.64)

In addition, for every n ∈ [0,n0], the Jacobian matrix (n)JPS
def
= ∂(µPS,X̆PSµPS)

((n)τPS,u)
(see also (5.4b)) is invertible for every

q
def
= (τ,u) ∈ [2τ0,

1
2τ0]× [−Uj,Uj] and satisfies:

sup
q1,q2∈[2τ0,

1
2τ0]×[−Uj,Uj]

∣∣∣(n)J−1
PS (q1)(n)JPS(q2)− ID

∣∣∣
Euc
≤ 1

4
, (A.65)

where | · |Euc is the standard Frobenius norm on matrices (equal to the square root of the sum of the squares of the matrix
entries) and ID denotes the 2× 2 identity matrix.

Properties of M̆PS. We define the map M̆PS from geometric coordinates to “(µ, X̆µ)-space” and its Jacobian (M̆PS)J as
follows (see also (5.3a)–(5.3b)):

M̆PS(t,u,x
2,x3)

def
= (µ, X̆PSµ), (A.66a)

(M̆PS)J(t,u)
def
=
∂M̆ (t,u)
∂(t,u)

=
∂(µ, X̆PSµ)
∂(t,u)

. (A.66b)

Then there is a C > 1 such that for n ∈ [0,n0], (M̆PS)J is invertible for (t,u) ∈ [T PS
Shock − 2ζT PS

Shock,T
PS
Shock]× [−Uj,Uj]

and satisfies the following bounds:

−C ≤ det (M̆ )J ≤ − 1
C
, on [T PS

Shock − 2ζT PS
Shock,T

PS
Shock]× [−Uj,Uj], (A.67)
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sup
p1,p2∈[T PS

Shock−2ζT PS
Shock,T

PS
Shock]×[−Uj,Uj]

∣∣∣∣(M̆PS)J(p1)(M̆PS)J−1(p2)− ID
∣∣∣∣
Euc
≤ 1

4
, (A.68)

where | · |Euc is the standard Frobenius norm on matrices (equal to the square root of the sum of the squares of the matrix
entries) and ID denotes the 2× 2 identity matrix.

Behavior of µPS in the interesting region. The following estimates hold for t ∈ [0,T PS
Shock]:

−33
32

δ̊PS∗ ≤ min
Σ

[−Uj ,Uj]
t

LPSµPS(t,u) ≤ max
Σ

[−Uj ,Uj]
t

LPSµPS(t,u) ≤ −31
32

δ̊PS∗ . (A.69)

Moreover, for (t,u) ∈ [0,T PS
Shock]× [−Uj,Uj], the following estimates hold:

µPS(t,u) = {1 +O(a)}
b

2
u2 + {1 +O(a)}a(T PS

Shock − t), (A.70)

LPSµPS(t,u) = −{1 +O(a)}a, (A.71)

X̆PSµPS(t,u) = {1 +O(a)}bu +O(a2)(T PS
Shock − t), (A.72)

LPSX̆PSµPS(t,u) = O(a2), (A.73)

X̆PSX̆PSµPS(t,u) = {1 +O(a)}b+O(a)(T PS
Shock − t). (A.74)

In addition, for t ∈ [T PS
Shock − T

PS
Shockζ,T

PS
Shock] and n ∈ [0,n0], we have:66

{X̆PSµPS = −n} ∩Σ[−Uj,Uj]
t ⊂ Σ

[− 1
4Uj,

1
4Uj]

t , (A.75)

min
Σ

[−Uj ,Uj]
t \Σ

[− 1
2Uj ,

1
2Uj]

t

|X̆PSµPS +n| ≥ bUj

8
, (A.76)

b

2
≤ min

Σ
[−Uj ,Uj]
t

(n)W̆ PS(n)W̆ PSµPS, (n)W̆ PSX̆PSµPS, X̆PSX̆PSµPS,
∂
∂u
X̆PSµPS −

( ∂∂uµ
PS) ∂∂t X̆

PSµPS

∂
∂tµ

PS


≤ max

Σ
[−Uj ,Uj]
t

(n)W̆ PS(n)W̆ PSµPS, (n)W̆ PSX̆PSµPS, X̆PSX̆PSµPS,
∂
∂u
X̆PSµPS −

( ∂∂uµ
PS) ∂∂t X̆

PSµPS

∂
∂tµ

PS

 ≤ 2b.

(A.77)

µPS is uniformly positive away from the interesting region. With p ∈ [0,1) denoting the non-negative constant on
RHS (A.41b), we have the following estimate:

min
{(t,u) | t∈[0,T PS

Shock], |u|≥Uj}
µPS(t,u) ≥ 1

2
(1− p). (A.78)

Remark A.5 (Generalizations of Theorem A.4). Before proving the theorem, we first make a series of remarks on how it
could be extended.

• In Theorem A.4, we chose to follow the solution up to the Cartesian time of first blowup because we believe that
the results could help prepare the reader for the more difficult analysis in the bulk of the paper. However, we
could have “stopped the analysis” before then; our main goal in the theorem was to construct the rough time
functions (n)τPS and to describe the state of the solution near the hypersurfaces (n)Σ̃PS

τ0
so that we can use these

results in Appendix B, in our study of Cauchy stability.
• Our definition (A.45) of n0 is such that n0 decreases as |τ0| ↓ 0. This is highly non-optimal and is an artifact

of our insistence (out of convenience) that the level-sets (n)Σ̃PS
τ0

should be contained in the rectangular shaped

domain [0,T PS
Shock −2∆PS]×R in geometric coordinate space; by studying the solution on a larger (curved) subset

of geometric coordinate space, we could have shown that n0 can be chose to be independent of all sufficiently
small |τ0|. In a similar vein, with modest additional effort, we could have shown that Uj can be chosen to be
independent of all sufficiently small a.

66It might appear that there are fewer quantities in braces in (A.77) compared to (11.18), but this is not true. The reason is that in simple isentropic
plane-symmetry, some of the quantities in braces in (11.18) are equal to each other.
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Σ0

(n)M[2τ0,
1
2τ0],(−∞,∞)

(n)Σ̃PS
2τ0

t

(n)Σ̃PS
1
2τ0

∂−BPS = (T PS
Shock,0)

ΣT PS
Shock−2∆PS

ΣT PS
Shock

ΣT PS
Shock−2ζT PS

Shock

u =U2 u = −U1

P [0,T PS
Shock]

Uj
P [0,T PS

Shock]
−Uj

u

u = 0

• One could generalize Theorem A.4 in a straightforward fashion to allow for much more general initial data of
simple isentropic plane-symmetric type. For example, one could consider seed profile functions ϕ̊ of multi-bump
type, leading to the formation distinct shocks that are separated in space. One could also consider two-parameter

families of rescaled seed profile functions of the form ϕ̊a1;a2
(u) def= a1ϕ̊(a2u), which would allow one to produce

small-amplitude shock-forming solutions for initial data with small derivatives (i.e., when a1 is small and a1a2 is
even smaller) or large derivatives (i.e., when a1 is small and a1a2 is large). Moreover, the assumption that ϕ̊ is
compactly supported can easily be eliminated.

• One could also prove an analog of Theorem A.4 for isentropic plane-symmetric solutions that are not simple, i.e.,
when both Riemann invariants in the system (A.4) are non-vanishing. In this way, one could produce shocks along
the characteristics of LPS (i.e., the blowup of ∂1R(+), as in Theorem A.4) as well as along the characteristics of

LPS (i.e., the blowup of ∂1R(−)).

• In Theorem A.4, we followed the solution up to the crease ∂−BPS. With minor additional effort, we could have
followed the solution up to a portion of the singular boundary that contains a neighborhood of the crease. We
have omitted such results because we have already derived them away from plane-symmetry, in Theorem 34.1.

Proof of Theorem A.4. In each step of the proof, we will silently adjust the smallness of the positive constants a0 and ζ
without explicitly mentioning it each time.

Proof of classical existence with respect to the geometric coordinates for (t,u) ∈ [0,T PS
Shock] ×R: The facts that

RPS
(+) =RPS

(+)(u) and that RPS
(+) vanishes on the complement of the region {(t,u) ∈ R×R | u ∈ [−U1,U2]} follow from

the evolution equation ∂
∂tR

PS
(+)(t,u) = 0 (see (A.4) and (A.11)) and our assumption that the initial data are supported

in the u-interval [−U1,U2]. The identity (A.46) follows from definition (A.42a), (A.18a)–(A.18c), and the properties of
H[(R̊PS

(+))a(u)] described in Sect. A.5. The properties of RPS
(+), L

PS, and µPS follow easily from our assumptions on the

support of ϕ̊, the fact that relative to the geometric coordinates, RPS
(+) depends only on u, equations (A.3) and (A.5),

the normalization assumption (2.5) (which implies that cPS = 1 +RPS
(+)f(R

PS
(+)), where f is smooth), and the explicit

solution formulas provided by Cor. A.3. In particular, from the identity (A.23b), definition (A.42a), the identity (A.46),
definition (A.47), and our assumption that d

duH[(R̊PS
(+))a(u)] has a unique, negative, non-degenerate minimum at u = 0

(see Sect. A.5.2), it follows that µPS > 0 on
(
[0,T PS

Shock]×R
)
\{(T PS

Shock,0)}, and that µPS(T PS
Shock,0) = 0.

Proof of (A.49)–(A.52b): These estimates are straightforward consequences of the fact that in geometric coordinates, RPS
(+)

depends only on u, (A.5), (A.11), (A.23b), the normalization assumption (2.5) (which implies that cPS = 1 +RPS
(+)f(R

PS
(+)),

where f is smooth), the data-estimates (A.38a)–(A.38b), and the standard Sobolev calculus.
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Proof (A.53): Note that by (A.5), ∂
∂tx

1 = LPSx1 = vPS + cPS. Considering also that RPS
(+) vanishes on the complement of

{(t,u) ∈R×R | u ∈ [−U1,U2]}, we see that for (t,u) ∈ [0,T PS
Shock]×((−∞,−U1]∪ [U2,∞)), we have vPS(t,u)+cPS(t,u) =

1. Recalling also that x1(0,u) = −u (see (A.7b)), we see that for t ∈ [0,T PS
Shock], we have x1(t,−U1) = U1 + t and

x1(t,U2) = −U2 + t. Moreover, since (A.9) and (A.11) imply that ∂
∂u x

1 = X̆PSx1 = −cPSµPS ≤ 0, we conclude that for

(t,u) ∈ [0,T PS
Shock]× [−U1,U2], we have x1(t,U2) ≤ x1(t,u) ≤ x1(t,−U1). Combining these results, we conclude (A.53).

Proof of (A.54) and (A.55a)–(A.55b): Since ΥPS(t,u) = (t,x1), (A.54) follows easily from (A.5), (A.9), and (A.11).
The estimates (A.55a)–(A.55b) follow from (A.54), the fact that relative to the geometric coordinates, RPS

(+) depends only

on u, the estimates (A.50a)–(A.50d), and standard Sobolev calculus.

Proof of the remaining properties of ΥPS: We now prove that the map ΥPS(t,u) = (t,x1) is a diffeomorphism on
[0,T PS

Shock) ×R. First, using (A.54), we compute that detdΥPS = −cPSµPS. Also using (A.49) and the fact that µPS > 0
on [0,T PS

Shock) ×R, we see that detdΥPS < 0 on [0,T PS
Shock) ×R, and since ∂

∂u x
1 = −cPSµPS (by (A.54)), we see that

for t ∈ [0,T PS
Shock), the map u → x1(t,u) is strictly decreasing for u ∈ R. We therefore find that ΥPS is injective on

[0,T PS
Shock)×R and that it is a diffeomorphism on the same domain. Moreover, since µPS(T PS

Shock,u) vanishes only at the

origin u = 0 (where the crease is located), the map u→ x1(T PS
Shock,u) is strictly decreasing for u ∈R. It follows that ΥPS

is a homeomorphism on [0,T PS
Shock]×R, as is desired.

Proof of (A.69), (A.70)–(A.74), (A.75)–(A.76), and (A.77): These estimates are straightforward to derive via the standard
Sobolev calculus, Taylor expansions, the identities (A.23a)–(A.23b), the properties of the function H[(R̊PS

(+))a(u)] = ϕ̊a(u)
stated in Sect. A.5, the estimates (A.49)–(A.52b), and the definitions (A.44)–(A.45) of Uj and n0.

Proof of (A.48): We first use (A.25), (A.39), (A.20), (A.49), (A.51a), and (A.44) to deduce, via Taylor expanding, that for
(t,u) ∈ [0,T PS

Shock]× [−Uj,Uj], we have:

[µPS∂1RPS
(+)](t,u) =

1
cPS
X̆PSRPS

(+) = {1 +O(a)}
d
du

(R̊PS
(+))a(u) =

−2a

ċPS + 1
+O(a2). (A.79)

From (A.79), the non-degeneracy assumption (A.20), and the fact that the crease has geometric coordinates (t,u) =
(T PS

Shock,0), we conclude that if a is sufficiently small, then (A.48) holds with N def= Υ
(
[0,T PS

Shock]× [−Uj,Uj]
)
.

Proof of (A.78): This estimate follows from (A.41b), (A.23b), (A.49), and (A.47).

An intermediate step - the map (t,u)→ (µPS, X̆PSµPS) is a local diffeomorphism: Using (A.11), (A.43), (A.44), (A.47),
and (A.71)–(A.74), we compute that for (t,u) ∈ [T PS

Shock − 2ζT PS
Shock,T

PS
Shock]× [−Uj,Uj], we have:

∂(µPS, X̆PSµPS)
∂(t,u)

=
(
−a 0
0 b

)
+
(
O(a2) O(a)
O(a2) O(a) +O(ζ)

)
. (A.80)

Using (A.80), we deduce that if (t,u) ∈ [T PS
Shock −2ζT PS

Shock,T
PS
Shock]× [−Uj,Uj], and if a and ζ are sufficiently small, then

∂(µPS,X̆PSµPS)
∂(t,u) is invertible, and moreover, that:

max
(t1,u1), (t2,u2)∈[T PS

Shock−2ζT PS
Shock,T

PS
Shock]×[−Uj,Uj]

∣∣∣∣∣∣∣
(
∂(µPS, X̆PSµPS)

∂(t,u)
|(t1,u1)

)−1
∂(µPS, X̆PSµPS)

∂(t,u)
|(t2,u2) − ID

∣∣∣∣∣∣∣
Euc

≤ 1
4
, (A.81)

where | · |Euc is the standard Frobenius norm on matrices (equal to the square root of the sum of the squares of the matrix
entries) and ID denotes the 2×2 identity matrix. These estimates, together with (A.17) and (A.52a)–(A.52b), imply that the
map (t,u)→ (µPS, X̆PSµPS) is a C2 diffeomorphism from the compact, convex set [T PS

Shock−2ζT PS
Shock,T

PS
Shock]× [−Uj,Uj]

onto its image, which we denote by I , i.e.,

I def=
{(
µPS(t,u), X̆PSµPS(t,u)

)
| (t,u) ∈ [T PS

Shock − 2ζT PS
Shock,T

PS
Shock]× [−Uj,Uj]

}
. (A.82)

Let Ĩ be the following subset of I , where ∆PS is defined in (A.56):

Ĩ def=
{(
µPS(t,u), X̆PSµPS(t,u)

)
| (t,u) ∈ [T PS

Shock − ζT
PS
Shock,T

PS
Shock − 3∆PS]× [−Uj,Uj]

}
. (A.83)
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Proof of the properties of the (n)τPS and the location of their level-sets: Let Ĩ be as in (A.83). Considering (A.70)–
(A.74), recalling that τ0 is allowed to be any negative real number satisfying (A.43), that n0 is defined by (A.45), and that
∆PS is defined in (A.56), we find that if a and ζ are sufficiently small, then:[1

2
|τ0|,2|τ0|

]
× [−n0,0] ⊂

[
|τ0|2a2

64b3 +
1
4
|τ0|,

1
2
ζ

]
× [−n0,0] =

[
4n2

0
b

+
1
4
|τ0|,

1
2
ζ

]
× [−n0,0]

⊂
⋃

n∈[− ζa
2b ,

ζa
2b ]

[
4n2

b
+

1
4
|τ0|,

1
2
ζ

]
× {−n} ⊂ Ĩ .

(A.84)

In particular, (A.84) shows that for n ∈ [0,n0], along the portion of the level-set {(t,u) | X̆PSµPS(t,u) = −n} that is
contained in [T PS

Shock − ζT
PS
Shock,T

PS
Shock − 3∆PS]× [−Uj,Uj], µPS ranges over an interval that contains

[
1
2 |τ0|,2|τ0|

]
.

We now study the initial value problem for the rough time function (n)τPS (see Definition 4.5). Fix n ∈ [0,n0],
where n0 is defined by (A.45). From the diffeomorphism properties of the map (t,u) → (µPS, X̆PSµPS) established
above, (A.82), and (A.84), we see that for every τ ∈ [2τ0,

1
2τ0], there exists a unique point qτ ∈ {(t,u) | X̆PSµPS(t,u) =

−n} ∩ [T PS
Shock − ζT

PS
Shock,T

PS
Shock − 3∆PS] × [−Uj,Uj] such that µPS(qτ) = −τ and such that the map τ→ (tqτ ,uqτ ) is

C2, where (tqτ ,uqτ ) are the geometric coordinates of qτ. Note that qτ is a point on the “initial” data-hypersurface for
(n)τPS(t,u) (see Definition 4.5). In view of Definition 4.5, we see that (n)τPS(tqτ ,uqτ ) = −µPS(tqτ ,uqτ ) = τ, i.e., the initial

value of (n)τPS at qτ is τ. Much like in the bulk of the paper, we will use the notation PS
X̆

[2τ0,
1
2τ0]

−n to denote the union
of the points qτ as τ varies over the interval [2τ0,

1
2τ0], i.e.,

PS
X̆

[2τ0,
1
2τ0]

−n
def=
{
(t,u) | − 1

2
τ0 ≤ µPS(t,u) ≤ −2τ0

}
∩

{
(t,u) | X̆PSµPS(t,u) = −n

}
∩ [T PS

Shock − ζT
PS
Shock,T

PS
Shock]× [−Uj,Uj].

(A.85)

Let γqτ : R → R ×R be the u-parameterized integral curve of (n)W̆ PS = ∂̃
∂̃u

(recall that ∂̃
∂̃u
u = 1) that emanates

from qτ, where the target is geometric coordinate space, i.e., γqτ(uqτ ) = (tqτ ,uqτ ), where γqτ(u) belongs to geometric

coordinate space for u belonging to the interval of existence of γqτ . Below we will show that for τ ∈ [2τ0,
1
2τ0], we have:

γqτ(R) ⊂ [T PS
Shock − 2ζT PS

Shock,T
PS
Shock − 2∆PS]×R, (A.86)

which shows in particular that the entire integral curve is contained in the region of classical existence with respect to
the geometric coordinates and is temporally separated from the Cartesian time of first blowup by at least 2∆PS. Moreover,

(A.77) implies that these integral curves are transversal to PS
X̆

[2τ0,
1
2τ0]

−n . It follows that the map (τ,u)→ (t,u) is an
injection from [2τ0,

1
2τ0]× (−∞,∞) onto a subset of [0,T PS

Shock]×R, where the image component function t = γ0
qτ(u)

is defined to be the Cartesian time coordinate of the point γqτ(u). Considering also that (A.26) implies (n)τPS is constant
along the integral curves u → γqτ(u), we see that the map (τ,u)→ (t,u) is precisely the map from adapted rough

coordinates to geometric coordinates, and that its inverse is the map (n)TPS(t,u) = ((n)τPS,u) from (A.62). In addition,
from this reasoning and (A.86), we also conclude (A.59).

We now prove (A.86). First, using (A.83)–(A.84), we deduce that for τ ∈ [2τ0,
1
2τ0], we have:

tqτ ∈ [T PS
Shock − ζT

PS
Shock,T

PS
Shock − 3∆PS]. (A.87)

Next, in view of (A.27), we see that if 0 ≤ n ≤ n0, then as u varies over R, we can bound the total change in the
Cartesian time coordinate t along γqτ , denoted by ∆0

γqτ
, as follows:

|∆0
γqτ
| ≤

∫ ∞
u′=−∞

∣∣∣∣∣∣ ∂̃∂̃u t
∣∣∣∣∣∣ du′ =

∫ ∞
u′=−∞

∣∣∣∣∣∣∣ nφ
∂
∂tµ

PS

∣∣∣∣∣∣∣ du′ =
∫ Uj

u′=−Uj

∣∣∣∣∣∣∣ nφ
∂
∂tµ

PS

∣∣∣∣∣∣∣ du′ ≤ 2
∫
|u′ |≤ a

b2

n

a
du′

=
4n
b2 ≤

4n0

b2 =
a|τ0|
4b3 ,

(A.88)

where to obtain the second “=” and the next-to-last “≤” on RHS (A.88), we used the properties of φ from Definition 4.1,
the estimate (A.69) for ∂

∂tµ
PS = LPSµPS, and the definition (A.44) of Uj, and to obtain the last “=” on RHS (A.88), we
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used definition (A.45). From (A.87) and (A.88), we see that for any point γqτ(u) ∈ (n)Σ̃PS
τ , we can bound its Cartesian time

coordinate t as follows:

t = γ0
qτ(u) ∈ [T PS

Shock − ζT
PS
Shock − |∆

0
γqτ
|,T PS

Shock − 3∆PS + |∆0
γqτ
|]

⊂ [T PS
Shock − ζT

PS
Shock −

a|τ0|
4b3 |,T

PS
Shock − 3∆PS +

a|τ0|
4b3 ].

(A.89)

From (A.43), (A.56), and (A.89), we conclude that if a and ζ are sufficiently small, then the desired result (A.86) holds.
Next we prove (A.60)–(A.61). We first note that in simple isentropic plane-symmetry, ∂

∂t commutes with ∂
∂u +

φ(u) n
∂
∂tµ

PS(t,u)
∂
∂t and thus, by (A.23a) and (A.26), ∂

∂t
(n)τPS satisfies the following transport equation: ∂

∂u
+φ(u)

n

∂
∂tµ

PS(t,u)

∂
∂t

 ∂
∂t

(n)τPS(t,u) = 0. (A.90)

Moreover, since the same arguments used to prove (15.10) imply that ∂
∂t

(n)τPS|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
= − ∂∂tµ

PS|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
, we deduce

from (A.69) and (A.75) the following “data-estimates:”

31
32

a =
31
32

δ̊PS∗ ≤
∂
∂t

(n)τPS|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
≤ 33

32
δ̊PS∗ =

33
32

a. (A.91)

We emphasize that (A.86) implies that the data-hypersurfaces PS
X̆

[2τ0,
1
2τ0]

−n and the integral curves of ∂
∂u +φ(u) n

∂
∂tµ

PS
∂
∂t

emanating from them are contained in the region of classical existence. The bounds stated in (A.60) now follow from
the transport equation (A.90) for ∂

∂t
(n)τPS and the data-estimates (A.91). To derive (A.61), we first use (A.26) to deduce the

pointwise bound
∣∣∣ ∂
∂u

(n)τPS(t,u)
∣∣∣ ≤ φ(u) n∣∣∣ ∂

∂tµ
PS(t,u)

∣∣∣
∣∣∣ ∂
∂t

(n)τPS(t,u)
∣∣∣. Also using (A.91) and (A.69) and the fact that φ ≥ 0

is supported on {|u| ≤Uj} and bounded by 1, we further deduce that | ∂∂u
(n)τPS(t,u)| ≤ 2n ≤ 2n0. From this bound and

(A.45), we conclude (A.61).
We now exhibit the diffeomorphism properties of the map (τ,u) → (t,u) and its inverse (n)TPS. Straightforward

calculations show that det ∂̃(t,u)
∂̃(τ,u)

= ∂̃
∂̃τ
t. By the chain rule, we see that ∂̃

∂̃τ
t = 1

∂
∂t

(n)τ
and thus the estimate (A.60) implies

that the matrix is ∂̃(t,u)
∂̃(τ,u)

is invertible. In view of the injectivity established shortly after (A.86), we conclude that the map

(τ,u)→ (t,u) is a diffeomorphism from [2τ0,
1
2τ0]× (−∞,∞) onto its image (n)MPS

[2τ0,
1
2τ0],(−∞,∞)

, and that its inverse

map (n)TPS(t,u) = ((n)τ,u) is a diffeomorphism from (n)MPS
[2τ0,

1
2τ0],(−∞,∞)

onto [2τ0,
1
2τ0]× (−∞,∞). Moreover, from

the identity det ∂̃((n)τPS,u)
∂̃(t,u)

= ∂
∂t

(n)τPS and the estimate (A.60), we also conclude (A.64).

Now that we have shown that (n)TPS is a diffeomorphism on (n)MPS
[2τ0,

1
2τ0],(−∞,∞)

, we can derive C3 estimates for the

map, i.e., we can control the up-to-third-order derivatives of (n)τPS. Our argument has some commonalities with our proof
of Lemma 15.1 and relies on the bound ∥µPS∥C3

geo((n)MPS
[2τ0 ,

1
2 τ0],(−∞,∞)

) ≲ 1, which follows from (A.17) and (A.52a)–(A.52b). To

proceed, we first recall that (n)τ|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
= −µPS|

PS
X̆

[2τ0 ,
1
2 τ0]

−n
. We also note that the same arguments used to prove (15.10)

imply that ∂
∂t

(n)τPS|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
= − ∂∂tµ

PS|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
and ∂

∂u
(n)τPS|

PS
X̆

[2τ0 ,
1
2 τ0]

−n
= − ∂

∂uµ
PS|

PS
X̆

[2τ0 ,
1
2 τ0]

−n
. Next, we note that

the vectorfield V̆
def= (X̆PSX̆PSµPS) ∂∂t−( ∂∂t X̆

PSµPS)X̆PS satisfies V̆ X̆PSµPS = 0 and thus is tangent to the curve PS
X̆

[2τ0,
1
2τ0]

−n .

From this fact, the identities for (n)τ|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
, ∂
∂t

(n)τ|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
, and ∂

∂u
(n)τ|

PS
X̆

[2τ0 ,
1
2 τ0]

−n
noted above, and the estimate

∥µPS∥C3
geo((n)MPS

[2τ0 ,
1
2 τ0],(−∞,∞)

) ≲ 1 noted above, we deduce that (n)τ|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
, ∂
∂t

(n)τ|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
, ∂
∂u

(n)τ|
PS
X̆

[2τ0 ,
1
2 τ0]

−n
and

the up-to-second-order derivatives of all three of these “data functions” with respect to V̆ are pointwise bounded by ≤ C
along PS

X̆

[2τ0,
1
2τ0]

−n . Using these bounds, (A.74), and the transport equation (A.26) to solve for ∂
∂t and ∂

∂u in terms of

V̆ and (n)W̆ PS along PS
X̆

[2τ0,
1
2τ0]

−n , and using the bound ∥µPS∥C3
geo((n)MPS

[2τ0 ,
1
2 τ0],(−∞,∞)

) ≲ 1 mentioned above, we deduce
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that ∥(n)τPS∥C3
geo((n)MPS

[2τ0 ,
1
2 τ0],(−∞,∞)

) ≲ 1. Using this “data bound,” we can differentiate the transport equation (A.26) up to

three times with the elements of
{
∂
∂t ,

∂
∂u

}
and use the aforementioned bound ∥µPS∥C3

geo((n)MPS
[2τ0 ,

1
2 τ0],(−∞,∞)

) ≲ 1 and (A.69)

(which implies that −LµPS ≈ a on the support of φ), as well as a standard argument based on Grönwall’s inequality
(with respect to u, since the transport operator (n)W̆ PS on LHS (A.26) satisfies (n)W̆ PSu = 1), thereby deducing that
∥(n)W̆ PS∥C3

geo((n)MPS
[2τ0 ,

1
2 τ0],(−∞,∞)

) ≲ 1. From this bound and definition (A.62), we conclude (A.63).

Next, we note that the function tPSτ,n from the statement of the theorem is the first component of the map

u → (n)T −1
PS (τ,u). Moreover, (A.86) implies that tPSτ,n(R) ∈ [T PS

Shock − 2ζT PS
Shock,T

PS
Shock − 2∆PS]. Since (A.63) and the

diffeomorphism properties of (n)TPS imply that ∥(n)T −1
PS ∥C3([2τ0,

1
2τ0]×(−∞,∞)) ≲ 1, we conclude that for τ ∈ [2τ0,

1
2τ0],

∥tPSτ,n∥C3
u ((−∞,∞)) ≲ 1 and that the level-sets (n)Σ̃PS

τ are the graphical surfaces in (A.58).

Proof of (A.65): Using the chain rule relation ∂(µPS,X̆PSµPS)
∂(τ,u) = ∂(µPS,X̆PSµPS)

∂(t,u) ·
(
∂(τ,u)
∂(t,u)

)−1
and the estimates (A.80) and

(A.60)–(A.61), we compute that for (τ,u) ∈ [2τ0,
1
2τ0]× [−Uj,Uj], we have:

∂(µPS, X̆PSµPS)
∂(τ,u)

=
(
−1 0
0 b

)
+ E , (A.92)

where the entries of the “error matrix” E def=
(
E11 E12
E21 E22

)
satisfy the following estimates:

|E11| ≤
1
8
, |E12|, |E21|, |E22| = O(a) +O(ζ). (A.93)

From (A.92) and (A.93), we deduce that if (τ,u) ∈ [2τ0,
1
2τ0] × [−Uj,Uj], and if a and ζ are sufficiently small,

then the Jacobian matrix (n)JPS(τ,u) def= ∂(µPS,X̆PSµPS)
∂(τ,u) is invertible, and that for every pair of points (τ1,u1), (τ2,u2) ∈

[2τ0,
1
2τ0]× [−Uj,Uj], we have

∣∣∣(n)J−1
PS (τ1,u1)(n)JPS(τ2,u2)− ID

∣∣∣
Euc
≤ 1

4 , which is the desired bound (A.65).

Proof of the properties of M̆PS and (A.66a)–(A.66b), (A.67), and (A.68): These results follow from the “intermediate step”
mentioned above, including the estimates (A.80)–(A.81).

□

Corollary A.6 (The data-assumptions of Sect. 11.2 are satisfied). The solutions provided by Theorem A.4 induce data on
(n)̃Σ

[−U1,U2]
τ0 that satisfy all the assumptions stated in Sect. 11.2, where:

1. ϱ > 0 is a fixed constant density (see Def. 2.4);
2. U1, U2, Uj, τ0, and n0 are as in the statement of the theorem;
3. The parameters α̊PS, δ̊PS∗ , δ̊

PS, ϵ̊, MPS
2 , and mPS

1 can be chosen to satisfy the following relations, where the implicit
constants can depend on the function ϕ̊ from the statement of the theorem:
• α̊PS ≲ a

• δ̊PS∗ = a

• δ̊PS ≲ a

• ϵ̊ = 0
• MPS

2 = min{ b2 ,
1
2b } (note that by (A.43)–(A.45), the assumption (10.8) is satisfied)

• mPS
1 = 1

2 (1− p);
The following strict improvements67 of estimates stated in stated in Sect. 11.2 hold, where “strict” means that the
estimates guaranteed by Theorem A.4 have smaller-in-magnitude constants than the corresponding estimates stated
in Sect. 11.2:

4. • (A.69) is an improved version of (11.22);
• (A.65) is an improved version of (11.23);
• (A.68) is an improved version of (11.24);
• Considering (A.43), (A.47), and (A.56), we see that (A.59) yields an improved version of (11.17a);

67We exploit these strict improvements in Appendix B, where we use Cauchy stability to show that the assumptions of Sect. 11.2 are satisfied by
perturbations of the solutions from Theorem A.4.
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• (A.53) is an improved version of (11.17b).

Proof. All aspects of the corollary, aside from the estimate (11.14b), can be deduced by comparing the results provided by
Theorem A.4 with the assumptions stated in Sect. 11.2, and using the following facts:

• The solution vanishes on the complement of the region {(t,u) ∈ R ×R | u ∈ [−U1,U2]}, and in particular is

trivial along the null hypersurface P [0,∞)
−U1

.

• By (A.59), the hypersurface (n)Σ̃PS
τ0

is contained in the region of classical existence relative to the geometric
coordinates (where the estimates of the theorem hold).

• Relative to the geometric coordinates, RPS
(+) depends only on u.

• Along (n)Σ̃PS
τ0
, t is a function of u (see (A.58)).

The estimate (11.14b) (with ϵ̊ = 0, δ̊PS∗ in the role of δ̊∗, X̆
PS in the role of X̆ , and µPS in the role of µ) follows from the

facts noted above, (A.18b), (A.23a)–(A.23b), and the fact that in the context of Theorem A.4, we have LPS = ∂
∂t , X̆

PS = ∂
∂u ,

and 0 ≤ t ≤ 1
δ̊PS
∗
.

□

Definition A.7 (Admissible background solutions). We refer to the compactly supported solutions furnished by Theo-
rem A.4 as “admissible background solutions.” We consider their parameters α̊PS, δ̊PS∗ , etc. to be the ones guaranteed by
Cor. A.6.

A.7. The Cauchy stability region. Fix any of the admissible “background” (shock-forming) simple isentropic plane-
symmetric solutions from Def. A.7. Recall that these solutions are supported in the strip {(t,u) ∈R×R | u ∈ [−U1,U2]}.
In this section, we discuss the behavior of the solution in a “Cauchy stability region,” which is a large region close to
the singularity where the background solution exists classically. In particular, we describe Fig. 16, which will guide our
discussion in Appendix B. In Appendix B, we will use Cauchy stability arguments to show that perturbations of the
background solution stay close to it, in all relevant norms, in the Cauchy stability region. From the Cauchy stability
estimates, it will follow that there exist open sets data – without symmetry – satisfying the assumptions stated in
Sect. 11.2. In the rest of this section (and also in Appendix B), we view the background solutions as solutions in three
spatial dimensions that are independent of the torus coordinates (x2,x3).

Let δ̊PS∗ denote the quantity (11.6) evaluated at the (shock-forming) background solution. In Theorem A.4, we showed
that relative to the geometric coordinates, the first singular point for the background solution occurs at (t,u) = (T PS

Shock,0),
where T PS

Shock = 1
δ̊PS
∗
. We define:

U0
def= U1 +

18

δ̊PS∗
. (A.94)

For 0 ≤ t1 ≤ t2, we define (see Def. 3.2):

CS
[t1,t2]
Main

def=
⋃

t∈[t1,t2]

Σ
[−U1,U2]
t , (A.95a)

CS
[t1,t2]
Small

def=
⋃

t∈[t1,t2]

Σ
[3t−U0,−U1]
t , (A.95b)

S [t1,t2] def=
{
(t,u,x2,x3) | 3t −u =U0, t ∈ [t1, t2], and (x2,x3) ∈ T2

}
=

⋃
t∈[t1,t2]

ℓt,3t−U0
. (A.95c)

Note that S [0,5T PS
Shock] is the right boundary of CS

[0,5T PS
Shock]

Small ; see Fig. 16.
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ℓ0,U2

ℓ0,Uj

ℓ0,−Uj
ℓ0,−U1

ℓ0,−U0

ℓT PS
Shock−∆PS,Uj

ℓT PS
Shock−∆PS,−U1

ℓ5T PS
Shock,−U1 ℓ5T PS

Shock,15T PS
Shock−U0

Σ
[15T PS

Shock−U0,−U1]

5T PS
Shock

Σ
[−U1,U2]
0

Σ
[−U1,U2]
T PS
Shock

Σ
[−U1,U2]
T PS
Shock−∆PS

(n)Σ̃
[−U1,U2];PS
1
2τ0

(n)̃ℓPS1
2τ0,−Uj

P 5T PS
Shock

−U1

P [0,T PS
Shock−∆

PS]
−U1

P [0,T PS
Shock−∆

PS]
−UjP [0,T PS

Shock−∆
PS]

U2

P [0,T PS
Shock−∆

PS]
Uj

CS
[0,T PS

Shock−∆
PS]

Main

CS
[0,T PS

Shock−∆
PS]

Small

CS
[0,5T PS

Shock]
Small

S [0,5T PS
Shock]

u

t

Figure 16. The Cauchy stability region CST
PS
Shock;∆

PS
in geometric coordinate space, not drawn to scale

Consider the “Cauchy stability region” CST
PS
Shock;∆

PS
depicted relative to the geometric coordinates (t,u,x2,x3) in Fig. 16,

where ∆PS > 0 is the small constant defined in (A.56). We decompose this region into various sub-regions:

CST
PS
Shock;∆

PS def= CS
[0,T PS

Shock−∆
PS]

Main ∪CS
[0,5T PS

Shock]
Small , (A.96a)

CS
[0,5T PS

Shock]
Small = CS

[0,T PS
Shock−∆

PS]
Small ∪CS

[T PS
Shock−∆

PS,5T PS
Shock]

Small =
⋃

t∈[0,5T PS
Shock]

Σ
[3t−U0,−U1]
t , (A.96b)

ĈS
[0,T PS

Shock−∆
PS] def= CS

[0,T PS
Shock−∆

PS]
Main ∪CS

[0,T PS
Shock−∆

PS]
Small =

⋃
t∈[0,T PS

Shock−∆PS]

Σ
[3t−U0,U2]
t . (A.96c)

For future use, we also define:

ĈS
[0,T PS

Shock−2∆PS] def= CS
[0,T PS

Shock−2∆PS]
Main ∪CS

[0,T PS
Shock−2∆PS]

Small =
⋃

t∈[0,T PS
Shock−2∆PS]

Σ
[3t−U0,U2]
t (A.97)
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Note that (A.47) and (A.94) imply that the top boundary of CS
[0,5T PS

Shock]
Small , namely Σ

[15T PS
Shock−U0,−U1]

5T PS
Shock

, has u-width equal to

3T PS
Shock = 3

δ̊PS
∗
.

The background solutions provided by Theorem A.4 are smooth in CST
PS
Shock;∆

PS
and are trivial in the sub-region

CS
[0,5T PS

Shock]
Small . That is, for the background solutions, in CS

[0,5T PS
Shock]

Small , both Riemann invariants identically vanish, µ ≡ 1,

etc. This ensures, in particular, that the surface portions S [0,5T PS
Shock] are g-spacelike with respect to the acoustical

metric of the background. To see this, we compute that a future-directed normal (not of unit-length) to S [0,5T PS
Shock] is

3B− 1
µL = 2L+ 3X , where we have used (3.24) and the fact that µ ≡ 1 in the trivial region CS

[0,5T PS
Shock]

Small (which contains

S [0,5T PS
Shock]). We can therefore use Lemma 3.9 to compute that g(2L + 3X,2L + 3X) = −3, which indeed implies that

3B− 1
µL is g-timelike along S [0,5T PS

Shock].
To help prepare the reader for Appendix B, we now further discuss some aspects of Fig. 16 that follow from the

conclusions of Theorem A.4. Let (n)τPS denote the rough time function of the background, let (n)Σ̃
[u1,u2];PS
τ denote the

level-set portions {(n)τPS = τ} ∩ {u ∈ [u1,u2]}, and let (n)̃ℓPSτ,u′ = {(n)τPS = τ} ∩ {u = u′} denote the background rough

tori. The background solution, though smooth, is “about” to form a shock in CS
[0,T PS

Shock−∆
PS]

Main near u = 0. Moreover,
if τ0 < 0 and n0 are sufficiently small as in the statement of the theorem, then (A.59) shows that for n ∈ [0,n0], the
background rough time functions (n)τPS are defined on a subset of CST

PS
Shock;∆

PS
such that for τ ∈ [2τ0,

τ0
2 ], the level-set

portions (n)Σ̃
[−U0,U2];PS
τ are contained in the subset

⋃
t∈[T PS

Shock−2ζT PS
Shock,T

PS
Shock−2∆PS]Σ

[−U0,U2]
t of CST

PS
Shock;∆

PS
. In particular,

all the hypersurface portions (n)Σ̃
[−U0,U2];PS
τ are temporally separated from ΣT PS

Shock
by a distance at least equal to 2∆PS.

Note that for the background solution, if we followed it all the way to the first singular point (which is contained in
(0)Σ̃

[−U0,U2];PS
0 ), we would have (0)Σ̃

[−U0,U2];PS
0 = Σ

[−U0,U2]
T PS
Shock

. This is because in plane-symmetry, by (A.26) with n = 0,
(0)τPS can be expressed as a function of t alone.

Appendix B. The existence of an open set of data satisfying the assumptions

By Cor. A.6, there exists a large family of isentropic plane-symmetric initial data on Σ0 such that the corresponding
background solutions (and corresponding parameters) induce data on the background-solution-dependent rough hyper-

surface (n)Σ̃
[−U1,U2];PS
τ0 and null hypersurface portion P

[0, 5
δ̊PS∗

]

−U1
that satisfy the assumptions in Sects. 11.2–11.2.3 and the

parameter-size assumptions of Sect. 10.2 with ϵ̊ = 0. In this section, we sketch a proof of Prop. B.2, which shows that
if one perturbs – without symmetry, irrotationality, or isentropicity assumptions – the background initial data on Σ0,
then the corresponding perturbed solutions also induce data that satisfy the assumptions in Sects. 11.2.1–11.2.3 and the
parameter-size assumptions of Sect. 10.2 with ϵ̊ non-negative but small. In conjunction with Theorem 34.1, this shows that
our main results hold for open sets of solutions.

Remark B.1 (We can choose the smallness of |τ0|). Theorem A.4 implies that we can choose and fix the parameter
τ0 = −m0 < 0 to be as close to 0 as we want. For perturbed solutions, the smallness of |τ0| corresponds to assuming

that their initial rough hypersurfaces (n)̃Σ
[−U1,U2]
τ0 are close to the singularity of the background solution. While such

smallness is not essential for our analysis of perturbed solutions, it is helpful because it allows us to simplify the proofs
of various estimates in the bulk of the paper, i.e., it allows us to exploit that we only have to control perturbed solutions
for |τ0| amounts of rough time.

Proposition B.2 (Cauchy stability and the existence of open sets of data satisfying our assumptions). Fix any of the
admissible “background” (shock-forming) simple isentropic plane-symmetric solutions from Def. A.7. Recall (see Cor. A.6) that
ϱ, U1, U2, Uj, n0, |τ0| = −τ0, α̊

PS, δ̊PS∗ , δ̊
PS,MPS

2 , and m
PS
1 are positive parameters associated to the background solution

and that U0
def
= U1 + 18

δ̊PS
∗
(see (A.94)). Recall that we can choose and fix |τ0| (which is equal tom0) to be as small as we want;

see Remark B.1. Let ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

be the norm of the bona fide data perturbation defined in (11.4). If ∆PS > 0 is the small constant

defined in (A.56), then for all sufficiently small ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

> 0 (where the required smallness depends on the background
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solution), the perturbed fluid solution, the eikonal function u, and all of the auxiliary geometric quantities constructed out

of u (such as µ, Li , and χ) exist classically in the Cauchy stability region CST
PS
Shock;∆

PS
= CS

[0,T PS
Shock−∆

PS]
Main ∪CS

[0,5T PS
Shock]

Small
(which we view to be a fixed subset of geometric coordinate space) defined in (A.96a). Moreover, for n ∈ [0,n0] each
perturbed time function (n)τ exists classically on a subset of CST

PS
Shock;∆

PS
such that for τ ∈ [2τ0,

1
2τ0], the level-set portions

(n)̃Σ
[−U1,U2]
τ are contained in the subset CS

[0,T PS
Shock−∆

PS]
Main defined in (A.95a). In particular, the perturbed solution exists

classically on (n)M[2τ0,
1
2τ0],[−U1,U2].

Moreover, for the perturbed solution, we define δ̊∗ by (11.6), we define m1, δ̊, and M2 by:
68

α̊
def
= 2α̊PS, δ̊

def
= 2δ̊PS, M2

def
=

1
2
MPS

2 , m1
def
=

1
2
mPS

1 , (B.1)

and we define the remaining parameters to be the same as for the background solution. Then the following estimate holds:

δ̊∗ = δ̊PS∗ +O
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)
, (B.2)

and for these parameters, the perturbed solutions induce data on the perturbed rough hypersurface (n)̃Σ
[−U1,U2]
τ0 , the null

hypersurface portion P [0,4δ̊∗]
−U1

, and the perturbed rough tori (n)̃ℓτ0,u that satisfy all of the assumptions of Sects. 11.2.1–11.2.3

with ϵ̊ = O
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)
, where the implicit constants in “O(·)” depend on the background solution and |τ0| (the implicit

constants can blow up as |τ0| ↓ 0).

Proof sketch. Overview of the main ideas of the proof. Because the background solutions satisfy the assumptions of
Sects. 11.2.1–11.2.3 with ϵ̊ = 0, most aspects of the proposition follow from standard arguments based on Cauchy stability.
The only non-standard aspects are the following, which we flesh out in Steps 1–5 below:

• (Estimates - without derivative loss - on flat spacelike hypersurfaces and null hypersurfaces) We need to

show that in CST
PS
Shock;∆

PS
, we can control the solution with respect to the geometric coordinates (t,u,x2,x3) up

to top-order, i.e., without losing a derivative relative to the data norm ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

defined in (11.4). This is essentially

a much easier version of the proofs of the energy estimates of Props. 24.1, 24.2, 24.3, and 24.4, except there is one
new conceptually important aspect of the tori energy estimates (i.e., the analog of the estimates of Prop. 24.3),
described below. The main simplification compared to the bulk of the paper is that µ is uniformly positive in

CST
PS
Shock;∆

PS
(see (B.3)), and this positivity allows one to use standard arguments based on Grönwall’s inequality to

show that the energies and null fluxes grow at most exponentially.
• (Estimates - without derivative loss - on tori) We need to adequately control the solution up to top-order

on various tori. This control does not directly come from the energy estimates described in the previous step.
We obtain the desired control by combining averaging arguments based on Chebychev’s inequality with elliptic-
hyperbolic identities in the spirit of (21.63).

Throughout this proof, we view CST
PS
Shock;∆

PS
to be a fixed subset of geometric coordinate space. We will tacitly assume

that ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is sufficiently small. We will also freely use notation defined in Sect. A.7 and the results of Theorem A.4

for the background solution.

Step 1: Standard Cauchy stability with respect to the Cartesian coordinates in CST
PS
Shock;∆

PS
By Cauchy stability, if

∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is small enough, then the perturbed fluid solutions vary continuously with respect to the fluid data in the

Cauchy stability region CST
PS
Shock;∆

PS
depicted in Fig. 16 (see also (A.96a)). Similarly, the eikonal function u, which solves

the fully nonlinear transport equation (3.1), varies continuously in CST
PS
Shock;∆

PS
with respect to the fluid data (here we are

viewing u as a function of the Cartesian coordinates). Cauchy stability results of this type are standard if one measures
continuity using topologies corresponding to Sobolev spaces respect to the Cartesian coordinates on portions of the

hypersurfaces Σt of constant Cartesian time that are contained in CST
PS
Shock;∆

PS
; see [65, Proposition 9.17] for a detailed

68The parameters that serve as lower bounds in our PDE analysis are defined to be half the value of the corresponding background parameters,
while parameters that serve as upper bounds are defined to be twice the value of the corresponding background parameter.
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proof in the context of Einstein’s equations. We emphasize that the present Step 1 yields the continuous dependence
of the solution only with respect to standard Sobolev norms defined through Cartesian partial derivatives. In
particular, this “Cartesian approach” does not yield the top-order regularity of the solution with respect to the geometric

coordinates; in the remaining steps, we will obtain the desired top-order regularity in CST
PS
Shock;∆

PS
. We clarify that even

though the eikonal function u = u(t,x1,x2,x3) varies slightly with the solution, domain of dependence considerations

imply that CST
PS
Shock;∆

PS
is always a development of the portion of the initial data on the fixed subset Σ

[−U0,U2]
0 of Σ0.

Next, we highlight that all of the auxiliary geometric quantities constructed out of u, such as µ, Li , and χ, also vary
continuously69 with respect to the fluid data. In particular, since the background solution’s inverse foliation density µPS

is strictly positive in CST
PS
Shock;∆

PS
, the perturbed solution satisfies:

µ|
CS

T PSShock ;∆PS ≳ 1, (B.3)

where the implicit constants in (B.3) depend on the parameters of the background solution. Similarly, since µPS|
CS

[0,5T PSShock]

Small

=

1, it is a standard consequence of Cauchy stability that the perturbed solution satisfies:

µ|
CS

[0,5T PSShock]

Small

= 1 +O
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)
. (B.4)

Furthermore, if ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is small, then, like the map ΥPS(t,u) = (t,x1) from Theorem A.4, the perturbed change of

variables map Υ (t,u,x2,x3) = (t,x1,x2,x3) defined in (5.1) is a diffeomorphism on CST
PS
Shock;∆

PS
. Hence, from the chain

rule and the standard Sobolev calculus, it follows that for the perturbed solution, we can view the following quantities
as functions of the geometric coordinates (t,u,x2,x3), and for a neighborhood of the data of the background solution,
they all vary continuously with respect to the fluid data in various Sobolev and Lebesgue norms corresponding to the
geometric coordinates: all of the fluid variables, the eikonal function, all of the auxiliary quantities, such as µ, Li , χ,
etc. constructed out of the eikonal function (the auxiliary quantities solve various geometric PDEs), and the Cartesian
coordinates (which we view to be functions of the geometric coordinates, where those functions depend on the perturbed

solution). In particular, all the perturbed solutions exist and are smooth on the common domain CST
PS
Shock;∆

PS
in geometric

coordinate space.
Next, we note that by Theorem A.4, for n ∈ [0,n0] (where n0 is as in the theorem), the background change of variables

map (n)TPS is a diffeomorphism from the subset (n)MPS
[2τ0,

1
2τ0],[−U0,U2]

of ĈS
[0,T PS

Shock−2∆PS]
onto [2τ0,

1
2τ0]×[−U0,U2]×

T
2, where the set ĈS

[0,T PS
Shock−2∆PS]

is defined in (A.97) and is contained in CST
PS
Shock;∆

PS
. We clarify that here, we are lifting

the map (n)TPS to three spatial dimensions by the formula (n)TPS(t,u,x2,x3) =
(

(n)τPS(t,u,x2,x3),u,x2,x3
)
. Consider

now the perturbed change of variables map (n)T (t,u,x2,x3) =
(

(n)τ(t,u,x2,x3),u,x2,x3
)
defined in (5.2), where the

perturbed rough time function (n)τ solves the initial value problem (4.4a)–(4.4b). We clarify that by the diffeomorphism
properties of Υ described in the previous paragraph, we can view the perturbed (n)τ and (n)T as functions of (t,u,x2,x3).

By the results of Theorem A.4 and Cauchy stability, if ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

is sufficiently small, then for n ∈ [0,n0], (n)T is a diffeo-

morphism from a subset of the set ĈS
[0,T PS

Shock−∆
PS]

(which is defined in (A.96c), contained in CST
PS
Shock;∆

PS
, and contains

ĈS
[0,T PS

Shock−2∆PS]
) onto [2τ0,

1
2τ0]× [−U0,U2]×T2. That is, (n)M[2τ0,

1
2τ0],[−U0,U2] ⊂ ĈS

[0,T PS
Shock−∆

PS]
, and (n)T is a dif-

feomorphism from (n)M[2τ0,
1
2τ0],[−U0,U2] (which is equal to

{
(t,u,x2,x3) | 2τ0 ≤ (n)τ(t,u,x2,x3) ≤ 1

2τ0, u ∈ [−U0,U2]
}
)

onto [2τ0,
1
2τ0] × [−U0,U2] ×T2. In view of definition (A.95a) of CS

[0,T PS
Shock−∆

PS]
Main , we also have the following weaker

result: (n)T is a diffeomorphism from (n)M[2τ0,
1
2τ0],[−U1,U2] onto [2τ0,

1
2τ0]× [−U1,U2]×T2, where (n)M[2τ0,

1
2τ0] ⊂

CS
[0,T PS

Shock−∆
PS]

Main (i.e., for τ ∈ [2τ0,
1
2τ0], the level-set portions (n)̃Σ

[−U1,U2]
τ are contained in the subset CS

[0,T PS
Shock−∆

PS]
Main ,

as is claimed in the proposition).

In total, these Cauchy stability arguments yield all the conclusions of Prop. B.2, except for the following
top-order energy estimates, which we will derive in the remaining steps:

69All of these quantities can be expressed in terms of the fluid variables, u, and their Cartesian coordinate partial derivatives.
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• The L2 estimates at the highest derivative level in (11.11a)–(11.11d), (11.12a)–(11.12c), (11.13a)–(11.13c), and
(11.16a)–(11.16b).

Step 2: Estimates – without derivative loss – relative to the geometric coordinates in ĈS
[0,T PS

Shock−∆
PS]
. We first

recall (A.96c): ĈS
[0,T PS

Shock−∆
PS]

=
⋃
t∈[0,T PS

Shock−∆PS]Σ
[3t−U0,U2]
t . In particular, ĈS

[0,T PS
Shock−∆

PS]
is foliated by portions of the

flat hypersurfaces Σt that are bounded by level-sets of u. Hence, we can control the solution in ĈS
[0,T PS

Shock−∆
PS]

by
constructing energies and null fluxes as in Sect. 20, but instead of using the rough time functions and rough hypersur-

faces, we use the Cartesian time function t and the spacelike hypersurface portions Σ
[3t−U0,u]
t and S [0,t] (note that

Σ
[3t−U0,u]
t ∪S [0,t] is Lipschitz and piecewise smooth, which is sufficient regularity for applying the divergence theorem

on ĈS
[0,T PS

Shock−∆
PS]

to obtain L2 estimates for the solution). We refer to these as “flat geometric energies and null fluxes.”
The same arguments used in the proofs of Props. 24.1, 24.2, 24.3, and 24.4 show that analogous estimates also hold70 for

the flat geometric energies and null fluxes, where the role of the smallness parameter ϵ̊ is now played by ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

. The

proof is dramatically easier in the present context because the Cartesian time function t is much easier to control and
because µ is uniformly positive by (B.3). In particular, the energy estimates can be derived using the standard version of
Grönwall’s inequality, as opposed to the very technical arguments used in e.g. Sect. 29.7.1.

There is, however, one new detail of significance that we now describe. In carrying out the above arguments, which
involve using Grönwall’s inequality on the sub-regions ĈS[0,t],[−U0,u] defined by:

ĈS[0,t],[−U0,u]
def=

⋃
t′∈[0,t]

Σ
[3t−U0,u]
t′ , (B.5)

we must control the top-order derivatives of Ω and S by using a Cartesian-time-function-analog of the integral identity
(21.63) on ĈS[0,t],[−U0,u]. Since the right boundary of ĈS[0,t],[−U0,u] is the g-spacelike hypersurface S [0,t] – in contrast

to the g-null right boundary of the domain (n)M[τ1,τ2),[u1,u2] featured in (21.63) – the new integral identity features

additional S [0,t]-integrals and tori-integrals. More precisely, for (t,u) ∈ [0,T PS
Shock−∆

PS]× [−U0,U2], the same arguments
that we used to prove (21.63) can be used to prove the following similar identity, where we have suppressed the volume
and area forms to simplify the presentation, and in practice, the role of the vectorfield V is played by PNtopΩ and
PNtopS : ∫

ĈS[0,t],[−U0 ,u]

Q[∂∂∂V ,∂∂∂V ] +
∫
ℓt,u

1
4µ
|V |2g −

∫
ℓt,3t−U0

1
4µ
|V |2g +

∫
ℓt,3t−U0

1

4(µ− 1
3 )
|V |2g

=
∫
ℓ0,u

1
4µ
|V |2g −

∫
ℓ0,−U0

1
4µ
|V |2g +

∫
ℓ0,−U0

1

4(µ− 1
3 )
|V |2g

+
∫
Σ

[3t−U0 ,u]
t

· · ·+
∫
S [0,t]
−
∫
Σ

[−U0 ,u]
0

· · ·+
∫
ĈS[0,t],[−U0 ,u]

· · · .

(B.6)

In (B.6), “· · · ” denotes error integrands that are similar to the ones on RHS (21.63), but are much simpler to control because
they depend on the Cartesian time function (as opposed to the rough time function) and its derivatives; the error integrals
of the “· · · ” terms can be controlled by the flat energies mentioned above, much like in the proof of Prop. 27.5. We point
out that the Cauchy stability arguments from Step 1 yield that S [0,t] is g-spacelike for the perturbed solution (because it
is also spacelike for the background solution).

The key feature of the identity (B.6) is that the tori integrals −
∫
ℓt,3t−U0

1
4µ |V |

2
g +

∫
ℓt,3t−U0

1
4(µ− 1

3 )
|V |2g on LHS (B.6)

sum to yield positive definite control of
∫
ℓt,3t−U0

|V |2g , thus allowing us to propagate the “torus regularity” corresponding

to the tori integrals on the RHS of the definition (11.4) for ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

(note that the integrals
∫
ℓ0,u
· · · and

∫
ℓ0,−U0

· · ·

70To derive estimates for the acoustic geometry quantities µ, Li , χ, etc., we in particular need to control their data on Σ0 . To this end, we recall
that u|Σ0 = −x1 . Hence, u|Σ0 is C∞ , and it is straightforward to use the eikonal equation (3.1) and the definitions of µ, Li , χ, etc. to “solve” for
their initial data on Σ0 in terms of the fluid variable data on Σ0 ; the size of the corresponding initial data functions can then be controlled using the
standard Sobolev calculus.



L. Abbrescia and J. Speck 269

on RHS (B.6) are data-terms that are controlled by ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

). This coercive control allows us to prove an analog of

Prop. 24.3 on the tori ℓt,u using only our smallness assumption on the bona fide data norm ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

. We highlight

that this coercive control stands in contrast to the rough tori control provided by the identity (21.63), where the integral∫
(n)̃ℓτ2 ,u1

P[V ,V ]dϖ g̃/ appears on the right-hand side with a positive (unfavorable) sign, i.e., one needs a new estimate to

control
∫

(n)̃ℓτ2 ,u1
P[V ,V ]dϖ g̃/ ; see Lemma 27.3 for a proof of the needed new estimate. However, we stress that, logically

speaking, the proof of Lemma 27.3 can be completed only after one has derived the Cauchy stability estimates of Prop. B.2,
which are independent of Lemma 27.3; we explicitly pointed this out in the proof of Lemma 27.3. We also clarify that the
tori integrands 1

4µ |V |
2
g in (B.6) reflect the fact that the integrand P[V ,V ] defined in (21.45) takes a simplified form when

we use foliations by level-sets of t instead of the rough time functions. Similarly, the tori integrands 1
4(µ− 1

3 )
|V |2g in (B.6)

are analogs of the integrand P[V ,V ] defined in (21.45), but now corresponding to the time function 3t − u, whose U0

level-set defines S [0,5T PS
Shock] (see (A.95c)).

Step 3: Estimates – without derivative loss – relative to the geometric coordinates in CS
[0,5T PS

Shock]
Small . Thanks to the

positivity of µ in CS
[0,5T PS

Shock]
Small guaranteed by (B.4), we can treat this region using essentially the same arguments we used

in Step 2, using foliations of CS
[0,5T PS

Shock]
Small by portions of flat hypersurfaces Σt and portions of null hypersurfaces Pu .

Recap: We have now shown that on the entire Cauchy stability region CST
PS
Shock;∆

PS
, the fluid variables’ flat geometric

energies and null fluxes are bounded up to top-order by ≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

, and that the same result holds for the acoustic

geometry quantities (such as µ, Li , and χ). Since P
[0, 4

δ̊∗
]

−U1
⊂ CST

PS
Shock;∆

PS
, this shows in particular that the data-estimates

(11.12a)–(11.12c) hold with ϵ̊ ≲ ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

.

What remains to be accomplished: The previous steps have provided estimates up to top-order for the solution with
respect to the geometric coordinates on portions of the hypersurfaces Σt of constant Cartesian time, null hypersurface

portions of the form P [0,t]
u , and acoustic tori ℓt,u . It remains for us to control the solution along suitable rough

hypersurfaces (n)̃Σ
[−U1,U2]
τ′ , null hypersurface portions of the form (n)P [τ1,τ2]

u , and (n)̃ℓτ,u . Our arguments will rely on
the previously derived estimates, averaging methods, and some additional energy estimates that are similar to, but much
simpler than, the ones derived in the bulk of the paper.

Step 4: Estimates – without derivative loss – on a special rough hypersurface, a special null hypersurface, and
special rough tori via Chebychev’s inequality. Recall that our main goal is show that the perturbed solution induces

data on the perturbed rough hypersurface (n)̃Σ
[−U1,U2]
τ0 , the null hypersurface portions P

[0, 4
δ̊∗

]

−U1
, and the rough tori (n)̃ℓτ0,u

that satisfy all of the assumptions of Sects. 11.2.1–11.2.3. In the present Step 4, we will combine the results of the previous
steps with averaging arguments based on Chebychev’s inequality to show that the desired estimates hold on nearby rough
hypersurfaces and rough tori. Then, in Step 5, we will derive energy estimates, starting from the data on these nearby

rough hypersurfaces and tori, showing that the estimates hold on (n)̃Σ
[−U1,U2]
τ0 , P

[0, 4
δ̊∗

]

−U1
, and (n)̃ℓτ0,u .

To proceed, we note that the standard Cauchy stability results yielded by Step 1 imply that for n ∈ [0,n0], the region
(n)M[2τ0,

1
2τ0],[−U0,U2] is contained in the region CST

PS
Shock;∆

PS
defined in (A.96a) (recall that τ0 < 0). Hence, by Fubini’s

theorem, for any non-negative function F, we have the following estimate, where in what follows, we suppress the area
and volume forms to simplify the presentation:

∫ 1
2τ0

τ′=2τ0

∫
(n)̃Σ

[−U0 ,U2]
τ′

Fdτ′ =
∫ U2

u′=−U0

∫
(n)P

[2τ0 ,
1
2 τ0]

u′

Fdu′ =
∫

(n)M[2τ0 ,
1
2 τ0],[−U0 ,U2]

F ≤
∫
CS

T PSShock ;∆PS
F. (B.7)



270 Lecture notes on: The emergence of the singular boundary

We now let (see Def. 8.10 regarding the notation):

F def=
∣∣∣∣Z[1,Ntop+1];1
∗ Ψ⃗

∣∣∣∣2 +
∣∣∣P≤Ntop(Ω,S)

∣∣∣2 +
∣∣∣P≤Ntop(C,D)

∣∣∣2 +
∣∣∣∂∂∂P≤Ntop(Ω,S)

∣∣∣2
+

3∑
a=1

∣∣∣∣Z[1,Ntop];1
∗ La

∣∣∣∣2 +
∣∣∣∣P [1,Ntop]
∗ µ

∣∣∣∣2 +
∣∣∣∣P≤Ntop
∗ trg/χ

∣∣∣∣2 +
∣∣∣∣L/≤Ntop

P χ
∣∣∣∣2
g/
.

(B.8)

Note that F is precisely the quantity that we have controlled in CST
PS
Shock;∆

PS
by our flat geometric energies and null fluxes

and the integral identity71 (B.6). In particular, the arguments provided by Steps 2 and 3 imply72 the following spacetime
integral estimate: ∫

CS
T PSShock ;∆PS

F ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.9)

We now use (B.7) and (B.9) to deduce that
∫ 1

2τ0

τ′=2τ0

∫
(n)̃Σ

[−U0 ,U2]
τ′

Fdτ′ ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. From this bound and Chebychev’s

inequality, we see that there must exist a number τ∗ satisfying:

τ∗ ∈ [2τ0,
3
2
τ0] (B.10)

such that the following estimate holds, where in the rest of the proof, we absorb factors of 1
|τ0 |

into the implicit constants:∫
(n)̃Σ

[−U0 ,U2]
τ∗

F ≲
1
|τ0|

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.11)

Using Fubini’s theorem again, (B.11), and the fact that [−U1 − 1
δ̊PS
∗
,−U1] ⊂ [−U0,U2], we further deduce that:∫ −U1

u′=−U1− 1
δ̊PS∗

∫
ℓ̃τ∗ ,u′

Fdu′ =
∫

(n)̃Σ

[−U1− 1
δ̊PS∗

,−U1]

τ∗

F ≤
∫

(n)̃Σ
[−U0 ,U2]
τ∗

F ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.12)

From (B.12) and Chebychev’s inequality, we find that there is a u∗ ∈ [−U1 − 1
δ̊PS
∗
,−U1] such that the following estimate

holds: ∫
ℓ̃τ∗ ,u∗

|P≤Ntop(Ω,S)|2 ≲ 1

δ̊PS∗

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.13)

From (B.13), the bound
∫

(n)̃Σ
[−U0 ,U2]
τ∗

|∂∂∂P≤NtopΩ|2 ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

implied by (B.11), the fact that [−U1 − 1
δ̊PS
∗
,U2] ⊂

[−U0,U2], and fundamental theorem of calculus-type arguments similar to the ones we used to prove (20.5) – but
now based on the identity (20.1b) and Grönwall’s inequality with respect to u – we further deduce that:

sup
u∈[−U1− 1

δ̊PS∗
,U2]

∫
ℓ̃τ∗ ,u

|P≤Ntop(Ω,S)|2 ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.14)

71More precisely, the top-order term
∣∣∣∣∂∂∂PNtop (Ω,S)

∣∣∣∣2 on RHS (B.8), can be controlled via the integral identity (B.6), while the below-top-order

terms
∣∣∣∣∂∂∂P≤Ntop−1(Ω,S)

∣∣∣∣2 can be controlled by the remaining terms in the definition of F with the help of the identities of Lemma 9.2, much like in

(23.5a)–(23.5b).
72Actually, aside from the top-order term |∂∂∂PNtop (Ω,S)|2 , the estimates from Steps 2 and 3 show that various energies of the terms in F on

portions of the hypersurfaces Σt and Pu are bounded by ≲

∆̊Ntop+1

Σ
[−U0 ,U2]
0

2

. These hypersurface estimates imply the spacetime estimate (B.9), where the

implicit constants in (B.9) depend on the size of the region CS
T PS
Shock;∆PS

(which is compact with dimensions controlled by the background solution).
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Moreover, similar arguments yield:

sup
u∈[−U1− 1

δ̊PS∗
,U2]

∫
ℓ̃τ∗ ,u

|P [1,Ntop]Ψ⃗ |2 ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.15)

Similarly, since (B.7) and (B.9) yield
∫ −U1

u′=−U1− 1
δ̊PS∗

∫
(n)P

[2τ0 ,
1
2 τ0]

u′
Fdu′ ≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

, we can again use Chebychev’s

inequality and fundamental theorem of calculus-type arguments similar to the ones we used to prove (20.5) to deduce
that there exists a U∗ > 0 such that:73

−U∗ ∈ [−U1 −
1

δ̊PS∗
,−U1 −

1

2δ̊PS∗
] (B.16)

such that: ∫
(n)P

[2τ0 ,
1
2 τ0]

−U∗

F ≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

(B.17)

and:

sup
τ∈[2τ0,

1
2τ0]

∫
ℓ̃τ,−U∗

|P≤Ntop(Ω,S)|2 ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.18)

Step 5: The desired geometric energy estimates – without derivative loss – on the rough hypersurfaces, null
hypersurfaces, and rough tori relative to the geometric coordinates in (n)M[τ∗,

1
2τ0],[−U∗,U2]. In total, the arguments

given in Steps 1–4 have shown that for n ∈ [0,n0], the bona fide initial data on Σ
[−U0,U2]
0 induce data on the rough

hypersurface portion (n)̃Σ
[−U∗,U2]
τ∗ , the null hypersurface portion (n)P [2τ0,

1
2τ0]

−U∗ , the rough tori (n)̃ℓτ∗,u for u ∈ [−U∗,U2],

and the rough tori (n)̃ℓτ,−U∗ for τ ∈ [2τ0,
1
2τ0], such that on these surfaces, all of the energies and null fluxes (up to

top-order) defined in Sect. 20.5 are bounded by ≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. Starting from these “data-estimates” (including the ones

on the rough tori provided by (B.14), (B.15), and (B.18)), and using the same arguments we used in the proofs of (20.57a),
Props. 24.1, 24.2, 24.3, and 24.4, we can derive the same geometric energy estimates on the region (n)M[τ∗,

1
2τ0],[−U∗,U2],

i.e., we can bound the geometric energies up to top-order on (n)̃Σ
[−U∗,U2]
τ for τ ∈ [τ∗,

1
2τ0], the geometric null fluxes up

to top-order on (n)P [τ∗,
1
2τ0]

u for u ∈ [−U∗,U2], and the geometric rough tori energies (as in Prop. 24.3) on (n)̃ℓτ,u up to

top-order for (τ,u) ∈ [τ∗,
1
2τ0]× [−U∗,U2]; all of these quantities are bounded by ≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

, e.g.,

sup
(τ,u)∈[τ∗, 12τ0]×[−U∗,U2]

∫
ℓ̃τ,u

|P≤Ntop(Ω,S)|2 dϖ g̃/ ≲

(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. (B.19)

The analysis is in fact much simpler compared to the proofs of Props. 24.1, 24.2, 24.3, and 24.4 because in the region
(n)M[τ∗,

1
2τ0],[−U∗,U2], µ is uniformly bounded from below away from 0.

Remark B.3 (The proof of (B.18) does not rely on Lemma 27.3). The proof of (B.19) relies in particular on the integral
identity (21.63) with τ1 = τ∗, τ2 ∈ [τ∗,

1
2τ0], u1 = −U∗, and u2 ∈ [−U∗,U2]. The rough tori L2 estimates (B.15) and (B.18)

are needed to control the corresponding rough tori integrals
∫

(n)̃ℓτ2 ,−U1
· · · ,

∫
(n)̃ℓτ∗ ,u2

· · · , and
∫

(n)̃ℓτ∗ ,−U1
· · · on RHS (21.63).

In particular, the rough tori estimates (B.18) provide an analog of the estimates of Lemma 27.3 that are relevant for the
region under study here. We stress that our proof of (B.18) given above is independent of Lemma 27.3; this is important
for the logic of the paper.

73Note that (B.16) implies that U∗ > U1 . We will use this basic fact in Step 2 of our proof of Prop. 31.2.
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Since τ0 ∈ (τ∗,
1
2τ0), particular cases of these bounds are the ones along (n)̃Σ

[−U∗,U2]
τ0 , which, in view of the fact

that [−U1,U2] ⊂ [−U∗,U2], imply the data bounds (11.11a)–(11.11d) and (11.16a)–(11.16b) with ϵ̊ ≲ ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

. Moreover, the

analog of Prop. 24.3 yields:

sup
u∈[−U∗,U2]

∫
(n)̃ℓτ0 ,u

|P≤Ntop(Ω,S)|2 ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

, (B.20)

which, in view of the fact that [−U1,U2] ⊂ [−U∗,U2], implies (11.13b) with ϵ̊ ≲ ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

. Similarly, from the data-

estimate (B.15), the same arguments we used to prove (20.57a), and the geometric energy and null-flux estimates, we

conclude the rough tori L2 estimates (11.13a) for P [1,Ntop]Ψ⃗ . Finally, we will derive the rough tori L2 estimates (11.13c)
for P≤Ntop−1(C,D). To this end, we note that among the geometric energy estimates mentioned above are the following

bounds: supu∈[−U1,U2]

∫
(n)P

[τ∗ , 12 τ0]
u

|P≤Ntop(C,D)|2 ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. From this bound and arguments similar to the ones

we used to prove (B.18), based on Chebychev’s inequality and fundamental theorem of calculus-type estimates (cf. (20.5)),

we find that for any u ∈ [−U1,U2], we have supτ∈[τ∗, 12τ0]

∫
(n)̃ℓτ,u

|P≤Ntop−1(C,D)|2 ≲
(
∆̊
Ntop+1

Σ
[−U0 ,U2]
0

)2

. Since τ0 ∈ (τ∗,
1
2τ0),

this bound in particular implies (11.13c) with ϵ̊ ≲ ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

.

We have therefore derived (11.11a)–(11.11d), (11.12a)–(11.12c), (11.13a)–(11.13c), and (11.16a)–(11.16b) with ϵ̊ ≲ ∆̊
Ntop+1

Σ
[−U0 ,U2]
0

, thereby

completing our proof sketch of Prop. B.2.
□

Appendix C. Some lessons from 1D , scaffolded around Burgers’ equation flow

Some of the subtleties in our study of the maximal classical globally hyperbolic development for the 3D compressible
Euler equations – and some new subtleties as well – can be seen in 1D model problems. Hence, for illustration, in this
appendix, we study shock formation in the model case of the 1D Burgers’ equation. Importantly, we highlight some key
qualitative differences between the global behavior solutions to Burgers’ equation and solutions to the 1D compressible
Euler equations, where the key differences ultimately stem from the presence of a “second speed of propagation” in
the Euler case. Although the 1D Burgers’ equation lacks many of the extreme technical difficulties present in multi-
dimensional compressible Euler flow, nonetheless, we can use it to exhibit elementary versions of the ideas and methods
found in the bulk of the paper, some of which are not readily found in the hyperbolic conservations laws or standard
PDE literature. Moreover, for Burgers’ equation, we also exhibit (see Sect. C.5.1) non-uniqueness of classical solutions, a
phenomenon which has not yet been observed for globally hyperbolic classical compressible Euler solutions, i.e., solutions
on domains with a Cauchy hypersurface.74 A crucial fact is that the open sets of compressible Euler solutions studied here
and in our companion work [3] do not suffer (at least locally75) from the kind of non-uniqueness for Burgers’ equation
that we exhibit in Sect. C.5.1. The reason is that unlike Burgers’ equation, compressible Euler flow features multiple speeds
of propagation, and this results in a Cauchy horizon emanating from the crease (see Fig. 1A), thereby “blocking” the kind
of non-uniqueness of classical solutions to Burgers’ equation that we exhibit in Sect. C.5.1. However, we caution that for
“general large data” for the 3D compressible Euler equations, the question of whether or not maximal classical globally
hyperbolic developments are always unique is not settled.

We now briefly outline this appendix. In Sects. C.1 and C.2, we study shock formation for Burgers’ equation using
Cartesian coordinates. While our description is sharp, the methods do not readily extend to the study of 3D compressible
Euler flow. In Sects. C.3 and C.4, we study shock formation for Burgers’ equation using a more geometric approach based
on the characteristic geometry. This approach has many parallels to the methods we used in the bulk of the paper and
in Appendix A. In Sect. C.5, we discuss the relationship between the two approaches, we describe various subtleties and
degeneracies, and we briefly describe connections with the shock development problem.

74In the context of compressible Euler flow, a Cauchy hypersurface for the Lorentzian manifold (M,g), where the fluid is assumed to be a classical
solution on the spacetime manifold M and g is the acoustical metric defined in (2.15a), is a hypersurface Σ ⊂M such that for every p ∈ M, every
past-inextendible g-causal curve through p intersects Σ. See [74, Chapter 8] for a discussion of Cauchy hypersurfaces in the context of Einstein’s
equations.

75Recall that in the bulk of the paper, we only studied compressible Euler flow in bounded subsets of spacetime.
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C.1. The Cartesian coordinate space formulation of the equation. The Cauchy problem for Burgers’ equation76 in 1D
is the following PDE, posed for (t,x) def= (x0,x1) ∈R×R, i.e., posed in Cartesian coordinate space:

∂tΨ + (1 +Ψ )∂xΨ = 0, Ψ |Σ0
= Ψ̊ . (C.1)

In (C.1), ∂t
def= ∂0 and ∂x

def= ∂1 are the standard Cartesian coordinate partial derivative vectorfields, and throughout this

appendix, much like the bulk of the paper, we define Σt′
def= {(t,x) ∈R×R | t = t′}. For future use, we define the Burgers’

equation transport vectorfield LBurg as follows:

LBurg
def= ∂t + (1 +Ψ )∂x. (C.2)

As in the bulk of the paper, LαBurg denote the components of LBurg with respect to the Cartesian coordinates (t,x), i.e.,
L0
Burg = LBurgt = 1 and L1

Burg = LBurgx = 1 +Ψ . Note that equation (C.1) is equivalent to:

LBurgΨ = 0. (C.3)

C.2. The Cartesian coordinate space picture of the singularity. In this section, we study shock formation for Burgers’
equation in Cartesian coordinates. Our discussion here is mainly for illustration; our analysis relies on the simple form of
the 1D Burgers’ equation, and the methods do not seem to apply to the 3D compressible Euler equations.

C.2.1. The characteristics and the blowup of ∂xΨ . Given any point (0, z) ∈ Σ0, we let:

γz(t)
def= (t,xz(t)) (C.4)

be the characteristic curve in the (t,x) plane associated with (C.1), where the real-valued function xz is the solution to
the following ODE:

d
dt

xz(t) = L1
Burg (t,xz(t)) = 1 +Ψ (t,xz(t)) , xz(0) = z. (C.5)

γz is the future-directed characteristic curve emanating from (0, z). By the chain rule, for any scalar function f = f (t,x),
we have the following identity, where “◦” denotes composition of functions:

d
dt

(f ◦γz(t)) = [LBurgf ] ◦γz(t). (C.6)

Note that (C.3) and (C.6) imply that d
dt (Ψ ◦γz(t)) = 0 and thus solutions Ψ to Burgers’ equation are constant along the

characteristics. It follows that:

Ψ ◦γz(t) = Ψ̊ (z), (C.7)

and that γz is a straight line with slope 1
1+Ψ̊ (z)

in the (t,x) plane. Equivalently, we have:

xz(t) = z+ t
{
1 + Ψ̊ (z)

}
. (C.8)

Note that (C.7) implies that Ψ remains bounded, i.e., Ψ itself can never diverge to infinity along the curve t → γz(t).
The situation is quite different for ∂xΨ , which can blow up along γz(t). To see this, we differentiate (C.1) with ∂x , to

deduce that LBurg
(

1
∂xΨ

)
= 1. Equivalently, d

dt

{(
1

∂xΨ

)
◦γz(t) = 1

}
. Integrating in time and carrying out straightforward

computations, we find that:

[∂xΨ ] ◦γz(t) =
Ψ̊ ′(z)

1 + tΨ̊ ′(z)
, (C.9)

where Ψ̊ ′(z) def= d
dz Ψ̊ (z). It follows that along the curve t→ γz(t), ∂xΨ blows up precisely at the time tz defined by:

tz
def= − 1

Ψ̊ ′(z)
, (C.10)

76More precisely, the standard Burgers equation is ∂tΨ + Ψ ∂xΨ = 0. We have made the harmless replacement Ψ → 1 + Ψ in equation (C.1)
because this has the effect of shearing the characteristics in the x-direction, which makes for better pictorial comparisons with our work on compressible
fluids (see, e.g., Fig. 1).
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x
t

(t,x) = (0,0)

t→ γ0(t)
t→ γz(t), z > 0

S{0} = (1,1)

S(0,1)
K

S(−1,0)

t→ γz(t), z < 0

Σ0

Figure 17. The singular curve and shock curve in Cartesian coordinates for Ψ̊ (x) = −x + 1
3x

3, not
drawn to scale

and from (C.8), we see that the Cartesian coordinates of the blowup-point associated to the curve γz are:

γz(tz) =
(
− 1

Ψ̊ ′(z)
, z − 1 + Ψ̊ (z)

Ψ̊ ′(z)

)
. (C.11)

The crudest picture of the formation of a shock is the one we have just described, i.e., ∂xΨ blows up while Ψ remains
bounded. In the ensuing discussion, we will give a much more refined description of the singularity formation.

C.2.2. The singular curve. We now study the singular as z varies. That is, in view of (C.11), we define the (future77)
“singular curve” z→S (z) in the (t,x)-plane as follows:

S (z) def=
(
− 1

Ψ̊ ′(z)
, z − 1 + Ψ̊ (z)

Ψ̊ ′(z)

)
. (C.12)

S (z) is the point on the image of the curve t→ γz(t) where ∂xΨ blows up as t increases from 0.
We aim to locally describe the structure of the singular curve. To begin, for subsets J ∈R, we define:

SJ
def= S (J) = {S (z) | z ∈ J} . (C.13)

SJ is the portion of the singular curve in Cartesian coordinates corresponding to z ∈ J . In Fig. 17, for the specific initial
data:

Ψ̊ (x) def= −x+
1
3
x3, (C.14)

we depict78 S(−1,1) = S(−1,0) ∪S{0} ∪S(0,1), where the three sets on the RHS are disjoint. We will further discuss S(−1,1)
in Sect. C.5.

Next, using (C.12) and, in view of (C.2) and (C.7), identifying
(
1,1 + Ψ̊ (z)

)
with the vectorfield LBurg ◦ γz(tz), we

compute that:

d
dz

S (z) =
Ψ̊ ′′(z)

[Ψ̊ ′(z)]2

(
1,1 + Ψ̊ (z)

)
=

Ψ̊ ′′(z)

[Ψ̊ ′(z)]2
LBurg ◦γz(tz). (C.15)

In particular, (C.15) shows that along the singular curve, as long as Ψ̊ ′′(z) , 0, the tangent vector to S at the
corresponding point γz(tz) in Cartesian coordinate space is non-zero and parallel to LBurg ◦ γz(tz); see Fig. 17. In
Sect. C.5, we will discuss the significance of these vectors being parallel. We will also discuss the shock curve, denoted by
“K” in the figure. Readers can consult [20] for similar pictures of shock formation in Burgers’ equation solutions, where
[20] studies formal asymptotic expansions intended to connect the behavior of solutions to Burgers’ equation with small
viscosity to the behavior of solutions to the inviscid problem near their shocks.
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u
t

(t,u) = (0,0) P0
{Pu , u < 0}

B{0} = (1,0) = Crease = B(−1,1) ∩ { ∂∂uµ = 0}

B(−1,0) = B(−1,1) ∩ { ∂∂uµ < 0}
B(0,1) = B(−1,1) ∩ { ∂∂uµ > 0}

{Pu , u > 0}

Σ0

Figure 18. Portions of the curve B = {µ = 0} for Burgers’ equation in geometric coordinates for
Ψ̊ (u) = u − 1

3u
3

C.3. Geometric coordinates and related constructions. In this section and Sect. C.4, we again study shock formation
for Burgers’ equation, but this time using alternate, more geometric methods that are even more directly tied to the
characteristic geometry. Our approach here is closely related to the approach we used in the bulk of the paper and in
Appendix A. In Sect. C.5 we will describe the relationship between the geometric picture of the shock formation described
here and the approach from Sect. C.2, which relied on the Cartesian coordinates. Our main goal in this section is to set
up the geometric framework. In Sect. C.4, we will use the framework to study the shock formation.

C.3.1. Construction of the characteristic coordinate and the geometric coordinates. To start, we assume that we have a
solution Ψ to Burgers’ equation in Cartesian coordinates, and we let LBurg be the Burgers’ equation transport vectorfield,
as defined in (C.2). The main new ingredient is the characteristic coordinate u, which we define to be the solution to the
following transport equation initial value problem:

LBurgu = 0, u|t=0 = −x. (C.16)

Much like in the bulk of the paper, we define (t,u) to be the geometric coordinates, and we define:

Pu′
def=

{
(t,u) ∈R2 | t ≥ 0,u = u′

}
, (C.17)

as well as the following subsets of Σt , where u1 ≤ u2 are constants:

Σ
[u1,u2]
t

def=
{
(t,u) ∈R2 | u1 ≤ u ≤ u2

}
. (C.18)

We have chosen the initial condition u|t=0 = −x to facilitate comparisons with the bulk of the paper, where we make the
same choice (see Def. 3.1). To compare with Sect. C.1, we note that until the characteristics intersect, we can think of u as
the function of (t,x) that takes on the constant value −z along the characteristic curve t→ γz(t). We also emphasize
that in the bulk of the paper, the analog of (C.16) is the acoustic eikonal equation (3.1), which is fully nonlinear and
hyperbolic and therefore much more difficult to study away from symmetry, especially from the point of view top-order
energy estimates.

A key issue (here and in the bulk of the paper) is that the geometric coordinates can be diffeomorphic to the Cartesian
coordinates only before a shock singularity forms; at the onset of the singularity, many interesting degeneracies emerge,
and we will highlight some of them in Sect. C.5. We also note that by (C.16), the specific initial data (C.14) takes the
following form in geometric coordinates:

Ψ̊ (u) def= u − 1
3
u3. (C.19)

77Using the same techniques, one could also study the “past” singular curve, i.e., the set of singular points as t ↓ −∞.
78More precisely, in Fig. 17, we only depict a bounded portion of S(−1,1) ; for the initial data (C.14), the set S(−1,1) is unbounded.
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C.3.2. The inverse foliation density. Next, we define the inverse foliation density of the characteristics, denoted by µ, as
follows:

µ
def= − 1

∂xu
. (C.20)

The vanishing of µ signifies the infinite density of the level sets of u (viewed as a function of (t,x)) and, as it turns out,
the blowup of ∂xΨ ; see (3.2) for the analog of µ in the context of our main results.

C.3.3. Burgers’ equation in geometric coordinates. Using that LBurgt = 1 (see (C.2)) and LBurgu = 0 (see (C.16)) , we can
express the vectorfield LBurg relative to the geometric coordinates (t,u) as follows:

LBurg =
∂
∂t

def=
∂
∂t
|u , (C.21)

where ∂
∂t |u denotes partial differentiation with respect to t at fixed u.

From (C.21), it follows that in geometric coordinates, Burgers’ equation (C.1) takes the following form:

∂
∂t

Ψ (t,u) = 0. (C.22)

From (C.22), we find that Ψ is a function of u alone, that is, in view of the initial conditions in (C.1) and (C.16), that:

Ψ (t,u) = Ψ̊ (u). (C.23)

Note that on RHS (C.23), Ψ̊ (u) denotes the function from (C.1), but written as a function of u, where at t = 0, u = −x i.e.,

Ψ̊ (u) def= Ψ̊ (−x). We highlight that (C.22) is a linear PDE whose solutions do not blow up, i.e., in geometric coordinates,
initially smooth solutions to Burgers’ equation remain smooth for all time!

C.3.4. The evolution equation for the inverse foliation density. With the help of (C.20), we compute that µ∂xt = 0 and
−µ∂xu = 1. It follows that:

µ∂x = − ∂
∂u
, (C.24)

where ∂
∂u denotes partial differentiation with respect to u at fixed t. Using (C.2), (C.16), (C.20), (C.21), and (C.23), and

carrying out straightforward computations based on differentiating (C.16) with ∂x , we compute that µ satisfies the following
evolution equation in geometric coordinates:

∂
∂t

µ(t,u) = LBurgµ(t,u) = − ∂
∂u

Ψ (t,u) = − d
du

Ψ (0,u) def= − d
du

Ψ̊ (u). (C.25)

Integrating (C.25) with respect to t at fixed u and using the initial condition µ|t=0 = 1 (which follows from the initial
condition in (C.16) and (C.20)), we find that:

µ(t,u) = 1− t d
du

Ψ̊ (u). (C.26)

Next, using (C.23)–(C.26), we deduce the following identity, which is fundamental for the discussion in Sect. C.4:

[∂xΨ ](t,u) =
1

µ(t,u)
∂
∂u

Ψ (t,u) = −
d
du Ψ̊ (u)

1− t ddu Ψ̊ (u)
. (C.27)

Note that LHS (C.27) is the Cartesian coordinate partial derivative ∂xΨ , but written as a function of the geometric
coordinates.

C.4. The geometric coordinate space picture of the shock. Let I ⊂R be a subset of u-values. We start by defining:79

BI
def=

{
(t,u) ∈R2 | µ(t,u) = 0, t ≥ 0, u ∈ I

}
=

{
(t,u) ∈R2 | 1− t d

du
Ψ̊ (u) = 0, t ≥ 0, u ∈ I

}
, (C.28)

where the second equality in (C.28) follows from (C.26). In what follows, we use the shorthand notation B def= B
R
.

From (C.27) and (C.28), we deduce the following key result: in regions where we can justify the relevance of geometric

79The subsets BI of geometric coordinate space are closely related to – but distinct from – the singular boundary portion denoted by “B[0,n0]” in
the bulk of the paper.
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coordinates for reaching conclusions about the behavior of the solution in (t,x)-space, BI is the subset of points within
(t,u) ∈ [0,∞)× I such that [∂xΨ ](t,u) blows up.

B is a Burgers’-equation-analog of the singular boundary featured in Theorem 34.1 in the context of
3D compressible Euler flow. However, the analogy is not perfect; unlike the 3D compressible Euler
solutions studied in this paper and our companion work [3], Burgers’ equation solutions can suffer from
non-uniqueness of classical solutions and hence non-uniqueness of maximal classical developments; see
Sect. C.5.1 for further discussion.

We emphasize that justifying the use of geometric coordinates in the study of Burgers’ equation is a non-trivial issue
in the following sense: when the characteristics cross in Cartesian coordinate space, u becomes a “multivalued” function
of (t,x). Hence, when using the (t,u)-coordinates to draw conclusions about the behavior of the solution in (t,x)-space,
one must be careful to limit one’s attention to regions where the two coordinate systems are in bijective correspondence.
In Sect. C.5.2, we will further discuss the issue of whether or not the coordinate systems (t,u) and (t,x) are in bijective
correspondence. We will also describe how the change of variables map (t,u)→ (t,x) always fails to be a diffeomorphism
when µ vanishes (i.e, along B), though sometimes (under appropriate assumptions), it is a homeomorphism along portions
of B. The homeomorphism property, when available, is crucial for the shock development problem, which we discuss
in Sect. C.5.4; the homeomorphism property allows one to associate a unique (t,x)-value to the point referred to as the
“crease” in Fig. 18, which is crucial for the problem.

We now observe that (C.25) and (C.28) imply that for smooth data Ψ̊ , if (t∗,u∗) ∈ BI , then t∗ = 1
d
du Ψ̊ (u∗)

> 0, and we

have the following monotonicity:

LBurgµ(t,u) = − d
du

Ψ̊ (u) < 0, for 0 ≤ t ≤ t∗ and u near u∗. (C.29)

A similar form of monotonicity holds in our study of 3D compressible Euler flow (see, e.g., (18.8a)), and it yields dissipative
terms in the energy estimates (specifically, the spacetime integral K[f ](τ,u) on LHS (20.26)) that are crucial for closing
the problem away from symmetry.

Next, we note that from (C.26), it follows that the Cartesian time of first blowup (i.e., the smallest positive value of t

such that µ vanishes) is (where [z]−
def= max{−z,0}):

TShock =
1

maxu∈R
[
d
du Ψ̊ (u)

]
−

, (C.30)

and that the subset of points within ΣTShock
def= {(t,u) ∈R2 | t = TShock} where µ vanishes is:

Σ
Singular
TShock

=
{

(TShock,u) ∈R2 |
[
d
du

Ψ̊ (u)
]
−

= max
u′∈R

[
d
du

Ψ̊ (u′)
]
−

}
. (C.31)

We now highlight that since µ vanishes for the first time at TShock, within ΣTShock , µ must achieve the minimum value

of 0 precisely on Σ
Singular
TShock

. Hence, since ∂
∂uµ must vanish at the minima, it follows from (C.26) that:

(TShock,u) ∈ ΣSingular
TShock

=⇒ d2

du2 Ψ̊ (u) = 0. (C.32)

We now discuss the crucial issue of the structure of B near points in Σ
Singular
TShock

. To proceed, we note that since µ is pos-

itive on ΣTShock\Σ
Singular
TShock

and vanishes on Σ
Singular
TShock

, it follows that when (TShock,u) ∈ ΣSingular
TShock

, we have ∂2

∂u2 µ(TShock,u) ≥ 0

(for initial data such that µ is a C2 function of (t,u), i.e., when Ψ̊ is C3). Within the class of solutions that are smooth

with respect to the (t,u)-coordinates, the “generic behavior” at a point (TShock,u∗) ∈ Σ
Singular
TShock

is:

∂2

∂u2µ(TShock,u∗) > 0. (C.33)

Inequality (C.33) is an analog of the transversal convexity satisfied by the solutions featured in our main results; see, for

example, (18.5). From (C.26) and (C.31), it follows that if (TShock,u∗) ∈ Σ
Singular
TShock

, then (C.32) and (C.33) hold at (TShock,u∗)

if and only if d2

du2 Ψ̊ (u∗) = 0 and d3

du3 Ψ̊ (u∗) > 0. Moreover, if these latter two conditions hold, then (TShock,u∗) is an

isolated point in B ∩ΣSingular
TShock

. However, we stress that in our study of 3D compressible fluids in the bulk of the paper,
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transversal convexity does not imply that points in B ∩ΣSingular
TShock

are isolated since, roughly speaking, the Hessian of µ in
the symmetry breaking directions does not have to be positive definite; see the discussion in Sect. 1.6.

Finally, to give a specific example, we note that for the specific initial data (C.19), we have TShock = 1, ΣSingular
TShock

consists

of the single point with geometric coordinates (t,u) = (1,0), d2

du2 Ψ̊ (0) = 0, and d3

du3 Ψ̊ (0) = 2 > 0, i.e., the conditions
highlighted above hold; see Fig. 18.

C.5. Relationship between the two approaches, subtleties and degeneracies, and the shock development problem.
In this section, we highlight various subtleties in the study of Burgers’ equation solutions and connect them to our study
of 3D compressible fluids in the bulk of the paper.

For definiteness, throughout Sect. C.5, we assume the specific initial data Ψ̊
def= −x + 1

3x
3 = u − 1

3u
3, as in

equations (C.14) and (C.19) and Figs. 17 and 18.

However, similar results hold (locally) for all solutions satisfying the monotonicity result (C.29) and the transversal
convexity condition (C.33). That is, the basic qualitative properties of such solutions are similar to the properties of the

solution with the data Ψ̊
def= −x+ 1

3x
3 = u − 1

3u
3, and in particular, the properties are stable under perturbations80 of the

initial data. For our specific initial data, TShock = 1 and B ∩ΣSingular
TShock

= (1,0). (1,0) is the lowest point on B in Fig. 18,
and in Fig. 17, it corresponds to the lowest point on the singular curve, namely S{0} = (1,1). Much like in the bulk of the
paper, in the geometric coordinates picture, we refer to (1,0) as “the crease.” Note that for our specific initial data (C.19),
the monotonicity (C.29) and transversal convexity condition (C.33) hold near the crease. For these data, we also have:

∂
∂u

µ(t,u) > 0 for (t,u) ∈ B(0,1), (C.34)

∂
∂u

µ(t,u) = 0 at the crease (t,u) = (1,0), (C.35)

∂
∂u

µ(t,u) < 0 for (t,u) ∈ B(−1,0). (C.36)

The conditions (C.34)–(C.36) are important for the ensuing discussion. In Fig. 18, we have separately labeled the three
subsets of B(−1,1) featured in (C.34)–(C.36). Note also that B(−1,0) corresponds, in the Cartesian coordinate space picture,
to the singular curve portion S(0,1) in Fig. 17, that the crease corresponds to the cusp point S (0) = (1,1) on the singular
curve, and that B(0,1) corresponds to the singular curve portion S(−1,0); we will further discuss this in Sect. C.5.2 by
studying the change of variables map from (t,u) to (t,x) coordinates.

C.5.1. Non-uniqueness of classical solutions for Burgers’ equation, though not necessarily for compressible Euler solutions.
Fig. 17 illustrates a form of non-uniqueness of classical Burgers’ equation solutions in regions of Cartesian coordinate space
lying to the future of the singularity. To exhibit this phenomenon in more detail, we will show (see Figs. 19–20) that there
are two non-open subsets of spacetime, denoted by R1 and R2, such that the following occurs, where for convenience,
we restrict our attention to portions of spacetime corresponding to characteristics that emanate from points (0, z) with
|z| ≤ 1

2 :

1. For i = 1,2, Ri contains Σ0 ∩ {−1
2 ≤ x ≤

1
2 }.

2. For i = 1,2, there exists a classical solution Ψi to Burgers’ equation (C.1) on Ri that takes on the initial condition
Ψi(0,x) = Ψ̊ (x) = −x+ 1

3x
3 along Σ0 ∩ {−1

2 ≤ x ≤
1
2 }.

3. For i = 1,2, for every point p ∈ Ri , there is a unique integral curve of LBurg = ∂t + (1 + Ψi)∂x that passes

through p, is contained in Ri , and intersects Σ0 ∩ {−1
2 ≤ x ≤

1
2 } exactly once. In this sense, we can view

Σ0 ∩ {−1
2 ≤ x ≤

1
2 } as a Cauchy hypersurface for Ri .

4. R1 contains S[− 1
4 ,0), but the solution Ψ1 remains smooth up to S[− 1

4 ,0). On the other hand, S[0, 12 ] belongs to

the boundary of R1 (but not R1 itself), and for any q ∈ S[0, 12 ], [∂xΨ1](p) blows up as q is approached by points

p ∈ R1.
5. R2 contains S(0, 14 ], but the solution Ψ2 remains smooth up to S(0, 14 ]. On the other hand, S[− 1

2 ,0] belongs to the

boundary of R2 (but not R2 itself), and for any q ∈ S[− 1
2 ,0], [∂xΨ2](p) blows up as q is approached by points

p ∈ R2.

80More precisely, our ensuing analysis will imply stability of the phenomena under discussion under C3 perturbations of the initial data.
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6. R1 ∩R2 is equal to the disjoint union of two non-open disconnected components, which we denote by D1 and
D2. The boundary of D2 contains the singular curve portions S[− 1

4 ,0] and S[0, 14 ]. Moreover, the solutions Ψ1

and Ψ2 do not coincide in D2 since, for example, for any q ∈ S(0, 14 ], [∂xΨ1(p)] blows up as q is approached by

any sequence of points p ∈ D2, while Ψ2 is smooth in a neighborhood of q.

Σ0

t
x

S{0}

=
Crease

=
(1,1)

γ0 ([0,1])
(t,x) = (0,0)

Σ0 ∩ {|x| ≤ 1
2 }

S[0, 12 ]

γ− 1
2

([0,1])

Σ1 ∩ {23
24 ≤ x ≤ 1}

γ 1
2

(
[0, 4

3 ]
)S[− 1

4 ,0]

(A) The region R1

Σ0

t
x

S[0, 14 ]

γ0([0,1])(t,x) = (0,0)
Σ0 ∩ {|x| ≤ 1

2 }

S[− 1
2 ,0]

γ− 1
2

(
[0, 4

3 ]
)

γ 1
2

([0,1])

Σ1 ∩ {1 ≤ x ≤ 25
24 }

(B) The region R2

Figure 19. Regions Ri in Cartesian coordinate space on which a classical solution Ψi exists

We now describe the sets Ri and corresponding classical solutions Ψi such that the properties 1-6 above hold. We
will use the notation from Sect. C.2.
R1 and Ψ1. Let R1 be as in Fig. 19A. That is, R1 is the Cartesian coordinate spacetime region bounded from below

by the flat hypersurface portion Σ0 ∩ {−1
2 ≤ x ≤

1
2 }, from above by the continuous, piecewise C1 hypersurface portion(

Σ1 ∩ {23
24 ≤ x ≤ 1}

)
∪S[0, 12 ], on the left by γ− 1

2
([0,1]), and on the right by γ 1

2

(
[0, t 1

2
]
)
, where, as in (C.10) with the

data (C.14), t 1
2

= 4
3 is the value of t such that the curve t → γ 1

2
(t) intersects S[0, 12 ], i.e., the value of t such that

[∂xΨ ] ◦ γ 1
2
(t) blows up. We consider S[0, 12 ] to not be part of R1, while we consider the other boundary portions to

be part of R1. Note that R1 is foliated by portions of the characteristics emanating from Σ0 ∩ {−1
2 ≤ x ≤

1
2 }. Hence,

in view of (C.7), we can define the classical solution Ψ1 on R1 such that Ψ1 is constant along the characteristics that
foliate R1 and such that Ψ1(0,x) = Ψ̊ (x) = −x+ 1

3x
3 on Σ0 ∩ {−1

2 ≤ x ≤
1
2 }. Ψ1 is a classical solution on R1 because

we have removed the singular curve portion S[0, 12 ], where ∂xΨ1 blows up. Note, however, that ∂xΨ1 is not uniformly

bounded on R1.

x
t

(t,x) = (0,0)
γ0 ([0,1])

γ 1
2

([0,1])

S{0}

=

(1,1)

S[− 1
4 ,0)

Σ0

D2

D1

γ− 1
2

([0,1])

Σ0 ∩ {|x| ≤ 1
2 }

Σ1 ∩ {23
24 ≤ x ≤

25
24 }

γ 1
2

(
( 16

15 ,
12
11 )

)
γ− 1

2

(
( 16

15 ,
12
11 )

)
S(0, 14 ]

Figure 20. R1 ∩R2 =D1 ∪D2, illustrating non-uniqueness for Ψ̊ (x) = −x+ 1
3x

3
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R2 and Ψ2. Let R2 be as in Fig. 19B. That is, R2 is the Cartesian coordinate spacetime region bounded from below by

the flat hypersurface portion Σ0 ∩ {−1
2 ≤ x ≤

1
2 }, on the left by γ− 1

2

(
[0, t− 1

2
]
)
(where, as in (C.10) with the data (C.14),

t− 1
2

= 4
3 is the value of t such that the curve t→ γ− 1

2
(t) intersects S[− 1

2 ,0]), from above by S[− 1
2 ,0]∪

(
Σ1 ∩ {1 ≤ x ≤ 25

24 }
)
,

and on the right by γ 1
2

([0,1]). We consider S[− 1
2 ,0] to not be part of R2, while we consider the other boundary portions

to be part of R2. Like R1, R2 is foliated by portions of the characteristics emanating from Σ0 ∩ {−1
2 ≤ x ≤

1
2 }, and

in view of (C.7), we can define the classical solution Ψ2 on R2 such that Ψ2 is constant along the characteristics that
foliate R2 and such that Ψ2(0,x) = Ψ̊ (x) = −x+ 1

3x
3 on Σ0 ∩ {−1

2 ≤ x ≤
1
2 }. Ψ2 is a classical solution on R2 because

we have removed the singular curve portion S[− 1
2 ,0], where ∂xΨ2 blows up. Note, however, that ∂xΨ2 is not uniformly

bounded on R2.
Description of R1 ∩R2. We now describe R1 ∩R2; see Fig. 20. R1 ∩R2 is a disconnected set equal to the disjoint

union D1∪D2, where: a) D1 is the region bounded from below by the flat hypersurface portion Σ0∩{−1
2 ≤ x ≤

1
2 }, from

above by the flat hypersurface portion
(
Σ1 ∩ {23

24 ≤ x ≤
25
24 }

)
, on the left by γ− 1

2
([0,1]), and on the right by γ 1

2
([0,1]),

where the crease (1,1) does not belong to D1 but the remaining boundary portions do belong to D1; and b) D2 is the

region bounded by the curve portions S[0, 14 ], S[− 1
4 ,0], γ− 1

2

(
( 16

15 ,
12
11 )

)
, and γ 1

2

(
( 16

15 ,
12
11 )

)
, where the four vertices of D2,

starting from the crease and heading clockwise, are (1,1), ( 16
15 ,

19
18 ), ( 12

11 ,
12
11 ), and ( 16

15 ,
97
90 ). Note that the singular curve

portions S[0, 14 ] and S[− 1
4 ,0] do not belong to D2 but the remaining boundary portions do belong to D2. In obtaining

the structure of D2, we have used the following four facts, which can be computed using the formula (C.14) for the
initial data, the expression γz(t) =

(
t, z+ t(1− z+ 1

3z
3)
)
(which follows from (C.4) and (C.8)), and the expression (C.12)

for the singular curve: i) S[0, 14 ] and S[− 1
4 ,0] intersect at the crease point (t,x) = (1,1) = S (0); ii) the curve t→ γ− 1

2
(t)

intersects S[0, 12 ] at the point (t,x) = ( 16
15 ,

19
18 ) = S ( 1

4 ); iii) the curves t→ γ− 1
2
(t) and t→ γ 1

2
(t) intersect at the point

(t,x) = ( 12
11 ,

12
11 ), iv) the curve t→ γ 1

2
(t) intersects S[− 1

2 ,0] at the point (t,x) = ( 16
15 ,

97
90 ) = S (−1

4 ).
The above example shows that in the study of Burgers’ equation flow, the non-uniqueness of classical solutions past

shock singularities is an unavoidable aspect of the theory. However, in the regime of 3D compressible Euler flow that
we study in this paper, the mechanism for non-uniqueness of classical solutions that we highlighted above for Burgers’
equation does not occur. The reason is that in the regime of compressible Euler flow that we study, there are other
characteristic directions that, for classical solutions, block the crossing of the characteristics, even though the density
of a family of characteristics can blow up (resulting in a singularity in the fluid’s first derivatives). In particular, one
must distinguish between the actual crossing of the characteristics (which, in the Burgers’ equation example was tied to
multi-valued solutions and lack of uniqueness) and their density becoming infinite. We will explain this phenomenon
in the case of 1D compressible Euler flow. More precisely, in the 1D case, another characteristic curve, called the
Cauchy horizon, emanates from the crease (i.e., the analog of the point (1,1) in Fig. 17) and delineates a portion of the
boundary of the maximal classical development. The Cauchy horizon “blocks” a family of characteristics from entering
the region where they would have crossed another family and developed infinite density, thereby defeating the issue of
multi-valuedness of solutions and restoring uniqueness; see Fig. 21 for a schematic depiction of the effect of a Cauchy
horizon, which we denote by “C.”

Let us further describe the emergence of the Cauchy horizon and its significance in the case of 1D isentropic
compressible Euler flow. In this context, we can study the system using Riemann invariants RPS

(+) and RPS
(−); see the

coupled system (A.4), where we imagine that the vectorfield LPS in that system is an analog of LBurg and that RPS
(+), which

solves LPSRPS
(+) = 0, is an analog of the Burgers’ equation variable Ψ , and the vectorfield LPS represents a “new speed,”

i.e., a new characteristic direction compared to the case of Burgers’ equation. Assume that one is studying shock-forming
solutions such that the dynamics are dominated by LPS and RPS

(+), i.e., the characteristics corresponding to LPS develop

infinite density and cause a singularity in ∂xRPS
(+), while R

PS
(−) remains C1; with the help of the techniques introduced in

Appendix A, one can show that open sets of such solutions exist. For such solutions, the blowup of ∂xRPS
(+) would happen

along a singular curve, denoted by “B” in Fig. 21, which is an analog of the branch S[0,1) from Fig. 17, which contains
the crease (1,1). However, unlike in Burgers equation, a Cauchy horizon, denoted by “C” in Fig. 21, would emanate from
the crease. The Cauchy horizon is a characteristic that is generated by the other characteristic direction in the flow. That
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Figure 21. A schematic depiction of the effect of a Cauchy horizon in 1D isentropic compressible Euler
solutions

is, in the context of Fig. 21, C is tangent to the vectorfield LPS from (A.4). See also Fig. 1A for a picture of the Cauchy
horizon in the context of our main results in 3D . It is important to appreciate that in the regime we study in this
paper and our companion work [3], no singularity occurs along the Cauchy horizon, except on its past boundary (i.e., the
crease in Fig. 21). Nonetheless, in compressible Euler flow, the Cauchy horizon lies in the causal future81 of the crease,
where the fluid’s first partial derivatives with respect to the Cartesian coordinates blow up, and it is therefore impossible
to uniquely continue the fluid solution past the Cauchy horizon to a larger globally hyperbolic region M such that the
solution classically exists onM and such that the data-hypersurface is a Cauchy hypersurface forM. We emphasize that
for the 1D compressible solutions described above, the Cauchy horizon lies in the causal future of the crease precisely
because it is generated by the characteristic vectorfield LPS.

For the 1D solutions described above, which are dominated by the dynamics of LPS and RPS
(+), the portion of the

singular curve that corresponds to the branch S[0,1) from Fig. 17 (and which is denoted by “B” in Fig. 21) is part of
the boundary of the maximal classical globally hyperbolic development, while the portion of the singular curve that
corresponds to the branch S(−1,0) is not part of the boundary. The Cauchy horizon blocks all the characteristics lying to
the left of the crease in Fig. 17 from crossing any of the characteristics lying to the right of the crease in Fig. 17, thereby
preventing the analog of singular curve portion S(−1,0) in Fig. 17 from forming; hence, in Fig. 21, there is no analog of the
singular curve portion S(−1,0). In the geometric coordinates picture for 1D compressible Euler flow, the analog of the set
B(0,1) from see Fig. 18 corresponds to S(−1,0). Hence, B(0,1) does not correspond to any portion of the boundary of the
maximal classical globally hyperbolic development; B(0,1) is, in fact, the “fictitious portion” of the singular boundary that
we described in Sect. 1.3. In 1D compressible Euler flow, the fictitious portion of the singular boundary can be identified
by the condition ∂

∂uµ > 0, which is satisfied along S(−1,0); see (C.34). Moreover, in the geometric coordinates picture for

1D compressible fluids, one cannot even uniquely construct the solution (RPS
(+),R

PS
(−)) all the way up to analog of S(−1,0)

because it is cut off by the Cauchy horizon. We refer to Sects. 1.3 and 1.10.6 for further discussion of the significance of
the condition ∂

∂uµ > 0 (more precisely, the condition X̆µ > 0 in Sects. 1.3 and 1.10.6) in compressible fluid flow and its
relevance for identifying the fictitious portion of the singular boundary.

C.5.2. The homeomorphism and diffeomorphism properties – and their breakdown – of the change of variables map
(t,u)→ (t,x). Consider the change of variables map

ΥBurg(t,u) def= (t,x), (C.37)

where on RHS (C.37), we are viewing x = x(t,u). Using (C.2), (C.21), and (C.24), we compute that the differential
of ΥBurg with respect to the geometric coordinates (i.e., the Jacobian matrix), which we denote by dgeoΥBurg, satisfies

dgeoΥBurg =
(

1 0
1 +Ψ −µ

)
. Hence, its Jacobian determinant is detdgeoΥBurg = −µ. Since µ vanishes on the set B def= B

R

defined in (C.28), ΥBurg is not a diffeomorphism up to B. The breakdown in the diffeomorphism properties of ΥBurg

81Here, we mean causal with respect to the acoustical metric g defined in (2.15a).
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supplies another way of thinking about why the Burgers’ equation solution Ψ remains smooth in (t,u) coordinates – all
the way up to B – while forming a first-derivative singularity in (t,x) coordinates. Despite the discrepancy between the
two coordinate systems, using the monotonicity (C.29), the transversal convexity condition (C.33), and the sign of ∂

∂uµ

on B(−1,0) guaranteed by (C.36), one can show (see the proof of Prop. 33.1 for the main ideas) the following important

property: there is a ς > 0 (depending on the initial data) such that ΥBurg is a homeomorphism on MBurg
Injective, where

MBurg
Injective is defined to be the compact subset of geometric coordinate space lying above the flat hypersurface portion

Σ
[− 1

2 ,ς]
0 (see definition (C.18)) and below the C1,1 hypersurface Σ

[− 1
2 ,0]

0 ∪B[−ς,0];M
Burg
Injective is a subset of the region shown

in Fig. 18. In particular,MBurg
Injective contains the singular boundary portion B[−ς,0]. This injectivity is essential for justifying

that the Cartesian coordinate space subset ΥBurg

(
MBurg

Injective

)
can be equipped with geometric coordinates and for setting

up the shock development problem. In the bulk of the paper, we proved similar homeomorphism and diffeomorphism
(when µ > 0) properties on the regionMInteresting defined in (32.1d); see Prop. 33.1.

C.5.3. Degeneracies along B[−ς,0]. Let B[−ς,0] be the subset of {µ = 0} described in Sect. C.5.2. Note that ΥBurg

(
B[−ς,0]

)
=

S[0,ς], i.e., in the Cartesian coordinate space picture, S[0,ς] is a portion of the singular curve containing the image of
the crease, i.e., ΥBurg(1,0) = (1,1); see Fig. 17. In equation (C.15) and the discussion just below it, we showed that at
every82 point p ∈ S(0,ς], the tangent vector to S(0,ς] at p is also a tangent vector for a unique (straight-line) characteristic

that emanates from Σ
(0,ς]
0 and intersects S(0,ς] at p. The tangent vector was also shown to be parallel to LBurg|p , i.e., to

∂t + (1 +Ψ |p)∂x . This exhibits two key phenomena along S(0,ς] (analogous results also hold on S[−ς,0)):

I) The tangent vector to S(0,ς] everywhere points in a characteristic direction. This means that S(0,ς] is a characteristic
curve. A similar phenomenon occurs in our study of 3D compressible Euler flow; see Prop. 33.2. In 3D , this leads
to severe degeneracies in our energy estimates since, as is well known, for quasilinear hyperbolic systems, L2-type
energies are only semi-definite along characteristic hypersurfaces.

II) In the Cartesian coordinate space picture, the vectorfield LBurg does not have unique integral curves at points
in S(0,ς]. Specifically, points p ∈ S(0,ς] belong to S(0,ς] and to the straight-line characteristic mentioned above,
and both curves are integral curves of LBurg that share the same tangent vector LBurg|p = ∂t + (1 +Ψ |p)∂x . This
lack of uniqueness stems from the blowup of ∂xΨ |p , which implies in particular that in Cartesian coordinates,
the vectorfield LBurg is not Lipschitz up to S(0,ς] (Lipschitz regularity is a standard criterion from ODE theory
for uniqueness of integral curves). The phenomenon of non-uniqueness of integral curves of a characteristic
vectorfield also occurs in our study of 3D compressible Euler flow; see Remark 33.3.

C.5.4. Choosing a formulation, the shock development problem, and a new speed. Consider the first singularity ΥBurg(1,0) =
(1,1) in Cartesian coordinate space, i.e., the image of the crease in Cartesian coordinate space; see Fig. 17. Ideally, one
would like to uniquely continue the solution as a weak solution past the first singularity and to fully describe the tran-
sition of the solution from classical to weak. To ensure the uniqueness of weak solutions, selection criteria are needed.
The issue of uniqueness of weak solutions is a devilishly subtle83 one, and we will briefly discuss it further at the end of
this section. For Burgers’ equation, the weak solution should be smooth on the closure of each side of a shock curve K –
which has to be constructed – but will jump across K, where the jump is vanishing at (1,1) but “starts to develop” there;
see Fig. 17 for a depiction of the shock curve K when the initial data are as in (C.14). Our definition of a weak solution is
the standard one based on integrating against test functions. More precisely, since, for smooth solutions, Burgers’ equation
(C.1) is equivalent to ∂tΨ +∂x[F(Ψ )] = 0, where:

F(Ψ ) def=
1
2

(1 +Ψ )2, (C.38)

82The results discussed here in fact hold for every p ∈ S[0,ς] . This cannot be seen directly from equation (C.15) because as parameterized, the
tangent vector to the singular curve z → S (z) vanishes at z = 0 (which corresponds to the crease, assuming the initial data (C.19)). However, this
vanishing is only due to the parameterization; by exploiting the transversal convexity (C.33), one could reparameterize the singular curve in (C.15) by
using

√
z as the curve parameter for z ∈ [0,ς], which would allow us to show that the results hold on all of S[0,ς] ; see Prop. 33.2, in which we used a

similar reparameterization to show that in the context of our main results, the singular boundary is a C1, 12 embedded submanifold-with-boundary of
Cartesian coordinate space.

83Even in 1D , in the large-data regime for general quasilinear hyperbolic systems of conservation laws, the question of uniqueness of weak solutions
remains largely open.
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the weak formulation in the half-space (t,x) ∈ [0,∞) × R would posit that for every smooth, compactly supported
function φ on [0,∞)×R, we have the following identity, where as before, Ψ̊ (x) = Ψ (0,x):∫

[0,∞)×R
{Ψ (t,x)∂tφ(t,x) +F (Ψ (t,x))∂xφ(t,x)} dtdx+

∫
R

Ψ̊ (x)φ(0,x)dx = 0. (C.39)

The problem of constructing K and the corresponding piecewise smooth weak solution Ψ as well as describing the
transition of the solution from classical to weak (i.e., describing the nascent, evolving jump in Ψ across K) is called the
shock development problem, which we discuss below in the context of Burgers’ equation. It should be distinguished from,
for example, the well-known Riemann problem in 1D , in which the initial data are assumed to be piecewise constant
and with a specified jump discontinuity across a point. In contrast, in the shock development problem, the jump is just
starting to develop at the crease. We refer to Sect. 1.4 for a discussion of the relationship between the shock development
problem for 3D compressible Euler flow and the main results from the bulk of the paper.

It is easy to see from integration by parts that for smooth data, before the solution forms a singularity, classical
Burgers’ equation solutions are also weak solutions, i.e., the classical and weak formulations “agree.” However, at the first
singularity, one must choose whether to keep the classical formulation or to instead impose a weak one. If one chooses
the classical formulation, then one can at best hope to construct a maximal classical development, i.e., a “largest possible
region” on which a classical solution exists (in particular, a maximal classical development does not contain any portion
of the singular curve from Fig. 17), in the spirit of what we achieved in Sect. C.2. However, as we discussed in Sect. C.5.1,
for Burgers’ equation, one encounters non-uniqueness of classical solutions past the first singularity.

Remark C.1 (Non-uniqueness of maximal globally hyperbolic classical developments is not known for compressible Euler
flow). For compressible Euler flow with smooth initial data, as of present, there are no known examples of non-uniqueness
of maximal globally hyperbolic classical developments (i.e., developments with a Cauchy hypersurfaces, as explained at
the beginning of Appendix C). This is due to the phenomena of Cauchy horizons, as described above.

Alternatively, one could choose to impose a weak formulation of the flow, starting from the first singularity. It turns
out (see below) that the standard weak formulation of the flow introduces a new speed into the problem, the speed of
K itself. It also turns out that – like the singular curve portion S(0,ς] in Fig. 17 – K emanates from (1,1), but it lies
below S(0,ς]. For this reason, the weak and classical solutions disagree in the region lying below S(0,ς] and above K. For
3D compressible Euler flow, despite the irrelevance of part of the classical solution for the weak solution, it turns out
that it is crucial to understand the structure of the maximal classical development to properly set up and solve the shock
development problem; see Sect. 1.6 for further discussion.

As we alluded to above, a fundamental aspect of the shock development problem is the construction of the shock
curve, denoted by K in Fig. 17 in the context of Burgers’ equation. The evolution of K is coupled to that of Ψ . In Fig. 17,
K is correctly depicted as a straight line segment, but the straightness is an artifact of the oddness of the initial data
(C.14), whose corresponding solution is depicted in the figure; in general, K is a portion of a curve that has to be solved
for. For compressible Euler flow, the shock development problem is difficult even in spherical symmetry (in part due to
the multi-speed nature of the system), and the spherically symmetric problem was solved only very recently [27]; we refer
to Sect. 1.9.12 for further discussion. For Burgers’ equation, the shock development problem is easier to solve; see [22,43,47]
for theorems that yield local existence for families of 1D shock development problems that include Burgers’ equation as
a special case. Here, we will sketch the argument of how to solve for Ψ and K. We will use the initial data (C.14) and
the corresponding Fig. 17 to guide our discussion. To proceed, we recall that for smooth solutions, Burgers’ equation (C.1)
is equivalent to ∂tΨ + ∂x[F(Ψ )] = 0, where F is defined in (C.38). For clarity, we will refer to the weak (but piecewise
smooth) solution as ΨWeak. Assume the following:

i) The shock curve K emanates from the crease (i.e., the point (1,1) in the context of Fig. 17) and is parameterized
in (t,x)-space by t→ (t,k(t)).

ii) To the left of K (we avoid defining ΨWeak on K itself), ΨWeak(t,x) = ΨLeft(t,x), where ΨLeft(t,x) is smooth up
to K and determined by from the data by characteristics coming from the left (recall that Ψ is constant along
characteristics).

iii) To the right of K, ΨWeak(t,x) = ΨRight(t,x), where ΨRight(t,x) is smooth up to K and determined from the data
by characteristics coming from the right.

Under the above assumptions, the standard Rankine–Hugoniot jump condition for weak solutions (see, for example,

[33, Equation (3.1.3)]) tie the jump in ΨWeak across K (i.e., ΨLeft −ΨRight) to the shock curve speed k′(t) def= d
dtk(t) and is
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as follows:

k′(t) =
F (ΨLeft(t,k(t)))−F

(
ΨRight(t,k(t))

)
ΨLeft (t,k(t))−ΨRight (t,k(t))

=
1
2
{1 +ΨLeft (t,k(t))}+

1
2

{
1 +ΨRight (t,k(t))

}
, k(1) = 1, (C.40)

where the initial condition in (C.40) stems from the fact that K emanates from the crease point, i.e., the point (1,1)
in the (t,x) plane. Note that (C.40) implies that k′(t) lies between the speed 1 + ΨLeft (t,k(t)) corresponding to the
ΨLeft-characteristics and the speed 1 + ΨRight (t,k(t)) corresponding to the ΨRight-characteristics. Importantly, for the

initial data Ψ̊ (x) = −x + 1
3x

3 under consideration, ΨLeft (t,k(t)) is larger than ΨRight (t,k(t)) (except at (1,1), where
ΨLeft = ΨRight) and thus:

1 +ΨRight (t,k(t)) < k′(t) < 1 +ΨLeft (t,k(t)) , (C.41)

except when t = 1, where all three speeds in (C.41) are equal to unity. Hence, K is slower than the ΨLeft-characteristics
but faster than the ΨRight-characteristics. One can show that for the odd initial data (C.14), the terms ΨLeft (t,k(t)) and
ΨRight (t,k(t)) to the right of the second equality in (C.40) cancel, leading to k′(t) ≡ 1; this explains why for this data, the
shock curve K is a segment of a straight line; see Fig. 17.

Geometrically, (C.41) means that the ΨLeft-characteristics impinge on K from the left, while the ΨRight-characteristics
impinge on K from the right. That is, as one heads to the future, the characteristics impinge on the shock curve from
both sides, as opposed to emanating from it; see Fig. 17. Inequality (C.41) (and its geometric interpretation) is an example
of what is known in the hyperbolic conservation laws literature as the Lax entropy condition. This condition is crucial
for the shock development problem and the Riemann problem. For the shock development problem, the Lax entropy
condition guarantees that the ΨLeft-characteristics hit K before they crash into the singular curve portion S(−1,0), along
which ∂xΨLeft would have blown up (as we showed in Sect. C.2). Similarly, it guarantees that the ΨRight-characteristics hit
K before they crash into the singular curve portion S(0,1], where ∂xΨRight would have blown up. We highlight that the
point (1,1) (i.e., the crease in the Cartesian coordinate space picture) is of particular importance and lies on K, S[−1,0],
and S[0,1].

The Lax entropy condition (C.41) is a crucial inequality that is often used as an ingredient (not the only one) in
ensuring uniqueness of weak solutions. If one does not impose it, then even the aforementioned Riemann problem in
1D can exhibit non-uniqueness of weak solutions; see, e.g., [39, Section 3.4.1]. To guarantee uniqueness of weak solutions
in a suitably large function space for which global existence is know (at least for data with small BV norm), technical
conditions are required. In 1D , various criteria for uniqueness have been established in the hyperbolic conservations
laws literature; see, for example, [33, Theorem (14.10.2)], which proves a uniqueness result for weak solutions to strictly
hyperbolic conservation laws in 1D arising from BV initial data such, as long as the solution satisfies the Lax entropy
condition and a “Tame Oscillation Condition,” which is an assumed quantitative constraint on the oscillation of the
solution in time. We also note that for scalar conservation laws in arbitrary dimensions (of which Burgers’ equation is
a simple example), there exists a robust theory of existence and uniqueness of global weak solutions; see, for example,
[33, Theorem (6.2.2)].

Appendix D. Notation

For the reader’s convenience, in this appendix, we have gathered some of the notation and conventions used throughout
the bulk of the paper.
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Cartesian coordinate space and derivatives
Symbols Descriptions Reference
R×R×T2 The ambient (1+3)-dimensional spacetime. The spatial domain is R×T2 Sect. 1.2

{xα}α=0,1,2,3

The Cartesian coordinates on R×R×T2, relative to which the Minkowski
metric m has components mαβ = diag(−1,1,1,1). We often use the

notation t
def= x0 for Cartesian time.

Sect. 1.2

{∂α}α=0,1,2,3

Cartesian coordinate partial derivative vectorfields. Note that {∂2,∂3} can
be extended to a smooth, globally defined positively oriented frame on
T

2.
Sect. 1.2

∂∂∂f
The array of Cartesian coordinate spacetime partial derivatives of a func-

tion f , i.e., ∂∂∂f
def= (∂tf ,∂1,∂2f ,∂3f )

Sect. 1.10.3

∂f
The array of Cartesian coordinate spatial partial derivatives of f , i.e.,

∂f
def= (∂1,∂2f ,∂3f ).

Sect. 1.10.3

Lowercase Greek “spacetime” indices, such as α, vary over 0,1,2,3, while Lowercase Latin “spatial” indices, such as
a, vary over 1,2,3. We use Einstein’s summation convention in that repeated indices are summed over their

respective ranges.

Σt
The hypersurface constant Cartesian time t: Σt

def= {(x0,x1,x2,x3) ∈ R×
R×T2 | x0 ≡ t}

Sect. 1.2

curlV
The Euclidean curl of a Σt-tangent vectorfield V , with components

(curlV )k def= ϵijkδ
jl∂lV

k , where ϵijk denotes the fully antisymmetric

symbol normalized by ϵ123 = 1 and δjl is the Kronecker delta.

Def. 2.3

divV The Euclidean divergence of a Σt-tangent vectorfield V , divV def= ∂aV a. Def. 2.3

Fluid variables and some geometric objects
Symbols Descriptions Reference

vi ,ϱ, s,p
{vi}i=1,2,3 is the Σt-tangent fluid velocity, ϱ is the fluid density, and s is
the entropy. p = p(ϱ,s) denotes the equation of state.

Sect. 1.2

B The material vectorfield. (1.2)
ϱ A fixed positive constant “background density.” (2.2)

ρ, c

ρ = ln
(
ϱ
ϱ

)
denotes the logarithmic density. The speed of sound is

c(ρ, s) =
√

(ϱ)−1 exp(−ρ)p;ρ, where p;ρ
def= ∂p

∂ρ denotes the derivative of

the equation of state with respect to the logarithmic density at fixed s.

Sect. 2.3.1

R(+), R(−) The almost Riemann invariants. (2.7)

Ωi , S i , Ci , D {Ωi}i=1,2,3 denotes the specific vorticity, {S i}i=1,2,3 denotes the entropy
gradient, and {Ci}i=1,2,3,D denote the modified fluid variables.

Def. 2.7

Ψ⃗ , Ψ⃗ (Partial) The array and partial array of wave-variables. (2.11a)–(2.11b)

g, g−1 The acoustical metric and inverse metric of spacetime. Def. 2.10.

Gιαβ , G⃗αβ Ψ⃗ι-derivatives of gαβ and the array of Ψ⃗ι-derivatives of gαβ . Def. 2.18a

DΨ⃗ , G⃗V1V2
⋄DΨ⃗ Differential operators involving Ψ⃗ . Def. 2.12

2g The covariant wave operator of g. Def. 2.13

Q(g),Qαβ Standard g-null forms. Def. 2.14
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The acoustic geometry
Symbols Descriptions Reference
u, µ The eikonal function and inverse foliation density. Def. 3.1

Σt , Pu , ℓt,u , Σ
[u1,u2]
t ,

P [t1,t2]
u

Acoustic regions and truncated acoustic regions of spacetime. Def. 3.2

g , g/ First fundamental forms of Σt and ℓt,u induced by g, respectively. Def. 3.4
D, d/ , div/ , ∆/ Levi-Civita connections of g , g/ and associated differential operators. Def. 3.11
Riem, Ric The Riemann and Ricci curvature tensors of g. (6.31)–(6.32)
(t,u,x2,x3) The geometric coordinate system. Def. 3.5.

{ ∂∂t ,
∂
∂u ,

∂
∂x2 ,

∂
∂xA
} The coordinate partial derivative vectorfields in geometric coordinates. Def. 3.5.

∂α⃗

∂(t,u,x2,x3)
Multi-index notation in geometric coordinates. (8.1)

Uppercase Latin indices such as A vary over 2,3. We use Einstein’s summation convention in that repeated indices
are summed over their respective ranges.

The contraction of a one-form ξ and ∂
∂xA

is denoted by ξA
def= ξα( ∂

∂xA
)α for A = 2,3. A similar convention is used

for higher order contractions, i.e. g/AB = g/( ∂
∂xA

, ∂
∂xB

) for A,B = 2,3.
L(Geo), L, X , X̆ , Y(A) The important acoustic vectorfields. Def. 3.8

Li(Small), Xi(Small),

Y i(A;Small)

L∞-small “Error parts” of the acoustic vectorfields. (3.10), (3.13), (3.15)

Z , P , Y Sets of the commutation vectorfields, Pu-tangent vectorfields, and ℓt,u-
tangent vectorfields, respectively.

(3.16)

ZN ;M , PN , YN ,
ZN ;M
∗ , PN∗ , ZN ;M

∗∗ ,
P(N ),Y(N )

Strings of commutation vectorfields. Def. 8.10

L A g-null vectorfield normalized by g(L,L) = −2 (7.1)

Π,Π/ ,Πξ,Π/ ξ, /ξ
Σt and ℓt,u-projection tensorfields. Projections of spacetime tensors ξ
onto Σt and ℓt,u .

Def. 3.3

LZξ,L/Zξ Σt-projected and ℓt,u-projected Lie derivatives. Def. 3.12

L/N ;M
Z ξ,L/NP ξ,L/

N
Y ξ . Strings of ℓt,u-projected Lie derivatives. Def. 8.10

trgξ, trg/ξ Trace of spacetime and ℓt,u-tangent tensors. Def. 3.16
|ξ |g, |ξ |g , |ξ |g/ Pointwise norms of tensorfields. Def. 3.17

k,χ,ζ
The second fundamental form of Σt , the null second fundamental form
of ℓt,u , and the ℓt,u-tangent one form.

Def. 3.20

γ,γ The controlling quantities. Def. 3.14

d/ x⃗
The array of ℓt,u-projected spatial coordinate one-forms d/ x⃗ =
(d/ x1,d/ x2,d/ x3)

(9.2)

(Z)πππ The deformation tensor of a spacetime vectorfield Z with respect to g. (9.15)

∆̊
Ntop+1

Σ
[u1 ,u2]
0

Norm of the data perturbation on Σ0. (11.4)

∥f ∥
HN
Cartesian(Σ

[u1 ,u2]
0 )

,

∥f ∥L2
Cartesian(ℓ0,u )

Sobolev and L2 norms on Σ
[u1,u2]
0 and ℓ0,u . (11.5a)–(11.5b)
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The rough time function and associated regions of spacetime
Symbols Descriptions Reference
φ = φ(u) The cut-off function which is identically equal to 1 when |u| ≤ 1

2Uj. (4.1)
(n)W̆ The rough transversal vectorfield (n)W̆ = X̆ +φ n

LµL. (4.2)

M̆m, X̆−n, T̆m,−n Level-sets of µ, X̆µ, and the µ-adapted tori. Def. 4.2
(n)τ The rough time function. Def. 4.5
τ0,−m0 The largest-in-magnitude value of (n)τ. (4.5)

((n)τ,u,x2,x3) The adapted rough coordinates. Def. 4.9

{ ∂̃
∂̃(n)τ

, ∂̃
∂̃u
, ∂̃
∂̃x2
, ∂̃
∂̃x3
} The adapted rough coordinate partial derivative vectorfields. Def. 4.9

∂̃α⃗

∂̃((n)τ,u,x2,x3)
Multi-index notation in the adapted rough coordinates. (8.2)

(n)̃ΣIτ,
(n)̃ℓτ,u The rough hypersurfaces and rough tori. Def. 4.11

(n)P Ju , (n)MI,J Truncated rough foliations of spacetime. Def. 4.11

M̆
I
m, X̆

I
−n Truncated level-sets of µ and X̆µ. Def. 4.12.

(n)N[τ0,τBoot]
Region of spacetime for which there is especially sharp control of µ.
Specifically, the estimate (18.15) holds on it.

(18.12)

Relationships between the different coordinate systems
Symbols Descriptions Reference
Υ The map (t,u,x2,x3) 7→ (t,x1,x2,x3). (5.1)
(n)T The map (t,u,x2,x3) 7→ ((n)τ,u,x2,x3). (5.2)
(n)Φ , (

(n)Φ)J The map ((n)τ,u,x2,x3) 7→ (µ, X̆µ,x2,x3) and its Jacobian. (5.4a)–(5.4b)

The rough acoustic geometry
Symbols Descriptions Reference

g̃/ , g̃ The first fundamental forms of (n)̃ℓτ,u and (n)̃Σ
[−U0,U2]
τ . Def. 6.2

(n)̃L The rough null vectorfield. (6.3)
(n)Λ̃ The τ0-normalized flow map of (n)̃L. Lemma 16.1
(n)U , (n)R̆, (n)R̂, (n)Ñ ,
(n)N̂

Several geometric vectorfields adapted to the rough foliations. Def. 6.4

ABA Matrix governing the relationship between ∂
∂xA

, ∂̃
∂̃xA

and g/, g̃/ . (6.14)

(n)r Small, non-negative factor related to the size of (n)R̆. (6.20b).

˜Riem, R̃ic, R̃
The Riemann and Ricci curvature tensors of g̃/ . The scalar and Gauss
curvatures of g̃/ .

(6.33)–(6.36).
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Norms, volume forms, and L2 ingredients
Symbols Descriptions Reference
∥f ∥Wm,∞

geo ((n)MI,J ),
∥f ∥Cm,1geo ((n)MI,J )

L∞-type Sobolev and Hölder norms of (n)MI,J in the (t,u,x2,x3) coor-
dinate system.

Def. 8.2

∥f ∥Cm,1rough(I×J×T2) L∞-type Hölder norms in the ((n)τ,u,x2,x3) coordinate system. (8.5)

dϖ ,dϖ,dϖ,dϖ g̃/
Volume forms induced on the rough foliations by g in the adapted rough
coordinates used to define L2 norms.

Def. 8.3

∥ξ∥L2((n)̃ℓτ,u ),

∥ξ∥L2((u)P nJ ),

∥ξ∥L2((n)̃ΣIτ),

∥ξ∥L2((n)MI,J )

L2 norms relative to the volume forms dϖ ,dϖ,dϖ,dϖ g̃/ Def. 8.7

dvolg̃ ,dvolg The canonical area and volume forms induced by g̃ and g, respectively. Def. 8.5
Q[f ] The energy-momentum tensor Qαβ[f ] = DαDβf − 1

2gαβg
−1(Df ,Df ). (20.18)

(Z)J[f ] The energy current vectorfield (Z)Jα[f ] = Qαβ[f ]Zβ . (20.19)

T̆ The multiplier vectorfield (1 + 2µ)L+ 2X̆ . (20.22)
E(Wave),F(Wave),
E(Transport), F(Transport)

The energies and null-fluxes for the wave and transport-variables, respec-
tively.

Def. 20.7

K[f ] A coercive spacetime integral used in the wave equation energy estimates. (20.25)
(T̆ )B[f ], (T̆ )B(1)[f ],

· · · , (T̆ )B(6)[f ]
Bulk terms arising from µQαβ[f ](T̆ )πππαβ[f ] in the fundamental energy
identity for wave equations.

(20.27)– (20.28f)

QN ,KN , WN
The N -th order wave-controlling quantities for all the wave-variables
{R(+),R(−),v

2,v3, s}. (20.43a)–(20.43c)

Q
(Partial)
N ,K

(Partial)
N ,

W
(Partial)
N

The N -th order wave-controlling quantities for all the partial wave-
variables {R(−),v

2,v3, s}. (20.44a)–(20.44c)

VN ,SN
The N -th order specific vorticity and entropy gradient controlling quanti-
ties.

(20.45a)–(20.45b)

V
(Rough Tori)
N ,S

(Rough Tori)
N

The N -th order specific vorticity and entropy gradient controlling quanti-
ties on the rough tori.

(20.46a)–(20.46b)

CN ,DN The N -th order controlling quantities for the modified fluid variables. (20.47a)–(20.47b)

C
(Rough Tori)
N ,D

(Rough Tori)
N

The N -th order controlling quantities for the modified fluid variables on
the rough tori.

(20.48a)–(20.48b)

We use the following summation conventions: Q[N1,N2] =
∑N2
M=N1

QM , V≤N =
∑N
M=0VM , and similarly for the

other controlling quantities.
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Bootstrap assumptions
Symbols Descriptions Reference
τBoot The bootstrap rough-time. (12.1)

Tm,−n,Um,−n
The µ-adapted torus T̆m,−n is a graph over (x2,x3) ∈ T

2: T̆m,−n =
{(Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3) | (x2,x3) ∈ T2}. (BA µ− TORI STRUCTURE)

(n)E
The mapping defined by (m,x2,x3) ∈ (mBoot,µ0] × T

2 7→
(Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3).

(12.4)

(Quantitative improvement of bootstrap assumptions) By this, we mean that some quantity Q was assumed to
satisfy A1 ≤Q ≤ A2 in the bootstrap assumptions (where A1,A2 are real numbers), and we derive the improved

bound B1 ≤Q ≤ B2, where A1 < B1 ≤ B2 < A2.
(From soft to quantitative improvement of bootstrap assumptions) By this, we mean that in the bootstrap
assumptions, we assumed that some function Q belonged to some function space and had a finite norm in that

space, and our improvement is a quantitative estimate for the norm of Q.
(Extension to the closure improvement of bootstrap assumptions) By this, we mean that our bootstrap

assumptions involved an assumption on the “open-at-the-top” domain (n)M[τ0,τBoot),[−U0,U2], and we derive an

improved result showing that the assumption holds on the closed domain (n)M[τ0,τBoot],[−U0,U2].

Embeddings and flow maps
Symbols Descriptions Reference
(n)H(mBoot,m0] A subset of R×T2 which is diffeomorphic to X̆

[τ0,τBoot)
−n . (14.4)

(n)H, (n)h
The function (n)H(t,x2,x3) = (t, (n)h(t,x2,x3),x2,x3) is an embedding

from (n)H(mBoot,m0]→ (n)M[τ,τBoot),[− 3
4U1,

3
4U1] whose image is X̆

[τ0,τBoot)
−n

Lemma 14.1

(n)ι∆u The flow map of W̆ . (14.9)
(n)F, (n)F (n)F(∆u,t,x2,x3) = (n)ι∆u ◦ (n)H(t,x2,x3), and (n)F is its domain. Lemma 14.2.

(n)M
The 4× 4 matrix-valued function on (n)H(mBoot,m0] whose first column is

(0,1,0,0)⊤ and whose last three columns are the Jacobian d(t,x2,x3)
(n)H .

(14.23)

A
An “ambient" spacetime function of class W 3,∞

geo ((n)M(τ0,τBoot),(−U0,U2)),
satisfying the constraint ((n)W̆A )|

X̆
[τ0 ,τBoot)
−n

= 0
Lemma 15.1

tτ,n

Describes the Cartesian time function t as a function of
(u,x2,x3) on the rough hypersurfaces. That is, (n)̃Σ

[−U0,U2]
τ ={

(t,u,x2,x3) | t = tτ,n(u,x2,x3), (u,x2,x3) ∈ [−U0,U2]×T2
}
.

(15.28)

(n)I

The map defined by (n)I(x2,x3) = Υ ◦(
Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3

)
, which is a diffeomorphism

from T
2 onto Υ

(
T̆m,−n

)
.

(18.21)
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The elliptic–hyperbolic integral identities
Symbols Descriptions Reference

Π The projection tensorfield Π
α
β = δ α

β + 1
2L

αLβ onto Pu . (21.1)

h,h−1 Spacetime Riemannian metric and inverse metrics. (21.3a)–(21.3b)

e,E
Positive semi-definite

(0
2
)
,
(2
0
)
tensorfields which restrict to Riemannian

metric and inverse metrics on Pu .
(21.4)–(21.5)

|ZV |g
The g-norm of the Σt-tangent vectorfield ZV

a, where Z is an arbitrary
spacetime vectorfield and V a is a Σt-tangent vectorfield.

Def. 21.5

|ξ |h The h-norm of a
(m
n

)
spacetime tensorfield. Def. 21.6

Q[∂∂∂V ,∂∂∂V ] The coercive elliptic-hyperbolic quadratic form. (21.23)

J [V ,∂∂∂V ]
The characteristic current, also referred to as the elliptic-hyperbolic cur-
rent.

(21.29)

W An arbitrary weight function. Lemma 21.12
J(Antisymmetric)[∂∂∂V ,
∂∂∂V ], J(Div)[∂∂∂V ,∂∂∂V ]

Error terms arising in the covariant divergence identity for J that are
quadratic in ∂∂∂V a.

(21.31a)–(21.31b)

J(∂∂∂W )[V ,∂∂∂V ],
J(Absorb-1)[V ,∂∂∂V ],
J(Absorb-2)[V ,∂∂∂V ],
J(Null Geometry)[V ,
∂∂∂V ]

Error terms arising in the covariant divergence identity for J that are
linear in ∂∂∂V a.

(21.31c)–(21.31g)

P[V ,V ]
Term arising in the boundary terms for the characteristic current identity
which is a perfect (n)R̆ derivative. It is positive definite in Σt-tangent
vectorfields in the sense that P[V ,V ] ≈ 1

µ−φ n
Lµ
|V |2g .

(21.45)

E(Principal)[V ,∂∂∂V ]
Principal order error terms arising in the boundary terms for the charac-
teristic current identity.

(21.46)

E(Lower-order)[V ,V ]
Lower order error terms arising in the boundary terms for the character-
istic current identity.

(21.47)

M[V ,∂∂∂V ]
Spacetime bulk error term arising in the elliptic-hyperbolic integral iden-
tity.

(21.64)

Error terms in the geometric wave equations
Symbols Descriptions Reference

Harmless
[1,N ]
(Wave)

N -th order harmless wave error terms. (22.1)

G⃗,Gι

For Ψ⃗ = (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4) = (R(+),R(−),v
2,v3, s), G⃗ = (G0, · · · ,G4)

is the vector array of the inhomogeneous terms in the covariant wave
equations µ2gΨι = Gι

Prop. 22.3
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Avoiding derivative loss when controlling the acoustic geometry
Symbols Descriptions Reference

A
Error term arising in the key identity verified by µRicLL. The identity
requires the use of the geometric wave equations (2.22a)–(2.22d).

(19.2)

B
Error term arising from key identity verified by RicLL. The identity does
not require that the geometric wave equations (2.22a)–(2.22b) are satisfied.

(19.4)

(PN )X
Fully modified version of µPN trg/χ that satisfies the favorable transport
equation (19.10).

(19.6a)

X Inhomogeneous term in the modified quantity (PN )X = µPN trg/χ+PNX. (19.6b)

(PN )X̃
Partially modified version of PN trg/χ that satisfies the favorable transport
equation (19.11).

(19.7a)

(PN )̃X, X̃
N -th and 0-th order inhomogeneous terms in the partially modified quan-

tity (PN )X̃ .
(19.7b)–(19.8)

(PN−1)B Error terms arising in the transport equation for (PN )X̃ . (19.12)

|̃ξ|̃g/ Norms of (n)̃ℓτ,u-tensors with respect to g̃/ . Def. 6.9

tr̃g/ ξ̃ The g̃/-trace of a type
(0
2
)
tensorfield on (n)̃ℓτ,u : tr̃g/ ξ̃ = (̃g/ −1)αβξαβ . (6.25)

d̃/ ϕ The rough differential of a scalar function. Def. 6.12

d̃iv/ ξ The rough divergence of a (n)̃ℓτ,u-tangent tensorfield ξ . Def. 6.13

{eA}A=2,3, {fA}A=2,3
The frames obtained from applying Gram–Schmidt to { ∂

∂xA
}A=2,3 and

{ ∂̃
∂̃xA
}A=2,3 with g/ , g̃/ respectively.

Def. 28.2

OAB, λA Change of frame coefficients between {eA}A=2,3 and {fA}A=2,3. Lemma 28.4
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Developments of the data, the singular boundary and crease, and a new time function
Symbols Descriptions Reference

MLeft

The portion of the development sandwiched between (U2)P n
[τ0,0] and

X̆
[τ0,0]
0 .

(32.1a)

MRight
The portion of the development sandwiched between X̆

[τ0,0]
−n0 and

(−U0)P n
[τ0,0].

(32.1c)

MSingular The portion of the development sandwiched between X̆
[τ0,0]
0 and X̆

[τ0,0]
−n0 . (32.1b)

MInteresting The union ofMLeft,MSingular,MRight. (32.1d)

B[0,n0] The singular boundary portion of the development, given by B[0,n0] =⋃
n∈[0,n0] T̆0,−n.

(32.3)

∂−B[0,n0] The crease, given by ∂−B[0,n0] def= T̆0,0. (32.4)

E

The map given by E(m,n,x2,x3) =
(Tm,−n(x2,x3),Um,−n(x2,x3),x2,x3), which is a C1,1 diffeomor-
phism from [0,m0]× [0,n0]×T2 ontoMSingular.

(32.7)

D
[0,n0]
m The m-level-sets of µ in the singular development as a graph. (32.16)

T̆m
The graph of the Cartesian t as a function of (u,x2,x3) along the m-
level-sets of µ in the singular development.

(32.18)

(Interesting)τ The time function whose level-sets foliateMInteresting. (32.34)

((Interesting)τ,u, x2,x3) The interesting coordinate system. Def. 32.9
(Interesting)T The map (t,u,x2,x3) 7→ ((Interesting)τ,u,x2,x3). (32.36)

(Interesting)tτ
The function on [−U0,U2] × T2 whose graph is the Cartesian t on
MInteresting.

(32.37)

H̆
The vectorfield that is the coordinate partial derivative with respect to u
in the interesting coordinate system.

(32.38a)

Ğ
The vectorfield that is the coordinate partial derivative with respect to
(Interesting)τ in the interesting coordinate system.

(32.38b)
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